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1 Databases
A database is an organized collection of inter-related data that models some aspect of the real-world (e.g.,
modeling the students in a class or a digital music store). People often confuse “databases” with “database
management systems” (e.g., MySQL, Oracle, MongoDB). A database management system (DBMS) is the
software that manages a database.

Consider a database that models a digital music store (e.g., Spotify). Let the database hold information
about the artists and which albums those artists have released.

2 Flat File Strawman
Database is stored as comma-separated value (CSV) files that the DBMS manages. Each entity will be
stored in its own file. The application has to parse files each time it wants to read or update records. Each
entity has its own set of attributes, so in each file, different records are delimited by new lines, while each of
the corresponding attributes within a record are delimited by a comma.

Keeping along with the digital music store example, there would be two files: one for artist and the other for
album. An artist could have a name, year, and country attributes, while an album has name, artist and year
attributes.

Issues with Flat File
• Data Integrity

– How do we ensure that the artist is the same for each album entry?
– What if somebody overwrites the album year with an invalid string?
– How do we treat multiple artists on one album?
– What happens when we delete an artist with an album?

• Implementation
– How do we find a particular record?
– What if we now want to create a new application that uses the same database?
– What if two threads try to write to the same file at the same time?

• Durability
– What if the machine crashes while our program is updating a record?
– What if we want to replicate the database on multiple machines for high availability?

3 Database Management System
A DBMS is a software that allows applications to store and analyze information in a database.

A general-purpose DBMS is designed to allow the definition, creation, querying, updation, and administra-
tion of databases.
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Early DBMSs
Database applications were difficult to build and maintain because there was a tight coupling between logical
and physical layers. The logical layer describes which entities and attributes the database has while the
physical layer is how those entities and attributes are being stored. Early on, the physical layer was defined
in the application code, so if we wanted to change the physical layer the application was using, we would
have to change all of the code to match the new physical layer.

4 Relational Model
Ted Codd noticed that people were rewriting DBMSs every time they wanted to change the physical layer,
so in 1970 he proposed the relational model to avoid this. This relational model has three key points:

• Store database in simple data structures (relations).
• Access data through high-level language.
• Physical storage left up to implementation.

A data model is a collection of concepts for describing the data in a database. The relational model is an
example of a data model.

A schema is a description of a particular collection of data, using a given data model.

The relational data model defines three concepts:

• Structure: The definition of relations and their contents. This is the attributes the relations have and
the values that those attributes can hold.

• Integrity: Ensure the database’s contents satisfy constraints. An example constraint would be that
any value for the year attribute has to be a number.

• Manipulation: How to access and modify a database’s contents.

A relation is an unordered set that contains the relationship of attributes that represent entities. Since the
relationships are unordered, the DBMS can store them in any way it wants, allowing for optimization.

A tuple is a set of attribute values (also known as its domain) in the relation. Originally, values had to be
atomic or scalar, but now values can also be lists or nested data structures. Every attribute can be a special
value, NULL, which means for a given tuple the attribute is undefined.

A relation with n attributes is called an n-ary relation.

Keys
A relation’s primary key uniquely identifies a single tuple. Some DBMSs automatically create an internal
primary key if you do not define one. A lot of DBMSs have support for autogenerated keys so an application
does not have to manually increment the keys.

A foreign key specifies that an attribute from one relation has to map to a tuple in another relation.

5 Data Manipulation Languages (DMLs)
A language to store and retrieve information from a database. There are two classes of languages for this:

• Procedural: The query specifies the (high-level) strategy the DBMS should use to find the desired
result.

• Non-Procedural (Declarative): The query specifies only what data is wanted and not how to find it.
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6 Relational Algebra
Relational Algebra is a set of fundamental operations to retrieve and manipulate tuples in a relation. Each
operator takes in one or more relations as inputs, and outputs a new relation. To write queries we can “chain”
these operators together to create more complex operations.

Select
Select takes in a relation and outputs a subset of the tuples from that relation that satisfy a selection predicate.
The predicate acts like a filter, and we can combine multiple predicates using conjunctions and disjunctions.

Syntax: σpredicate(R).

Projection
Projection takes in a relation and outputs a relation with tuples that contain only specified attributes. You
can rearrange the ordering of the attributes in the input relation as well as manipulate the values.

Syntax: πA1,A2,. . . ,An(R).

Union
Union takes in two relations and outputs a relation that contains all tuples that appear in at least one of the
input relations. Note: The two input relations have to have the exact same attributes.

Syntax: (R ∪ S).

Intersection
Intersection takes in two relations and outputs a relation that contains all tuples that appear in both of the
input relations. Note: The two input relations have to have the exact same attributes.

Syntax: (R ∩ S).

Difference
Difference takes in two relations and outputs a relation that contains all tuples that appear in the first relation
but not the second relation. Note: The two input relations have to have the exact same attributes.

Syntax: (R− S).

Product
Product takes in two relations and outputs a relation that contains all possible combinations for tuples from
the input relations.

Syntax: (R× S).

Join
Join takes in two relations and outputs a relation that contains all the tuples that are a combination of two
tuples where for each attribute that the two relations share, the values for that attribute of both tuples is the
same.

Syntax: (R ./ S).
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Observation
Relational algebra is a procedural language because it defines the high level-steps of how to compute a
query. For example, σb id=102(R ./ S) is saying to first do the join of R and S and then do the select,
whereas (R ./ (σb id=102(S))) will do the select on S first, and then do the join. These two statements will
actually produce the same answer, but if there is only 1 tuple in S with b id=102 out of a billion tuples, then
(R ./ (σb id=102(S))) will be significantly faster than σb id=102(R ./ S).

A better approach is to say the result you want, and let the DBMS decide the steps it wants to take to compute
the query. SQL will do exactly this, and it is the de facto standard for writing queries on relational model
databases.
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1 Relational Languages
Edgar Codd published a major paper on relational models in the early 1970s. Originally, he only defined the
mathematical notation for how a DBMS could execute queries on a relational model DBMS.

The user only needs to specify the result that they want using a declarative language (i.e., SQL). The DBMS
is responsible for determining the most efficient plan to produce that answer.

Relational algebra is based on sets (unordered, no duplicates). SQL is based on bags (unordered, allows
duplicates).

2 SQL History
Declarative query lanaguage for relational databases. It was originally developed in the 1970s as part of the
IBM System R project. IBM originally called it “SEQUEL” (Structured English Query Language). The
name changed in the 1980s to just “SQL” (Structured Query Language).

The language is comprised of different classes of commands:

1. Data Manipulation Language (DML): SELECT, INSERT, UPDATE, and DELETE statements.
2. Data Definition Language (DDL): Schema definitions for tables, indexes, views, and other objects.
3. Data Control Language (DCL): Security, access controls.

SQL is not a dead language. It is being updated with new features every couple of years. SQL-92 is the
minimum that a DBMS has to support to claim they support SQL. Each vendor follows the standard to a
certain degree but there are many proprietary extensions.

Some of the major updates released with each new edition of the SQL standard are shown below.

• SQL:1999 Regular expressions, Triggers
• SQL:2003 XML, Windows, Sequences
• SQL:2008 Truncation, Fancy sorting
• SQL:2011 Temporal DBs, Pipelined DML
• SQL:2016 JSON, Polymorphic tables

3 Joins
Combines columns from one or more tables and produces a new table. Used to express queries that involve
data that spans multiple tables.

Example: Which students got an A in 15-721?
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CREATE TABLE student (
sid INT PRIMARY KEY,
name VARCHAR(16),
login VARCHAR(32) UNIQUE,
age SMALLINT,
gpa FLOAT

);

CREATE TABLE course (
cid VARCHAR(32) PRIMARY KEY,
name VARCHAR(32) NOT NULL

);

CREATE TABLE enrolled (
sid INT REFERENCES student (sid),
cid VARCHAR(32) REFERENCES course (cid),
grade CHAR(1)

);

Figure 1: Example database used for lecture

SELECT s.name
FROM enrolled AS e, student AS s
WHERE e.grade = 'A' AND e.cid = '15-721'
AND e.sid = s.sid;

4 Aggregates
An aggregation function takes in a bag of tuples as its input and then produces a single scalar value as its
output. Aggregate functions can (almost) only be used in a SELECT output list.

• AVG(COL): The average of the values in COL
• MIN(COL): The minimum value in COL
• MAX(COL): The maximum value in COL
• COUNT(COL): The number of tuples in the relation

Example: Get # of students with a ‘@cs’ login.

The following three queries are equivalent:

SELECT COUNT(*) FROM student WHERE login LIKE '%@cs';

SELECT COUNT(login) FROM student WHERE login LIKE '%@cs';

SELECT COUNT(1) FROM student WHERE login LIKE '%@cs';

Can use multiple aggregates within a single SELECT statement:

SELECT AVG(gpa), COUNT(sid)
FROM student WHERE login LIKE '%@cs';
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Some aggregate functions support the DISTINCT keyword:

SELECT COUNT(DISTINCT login)
FROM student WHERE login LIKE '%@cs';

Output of other columns outside of an aggregate is undefined (e.cid is undefined below).

Example: Get the average GPA of students in each course.

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid;

Non-aggregated values in SELECT output clause must appear in GROUP BY clause.

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid;

The HAVING clause filters output results based on aggregation computation. This make HAVING behave like
a WHERE clause for a GROUP BY.

Example: Get the set of courses in which the average student GPA is greater than 3.9.

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid
HAVING avg_gpa > 3.9;

The above query syntax is supported by many major database systems, but is not compliant with the SQL
standard. To make the query standard compliant, we must repeat use of AVG(S.GPA) in the body of the
HAVING clause.

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e, student AS s
WHERE e.sid = s.sid
GROUP BY e.cid
HAVING AVG(s.gpa) > 3.9;

5 String Operations
The SQL standard says that strings are case sensitive and single-quotes only. There are functions to ma-
nipulate strings that can be used in any part of a query.

Pattern Matching: The LIKE keyword is used for string matching in predicates.

• “%” matches any substrings (including empty).
• “ ” matches any one character.

Concatenation: Two vertical bars (“||”) will concatenate two or more strings together into a single string.
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String Functions SQL-92 defines string functions. Many database systems implement other functions in
addition to those in the standard. Examples of standard string functions include SUBSTRING(S, B, E) and
UPPER(S).

6 Date and Time
Operations to manipulate DATE and TIME attributes. Can be used in either output or predicates. The specific
syntax for date and time operations varies wildly across systems.

7 Output Redirection
Instead of having the result a query returned to the client (e.g., terminal), you can tell the DBMS to store the
results into another table. You can then access this data in subsequent queries.

• New Table: Store the output of the query into a new (permanent) table.

SELECT DISTINCT cid INTO CourseIds FROM enrolled;

• Existing Table: Store the output of the query into a table that already exists in the database. The
target table must have the same number of columns with the same types as the target table, but the
names of the columns in the output query do not have to match.

INSERT INTO CourseIds (SELECT DISTINCT cid FROM enrolled);

8 Output Control
Since results SQL are unordered, we must use the ORDER BY clause to impose a sort on tuples:

SELECT sid, grade FROM enrolled WHERE cid = '15-721'
ORDER BY grade;

The default sort order is ascending (ASC). We can manually specify DESC to reverse the order:

SELECT sid, grade FROM enrolled WHERE cid = '15-721'
ORDER BY grade DESC;

We can use multiple ORDER BY clauses to break ties or do more complex sorting:

SELECT sid, grade FROM enrolled WHERE cid = '15-721'
ORDER BY grade DESC, sid ASC;

We can also use any arbitrary expression in the ORDER BY clause:

SELECT sid FROM enrolled WHERE cid = '15-721'
ORDER BY UPPER(grade) DESC, sid + 1 ASC;

By default, the DBMS will return all of the tuples produced by the query. We can use the LIMIT clause to
restrict the number of result tuples:

SELECT sid, name FROM student WHERE login LIKE '%@cs'
LIMIT 10;
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We can also provide an offset to return a range in the results:

SELECT sid, name FROM student WHERE login LIKE '%@cs'
LIMIT 10 OFFSET 20;

Unless we use an ORDER BY clause with a LIMIT, the DBMS may produce different tuples in the result on
each invocation of the query because the relational model does not impose an ordering.

9 Nested Queries
Invoke queries inside of other queries to execute more complex logic within a single query. Nested queries
are often difficult to optimize.

The scope of outer query is included in an inner query (i.e. the inner query can access attributes from outer
query), but not the other way around.

Inner queries can appear in almost any part of a query:

1. SELECT Output Targets:

SELECT (SELECT 1) AS one FROM student;

2. FROM Clause:

SELECT name
FROM student AS s, (SELECT sid FROM enrolled) AS e
WHERE s.sid = e.sid;

3. WHERE Clause:

SELECT name FROM student
WHERE sid IN ( SELECT sid FROM enrolled );

Example: Get the names of students that are enrolled in ‘15-445’.

SELECT name FROM student
WHERE sid IN (

SELECT sid FROM enrolled
WHERE cid = '15-445'

);

Note that sid has different scope depending on where it appears in the query.

Nested Query Results Expressions:

• ALL: Must satisfy expression for all rows in sub-query.
• ANY: Must satisfy expression for at least one row in sub-query.
• IN: Equivalent to =ANY().
• EXISTS: At least one row is returned.

10 Window Functions
Performs “sliding” calculation across a set of tuples that are related. Like an aggregation but tuples are not
grouped into a single output tuple.
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Functions: The window function can be any of the aggregation functions that we discussed above. There
are also also special window functions:

1. ROW NUMBER: The number of the current row.
2. RANK: The order position of the current row.

Grouping: The OVER clause specifies how to group together tuples when computing the window function.
Use PARTITION BY to specify group.

SELECT cid, sid, ROW_NUMBER() OVER (PARTITION BY cid)
FROM enrolled ORDER BY cid;

We can also put an ORDER BY within OVER to ensure a deterministic ordering of results even if database
changes internally.

SELECT *, ROW_NUMBER() OVER (ORDER BY cid)
FROM enrolled ORDER BY cid;

IMPORTANT: The DBMS computes RANK after the window function sorting, whereas it computes ROW NUMBER
before the sorting.

11 Common Table Expressions
Common Table Expressions (CTEs) are an alternative to windows or nested queries when writing more
complex queries. They provide a way to write auxiliary statements for user in a larger query. CTEs can be
thought of as a temporary table that is scoped to a single query.

The WITH clause binds the output of the inner query to a temporary result with that name.

Example: Generate a CTE called cteName that contains a single tuple with a single attribute set to “1”.
Select all attributes from this CTE. cteName.

WITH cteName AS (
SELECT 1

)
SELECT * FROM cteName;

We can bind output columns to names before the AS:

WITH cteName (col1, col2) AS (
SELECT 1, 2

)
SELECT col1 + col2 FROM cteName;

A single query may contain multiple CTE declarations:

WITH cte1 (col1) AS (SELECT 1), cte2 (col2) AS (SELECT 2)
SELECT * FROM cte1, cte2;

Adding the RECURSIVE keyword after WITH allows a CTE to reference itself. This enables the implementa-
tion of recursion in SQL queries. With recursive CTEs, SQL is provably turing-complete, implying that it is
as computationally expressive as more general purpose programming languages (if a bit more cumbersome).
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Example: Print the sequence of numbers from 1 to 10.

WITH RECURSIVE cteSource (counter) AS (
( SELECT 1 )
UNION
( SELECT counter + 1 FROM cteSource

WHERE counter < 10 )
)
SELECT * FROM cteSource;
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1 Storage
We will focus on a “disk-oriented” DBMS architecture that assumes that the primary storage location of the
database is on non-volatile disk(s).

At the top of the storage hierarchy, you have the devices that are closest to the CPU. This is the fastest
storage, but it is also the smallest and most expensive. The further you get away from the CPU, the larger
but slower the storage devices get. These devices also get cheaper per GB.

Volatile Devices:

• Volatile means that if you pull the power from the machine, then the data is lost.
• Volatile storage supports fast random access with byte-addressable locations. This means that the

program can jump to any byte address and get the data that is there.
• For our purposes, we will always refer to this storage class as “memory.”

Non-Volatile Devices:

• Non-volatile means that the storage device does not require continuous power in order for the device
to retain the bits that it is storing.

• It is also block/page addressable. This means that in order to read a value at a particular offset, the
program first has to load the 4 KB page into memory that holds the value the program wants to read.

• Non-volatile storage is traditionally better at sequential access (reading multiple contiguous chunks
of data at the same time).

• We will refer to this as “disk.” We will not make a (major) distinction between solid-state storage
(SSD) and spinning hard drives (HDD).

There is also a relatively new class of storage devices that are becoming more popular called persistent
memory. These devices are designed to be the best of both worlds: almost as fast as DRAM with the
persistence of disk. We will not cover these devices in this course, and they are currently not in widespread
production use. Note that you may see older references to persistent memory as “non-volatile memory”.

You may see references to NVMe SSDs, where NVMe stands for non-volatile memory express. These
NVMe SSDs are not the same hardware as persistent memory modules. Rather, they are typical NAND
flash drives that connect over an improved hardware interface. This improved hardware interface allows for
much faster transfers, which leverages improvements in NAND flash perfomance.

Since our DBMS architecture assumes that the database is stored on disk, the components of the DBMS
are responsible for figuring out how to move data between non-volatile disk and volatile memory since the
system cannot operate on the data directly on disk.

We will focus on hiding the latency of the disk rather than optimizations with registers and caches since
getting data from disk is so slow. If reading data from the L1 cache reference took half a second, reading
from an SSD would take 1.7 days, and reading from an HDD would take 16.5 weeks.
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2 Disk-Oriented DBMS Overview
The database is all on disk, and the data in database files is organized into pages, with the first page being
the directory page. To operate on the data, the DBMS needs to bring the data into memory. It does this by
having a buffer pool that manages the data movement back and forth between disk and memory. The DBMS
also has an execution engine that will execute queries. The execution engine will ask the buffer pool for a
specific page, and the buffer pool will take care of bringing that page into memory and giving the execution
engine a pointer to that page in memory. The buffer pool manager will ensure that the page is there while
the execution engine operates on that part of memory.

3 DBMS vs. OS
A high-level design goal of the DBMS is to support databases that exceed the amount of memory available.
Since reading/writing to disk is expensive, disk use must be carefully managed. We do not want large stalls
from fetching something from disk to slow down everything else. We want the DBMS to be able to process
other queries while it is waiting to get the data from disk.

This high-level design goal is like virtual memory, where there is a large address space and a place for the
OS to bring in pages from disk.

One way to achieve this virtual memory is by using mmap to map the contents of a file in a process’ ad-
dress space, which makes the OS responsible for moving pages back and forth between disk and memory.
Unfortunately, this means that if mmap hits a page fault, the process will be blocked.

• You never want to use mmap in your DBMS if you need to write.
• The DBMS (almost) always wants to control things itself and can do a better job at it since it knows

more about the data being accessed and the queries being processed.
• The operating system is not your friend.

It is possible to use the OS by using:

• madvise: Tells the OS know when you are planning on reading certain pages.
• mlock: Tells the OS to not swap memory ranges out to disk.
• msync: Tells the OS to flush memory ranges out to disk.

We do not advise using mmap in a DBMS for correctness and performance reasons.

Even though the system will have functionalities that seem like something the OS can provide, having the
DBMS implement these procedures itself gives it better control and performance.

4 File Storage
In its most basic form, a DBMS stores a database as files on disk. Some may use a file hierarchy, others may
use a single file (e.g., SQLite).

The OS does not know anything about the contents of these files. Only the DBMS knows how to decipher
their contents, since it is encoded in a way specific to the DBMS.

The DBMS’s storage manager is responsible for managing a database’s files. It represents the files as a
collection of pages. It also keeps track of what data has been read and written to pages as well how much
free space there is in these pages.
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5 Database Pages
The DBMS organizes the database across one or more files in fixed-size blocks of data called pages. Pages
can contain different kinds of data (tuples, indexes, etc). Most systems will not mix these types within
pages. Some systems will require that pages are self-contained, meaning that all the information needed to
read each page is on the page itself.

Each page is given a unique identifier. If the database is a single file, then the page id can just be the file
offset. Most DBMSs have an indirection layer that maps a page id to a file path and offset. The upper levels
of the system will ask for a specific page number. Then, the storage manager will have to turn that page
number into a file and an offset to find the page.

Most DBMSs uses fixed-size pages to avoid the engineering overhead needed to support variable-sized
pages. For example, with variable-size pages, deleting a page could create a hole in files that the DBMS
cannot easily fill with new pages.

There are three concepts of pages in DBMS:

1. Hardware page (usually 4 KB).
2. OS page (4 KB).
3. Database page (1-16 KB).

The storage device guarantees an atomic write of the size of the hardware page. If the hardware page is
4 KB and the system tries to write 4 KB to the disk, either all 4 KB will be written, or none of it will. This
means that if our database page is larger than our hardware page, the DBMS will have to take extra measures
to ensure that the data gets written out safely since the program can get partway through writing a database
page to disk when the system crashes.

6 Database Heap
There are a couple of ways to find the location of the page a DBMS wants on the disk, and heap file
organization is one of those ways. A heap file is an unordered collection of pages where tuples are stored in
random order.

The DBMS can locate a page on disk given a page id by using a linked list of pages or a page directory.

1. Linked List: Header page holds pointers to a list of free pages and a list of data pages. However, if
the DBMS is looking for a specific page, it has to do a sequential scan on the data page list until it
finds the page it is looking for.

2. Page Directory: DBMS maintains special pages that track locations of data pages along with the
amount of free space on each page.

7 Page Layout
Every page includes a header that records meta-data about the page’s contents:

• Page size.
• Checksum.
• DBMS version.
• Transaction visibility.
• Self-containment. (Some systems like Oracle require this.)

A strawman approach to laying out data is to keep track of how many tuples the DBMS has stored in a
page and then append to the end every time a new tuple is added. However, problems arise when tuples are
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deleted or when tuples have variable-length attributes.

There are two main approaches to laying out data in pages: (1) slotted-pages and (2) log-structured.

Slotted Pages: Page maps slots to offsets.

• Most common approach used in DBMSs today.
• Header keeps track of the number of used slots, the offset of the starting location of the last used slot,

and a slot array, which keeps track of the location of the start of each tuple.
• To add a tuple, the slot array will grow from the beginning to the end, and the data of the tuples will

grow from end to the beginning. The page is considered full when the slot array and the tuple data
meet.

Log-Structured: Instead of storing tuples, the DBMS only stores log records.

• Stores records to file of how the database was modified (insert, update, deletes).
• To read a record, the DBMS scans the log file backwards and “recreates” the tuple.
• Fast writes, potentially slow reads.
• Works well on append-only storage because the DBMS cannot go back and update the data.
• To avoid long reads, the DBMS can have indexes to allow it to jump to specific locations in the log. It

can also periodically compact the log. (If it had a tuple and then made an update to it, it could compact
it down to just inserting the updated tuple.) The issue with compaction is that the DBMS ends up with
write amplification. (It re-writes the same data over and over again.)

8 Tuple Layout
A tuple is essentially a sequence of bytes. It is the DBMS’s job to interpret those bytes into attribute types
and values.

Tuple Header: Contains meta-data about the tuple.

• Visibility information for the DBMS’s concurrency control protocol (i.e., information about which
transaction created/modified that tuple).

• Bit Map for NULL values.
• Note that the DBMS does not need to store meta-data about the schema of the database here.

Tuple Data: Actual data for attributes.

• Attributes are typically stored in the order that you specify them when you create the table.
• Most DBMSs do not allow a tuple to exceed the size of a page.

Unique Identifier:

• Each tuple in the database is assigned a unique identifier.
• Most common: page id + (offset or slot).
• An application cannot rely on these ids to mean anything.

Denormalized Tuple Data: If two tables are related, the DBMS can “pre-join” them, so the tables end up
on the same page. This makes reads faster since the DBMS only has to load in one page rather than two
separate pages. However, it makes updates more expensive since the DBMS needs more space for each
tuple.
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1 Data Representation
The data in a tuple is essentially just byte arrays. It is up to the DBMS to know how to interpret those bytes
to derive the values for attributes. A data representation scheme is how a DBMS stores the bytes for a value.

There are five high level datatypes that can be stored in tuples: integers, variable-precision numbers, fixed-
point precision numbers, variable length values, and dates/times.

Integers
Most DBMSs store integers using their “native” C/C++ types as specified by the IEEE-754 standard. These
values are fixed length.

Examples: INTEGER, BIGINT, SMALLINT, TINYINT.

Variable Precision Numbers
These are inexact, variable-precision numeric types that use the “native” C/C++ types specified by IEEE-754
standard. These values are also fixed length.

Operations on variable-precision numbers are faster to compute than arbitrary precision numbers because
the CPU can execute instructions on them directly. However, there may be rounding errors when performing
computations due to the fact that some numbers cannot be represented precisely.

Examples: FLOAT, REAL.

Fixed-Point Precision Numbers
These are numeric data types with arbitrary precision and scale. They are typically stored in exact, variable-
length binary representation (almost like a string) with additional meta-data that will tell the system things
like the length of the data and where the decimal should be.

These data types are used when rounding errors are unacceptable, but the DBMS pays a performance penalty
to get this accuracy.

Examples: NUMERIC, DECIMAL.

Variable-Length Data
These represent data types of arbitrary length. They are typically stored with a header that keeps track of the
length of the string to make it easy to jump to the next value. It may also contain a checksum for the data.

Most DBMSs do not allow a tuple to exceed the size of a single page. The ones that do store the data on
a special “overflow” page and have the tuple contain a reference to that page. These overflow pages can
contain pointers to additional overflow pages until all the data can be stored.
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Some systems will let you store these large values in an external file, and then the tuple will contain a pointer
to that file. For example, if the database is storing photo information, the DBMS can store the photos in the
external files rather than having them take up large amounts of space in the DBMS. One downside of this
is that the DBMS cannot manipulate the contents of this file. Thus, there are no durability or transaction
protections.

Examples: VARCHAR, VARBINARY, TEXT, BLOB.

Dates and Times
Representations for date/time vary for different systems. Typically, these are represented as some unit time
(micro/milli)seconds since the unix epoch.

Examples: TIME, DATE, TIMESTAMP.

System Catalogs
In order for the DBMS to be able to deciphter the contents of tuples, it maintains an internal catalog to tell
it meta-data about the databases. The meta-data will contain information about what tables and columns the
databases have along with their types and the orderings of the values.

Most DBMSs store their catalog inside of themselves in the format that they use for their tables. They use
special code to “bootstrap” these catalog tables.

2 Workloads
There are many different workloads for database systems. By workload, we are referring to the general
nature of requests a system will have to handle. This course will focus on two types: Online Transaction
Processing and Online Analytical Processing.

OLTP: Online Transaction Processing
An OLTP workload is characterized by fast, short running operations, simple queries that operate on single
entity at a time, and repetitive operations. An OLTP workload will typically handle more writes than reads.

An example of an OLTP workload is the Amazon storefront. Users can add things to their cart, they can
make purchases, but the actions only affect their account.

OLAP: Online Analytical Processing
An OLAP workload is characterized by long running, complex queries, reads on large portions of the
database. In OLAP worklaods, the database system is analyzing and deriving new data from existing data
collected on the OLTP side.

An example of an OLAP workload would be Amazon computing the five most bought items over a one
month period for these geographical locations.

HTAP: Hybrid Transaction + Analytical Processing
A new type of workload which has become popular recently is HTAP, which is like a combination which
tries to do OLTP and OLAP together on the same database.
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3 Storage Models
There are different ways to store tuples in pages. We have assumed the n-ary storage model so far.

N-Ary Storage Model (NSM)
In the n-ary storage model, the DBMS stores all of the attributes for a single tuple contiguously in a single
page, so NSM is also known as a “row store.” This approach is ideal for OLTP workloads where requests
are insert-heavy and transactions tend to operate only an individual entity. It is ideal because it takes only
one fetch to be able to get all of the attributes for a single tuple.

Advantages:

• Fast inserts, updates, and deletes.
• Good for queries that need the entire tuple.

Disadvantages:

• Not good for scanning large portions of the table and/or a subset of the attributes. This is because it
pollutes the buffer pool by fetching data that is not needed for processing the query.

15-445/645 Database Systems
Page 3 of 4

https://15445.courses.cs.cmu.edu/fall2021/


Fall 2021 – Lecture #04 Database Storage (Part II)

Decomposition Storage Model (DSM)
In the decomposition storage model, the DBMS stores a single attribute (column) for all tuples contiguously
in a block of data. Thus, it is also known as a “column store.” This model is ideal for OLAP workloads with
many read-only queries that perform large scans over a subset of the table’s attributes.

Advantages:

• Reduces the amount of wasted work during query execution because the DBMS only reads the data
that it needs for that query.

• Enables better compression because all of the values for the same attribute are stored contiguously.

Disadvantages:

• Slow for point queries, inserts, updates, and deletes because of tuple splitting/stitching.

To put the tuples back together when using a column store, there are two common approaches: The most
commonly used approach is fixed-length offsets. Assuming the attributes are all fixed-length, the DBMS can
compute the offset of the attribute for each tuple. Then when the system wants the attribute for a specific
tuple, it knows how to jump to that spot in the file from the offest. To accommodate the variable-length
fields, the system can either pad fields so that they are all the same length or use a dictionary that takes a
fixed-size integer and maps the integer to the value.

A less common approach is to use embedded tuple ids. Here, for every attribute in the columns, the DBMS
stores a tuple id (ex: a primary key) with it. The system then would also store a mapping to tell it how to
jump to every attribute that has that id. Note that this method has a large storage overhead because it needs
to store a tuple id for every attribute entry.
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1 Introduction
The DBMS is responsible for managing its memory and moving data back-and-forth from the disk. Since, for the most
part, data cannot be directly operated on in the disk, any database must be able to efficiently move data represented as
files on its disk into memory so that it can be used. A diagram of this interaction is shown in Figure 1. A obstacle that
DBMS’s face is the problem of minimizing the slowdown of moving data around. Ideally, it should “appear” as if the
data is all in the memory already.

Figure 1: Disk-oriented DBMS.

Another way to think of this problem is in terms of spatial and temporal control.

Spatial Control refers to where pages are physically written on disk. The goal of spatial control is to keep pages that
are used together often as physically close together as possible on disk.

Temporal Control refers to when to read pages into memory and when to write them to disk. Temporal control aims to
minimize the number of stalls from having to read data from disk.

2 Locks vs. Latches
We need to make a distinction between locks and latches when discussing how the DBMS protects its internal elements.

Locks: A lock is a higher-level, logical primitive that protects the contents of a database (e.g., tuples, tables, databases)
from other transactions. Transactions will hold a lock for its entire duration. Database systems can expose to the user
which locks are being held as queries are run. Locks need to be able to rollback changes.

Latches: A latch is a low-level protection primitive that the DBMS uses for the critical sections in its internal data
structures (e.g., hash tables, regions of memory). Latches are held for only the duration of the operation being made.
Latches do not need to be able to rollback changes.

3 Buffer Pool
The buffer pool is an in-memory cache of pages read from disk. It is essentially a large memory region allocated inside
of the database to store pages that are fetched from disk.

The buffer pool’s region of memory organized as an array of fixed size pages. Each array entry is called a frame.
When the DBMS requests a page, an exact copy is placed into one of the frames of the buffer pool. Then, the database
system can search the buffer pool first when a page is requested. If the page is not found, then the system fetches a
copy of the page from the disk. See Figure 2 for a diagram of the buffer pool’s memory organization.
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Figure 2: Buffer pool organization and meta-data

Buffer Pool Meta-data
The buffer pool must maintain certain meta-data in order to be used efficiently and correctly.

Firstly, the page table is an in-memory hash table that keeps track of pages that are currently in memory. It maps
page ids to frame locations in the buffer pool. Since the order of pages in the buffer pool does not necessarily reflect
the order on the disk, this extra indirection layer allows for the identification of page locations in the pool. Note that
the page table is not to be confused with the page directory, which is the mapping from page ids to page locations in
database files

The page table also maintains additional meta-data per page, a dirty-flag and a pin/reference counter.

The dirty-flag is set by a thread whenever it modifies a page. This indicates to storage manager that the page must be
written back to disk.

The pin/reference Counter tracks the number of threads that are currently accessing that page (either reading or modi-
fying it). A thread has to increment the counter before they access the page. If a page’s count is greater than zero, then
the storage manager is not allowed to evict that page from memory.

Memory Allocation Policies
Memory in the database is allocated for the buffer pool according to two policies.

Global policies deal with decisions that the DBMS should make to benefit the entire workload that is being executed.
It considers all active transactions to find an optimal decision for allocating memory.

An alternative is local policies makes decisions that will make a single query or transaction run faster, even if it isn’t
good for the entire workload. Local policies allocate frames to a specific transactions without considering the behavior
of concurrent transactions.

Most systems use a combination of both global and local views.

4 Buffer Pool Optimizations
There are a number of ways to optimize a buffer pool to tailor it to the application’s workload.

Multiple Buffer Pools
The DBMS can maintain multiple buffer pools for different purposes (i.e per-database buffer pool, per-page type buffer
pool). Then, each buffer pool can adopt local policies tailored for the data stored inside of it. This method can help
reduce latch contention and improves locality.

Two approaches to mapping desired pages to a buffer pool are object IDs and hashing.

Object IDs involve extending the record IDs to include meta-data about what database objects each buffer pool is
managing. Then through the object identifier, a mapping from objects to specific buffer pools can be maintained.

Another approach is hashing where the DBMS hashes the page id to select which buffer pool to access.
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Pre-fetching
The DBMS can also optimize by pre-fetching pages based on the query plan. Then, while the first set of pages is
being processed, the second can be pre-fetched into the buffer pool. This method is commonly used by DBMS’s when
accessing many pages sequentially.

Scan Sharing
Query cursors can reuse data retrieved from storage or operator computations. This allows multiple queries to attach
to a single cursor that scans a table. If a query starts a scan and if there one already doing this, then the DBMS will
attach to the second query’s cursor. The DBMS keeps track of where the second query joined with the first so that it
can finish the scan when it reaches the end of the data structure.

Buffer Pool Bypass
The sequential scan operator will not store fetched pages in the buffer pool to avoid overhead. Instead, memory is
local to the running query. This works well if operator needs to read a large sequence of pages that are contiguous on
disk. Buffer Pool Bypass can also be used for temporary data (sorting, joins).

5 OS Page Cache
Most disk operations go through the OS API. Unless explicitly told otherwise, the OS maintains its own filesystem
cache.

Most DBMS use direct I/O to bypass the OS’s cache in order to avoid redundant copies of pages and having to manage
different eviction policies

Postgres is an example of a database system that uses the OS’s Page Cache.

6 Buffer Replacement Policies
When the DBMS needs to free up a frame to make room for a new page, it must decide which page to evict from the
buffer pool.

A replacement policy is an algorithm that the DBMS implements that makes a decision on which pages to evict from
buffer pool when it needs space.

Implementation goals of replacement policies are improved correctness, accuracy, speed, and meta-data overhead.

Least Recently Used (LRU)
The Least Recently Used replacement policy maintains a timestamp of when each page was last accessed. This
timestamp can be stored in a separate data structure, such as a queue, to allow for sorting and improve efficiency. The
DBMS picks to evict the page with the oldest timestamp. Additionally, pages are kept in sorted order to reduce sort
time on eviction

CLOCK
The CLOCK policy is an approximation of LRU without needing a separate timestamp per page. In the CLOCK
policy, each page is given a reference bit. When a page is accessed, set to 1.

To visualize this, organize the pages in a circular buffer with a “clock hand”. Upon sweeping check if a page’s bit is
set to 1. If yes, set to zero, if no, then evict it. In this way, the clock hand remembers position between evictions.

Alternatives
There are a number of problems with LRU and CLOCK replacement policies.
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Figure 3: Visualization of CLOCK replacement policy. Page 1 is referenced and set to 1.
When the clock hand sweeps, it sets the reference bit for page 1 to 0 and evicts page 5.

Namely, LRU and CLOCK are susceptible to sequential flooding, where the buffer pool’s contents are corrupted due
to a sequential scan. Since sequential scans read every page, the timestamps of pages read may not reflect which pages
we actually want. In other words, the most recently used page is actually the most unneeded page.

There are three solutions to address the shortcomings of LRU and CLOCK policies.

One solution is LRU-K which tracks the history of the last K references as timestamps and computes the interval
between subsequent accesses. This history is used to predict the next time a page is going to be accessed.

Another optimization is localization per query. The DBMS chooses which pages to evict on a per transaction/query
basis. This minimizes the pollution of the buffer pool from each query.

Lastly, priority hints allow transactions to tell the buffer pool whether page is important or not based on the context of
each page during query execution.

Dirty Pages
There are two methods to handling pages with dirty bits. The fastest option is to drop any page in the buffer pool that
is not dirty. A slower method is to write back dirty pages to disk to ensure that its changes are persisted.

These two methods illustrate the trade-off between fast evictions versus dirty writing pages that will not be read again
in the future.

One way to avoid the problem of having to write out pages unnecessarily is background writing. Through background
writing, the DBMS can periodically walk through the page table and write dirty pages to disk. When a dirty page is
safely written, the DBMS can either evict the page or just unset the dirty flag.

7 Other Memory Pools
The DBMS needs memory for things other than just tuples and indexes. These other memory pools may not always
backed by disk depending on implementation.

• Sorting + Join Buffers
• Query Caches
• Maintenance Buffers
• Log Buffers
• Dictionary Caches
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1 Data Structures
A DBMS uses various data structures for many different parts of the system internals. Some examples
include:

• Internal Meta-Data: This is data that keeps track of information about the database and the system
state.
Ex: Page tables, page directories

• Core Data Storage: Data structures are used as the base storage for tuples in the database.
• Temporary Data Structures: The DBMS can build data structures on the fly while processing a

query to speed up execution (e.g., hash tables for joins).
• Table Indices: Auxiliary data structures can be used to make it easier to find specific tuples.

There are two main design decisions to consider when implementing data structures for the DBMS:

1. Data organization: We need to figure out how to layout memory and what information to store inside
the data structure in order to support efficient access.

2. Concurrency: We also need to think about how to enable multiple threads to access the data structure
without causing problems.

2 Hash Table
A hash table implements an associative array abstract data type that maps keys to values. It provides on
average O (1) operation complexity (O (n) in the worst-case) and O (n) storage complexity. Note that even
with O (1) operation complexity on average, there are constant factor optimizations which are important to
consider in the real world.

A hash table implementation is comprised of two parts:

• Hash Function: This tells us how to map a large key space into a smaller domain. It is used to
compute an index into an array of buckets or slots. We need to consider the trade-off between fast
execution and collision rate. On one extreme, we have a hash function that always returns a constant
(very fast, but everything is a collision). On the other extreme, we have a “perfect” hashing func-
tion where there are no collisions, but would take extremely long to compute. The ideal design is
somewhere in the middle.

• Hashing Scheme: This tells us how to handle key collisions after hashing. Here, we need to consider
the trade-off between allocating a large hash table to reduce collisions and having to execute additional
instructions when a collision occurs.
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3 Hash Functions
A hash function takes in any key as its input. It then returns an integer representation of that key (i.e., the
“hash”). The function’s output is deterministic (i.e., the same key should always generate the same hash
output).

The DBMS need not use a cryptographically secure hash function (e.g., SHA-256) because we do not need
to worry about protecting the contents of keys. These hash functions are primarily used internally by the
DBMS and thus information is not leaked outside of the system. In general, we only care about the hash
function’s speed and collision rate.

The current state-of-the-art hash function is Facebook XXHash3.

4 Static Hashing Schemes
A static hashing scheme is one where the size of the hash table is fixed. This means that if the DBMS runs
out of storage space in the hash table, then it has to rebuild a larger hash table from scratch, which is very
expensive. Typically the new hash table is twice the size of the original hash table.

To reduce the number of wasteful comparisons, it is important to avoid collisions of hashed key. Typically,
we use twice the number of slots as the number of expected elements.

The following assumptions usually do not hold in reality:

1. The number of elements is known ahead of time.
2. Keys are unique.
3. There exists a perfect hash function.

Therefore, we need to choose the hash function and hashing schema appropriately.

4.1 Linear Probe Hashing
This is the most basic hashing scheme. It is also typically the fastest. It uses a circular buffer of array slots.
The hash function maps keys to slots. When a collision occurs, we linearly seach the adjacent slots until an
open one is found. For lookups, we can check the slot the key hashes to, and search linearly until we find
the desired entry (or an empty slot, in which case the key is not in the table). Note that this means we have
to store the key in the slot as well so that we can check if an entry is the desired one. Deletions are more
tricky. We have to be careful about just removing the entry from the slot, as this may prevent future lookups
from finding entries that have been put below the now empty slot. There are two solutions to this problem:

• The most common approach is to use “tombstones”. Instead of deleting the entry, we replace it with
a “tombstone” entry which tells future lookups to keep scanning.

• The other option is to shift the adjacent data after deleting an entry to fill the now empty slot. However,
we must be careful to only move the entries which were originally shifted.

Non-unique Keys: In the case where the same key may be associated with multiple different values or
tuples, there are two approaches.

• Seperate Linked List: Instead of storing the values with the keys, we store a pointer to a seperate
storage area which contains a linked list of all the values.

• Redundant Keys: The more common approach is to simply store the same key multiple times in the
table. Everything with linear probing still works even if we do this.
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4.2 Robin Hood Hashing
This is an extension of linear probe hashing that seeks to reduce the maximum distance of each key from
their optimal position (i.e. the original slot they were hashed to) in the hash table. This strategy steals slots
from “rich” keys and gives them to “poor” keys.

In this variant, each entry also records the “distance” they are from their optimal position. Then, on each
insert, if the key being inserted would be farther away from their optimal position at the current slot than the
current entry’s distance, we replace the current entry and continue trying to insert the old entry farther down
the table.

4.3 Cuckoo Hashing
Instead of using a single hash table, this approach maintains multiple has tables with different hash functions.
The hash functions are the same algorithm (e.g., XXHash, CityHash); they generate different hashes for the
same key by using different seed values.

When we insert, we check every table and choose one that has a free slot (if multiple have one, we can
compare things like load factor, or more commonly, just choose a random table). If no table has a free slot,
we choose (typically a random one) and evict the old entry. We then rehash the old entry into a different
table. In rare cases, we may end up in a cycle. If this happens, we can rebuild all of the hash tables with new
hash function seeds (less common) or rebuild the hash tables using larger tables (more common).

Cuckoo hashing guarantees O (1) lookups and deletions, but insertions may be more expensive.

5 Dynamic Hashing Schemes
The static hashing schemes require the DBMS to know the number of elements it wants to store. Otherwise
it has to rebuild the table if it needs to grow/shrink in size.

Dynamic hashing schemes are able to resize the hash table on demand without needing to rebuild the entire
table. The schemes perform this resizing in different ways that can either maximize reads or writes.

5.1 Chained Hashing
This is the most common dynamic hashing scheme. The DBMS maintains a linked list of buckets for each
slot in the hash table. Keys which hash to the same slot are simply inserted into the linked list for that slot.

5.2 Extendible Hashing
Improved variant of chained hashing that splits buckets instead of letting chains to grow forever. This
approach allows multiple slot locations in the hash table to point to the same bucket chain.

The core idea behind re-balancing the hash table is to to move bucket entries on split and increase the number
of bits to examine to find entries in the hash table. This means that the DBMS only has to move data within
the buckets of the split chain; all other buckets are left untouched.

• The DBMS maintains a global and local depth bit counts that determine the number bits needed to
find buckets in the slot array.

• When a bucket is full, the DBMS splits the bucket and reshuffle its elements. If the local depth of
the split bucket is less than the global depth, then the new bucket is just added to the existing slot
array. Otherwise, the DBMS doubles the size of the slot array to accommodate the new bucket and
increments the global depth counter.
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5.3 Linear Hashing
Instead of immediately splitting a bucket when it overflows, this scheme maintains a split pointer that keeps
track of the next bucket to split. No matter whether this pointer is pointing to a bucket that overflowed, the
DBMS always splits. The overflow criterion is left up to the implementation.

• When any bucket overflows, split the bucket at the pointer location by adding a new slot entry, and
create a new hash function.

• If the hash function maps to slot that has previously been pointed to by pointer, apply the new hash
function.

• When the pointer reaches last slot, delete original hash function and replace it with a new hash func-
tion.
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1 Table Indexes
There are a number of different data structures one can use inside of a database system for purposes such as
internal meta-data, core data storage, temporary data structures, or table indexes. For table indexes, which
may involve queries with range scans,

A table index is a replica of a subset of a table’s columns that is organized and/or sorted for efficient access
using a subset of those attributes. So instead of performing a sequential scan, the DBMS can lookup the
table index’s auxiliary data structure to find tuples more quickly. The DBMS ensures that the contents of
the tables and the indexes are always logically in sync.

There exists a trade-off between the number of indexes to create per database. Although more indexes makes
looking up queries faster, indexes also use storage and require maintenance. It is the DBMS’s job to figure
out the best indexes to use to execute queries.

2 B+Tree
A B+Tree is a self-balancing tree data structure that keeps data sorted and allows searches, sequential access,
insertion, and deletions in O(log(n)). It is optimized for disk-oriented DBMS’s that read/write large blocks
of data.

Almost every modern DBMS that supports order-preserving indexes uses a B+Tree. There is a specific data
structure called a B-Tree, but people also use the term to generally refer to a class of data structures. The
primary difference between the original B-Tree and the B+Tree is that B-Trees stores keys and values in all
nodes, while B+ trees store values only in leaf nodes. Modern B+Tree implementations combine features
from other B-Tree variants, such as the sibling pointers used in the Blink-Tree.

<5 <9 ≥9

Inner Node

<value>|<key>
Sibling Pointers

6 7 9 131 3

5 9<node*>|<key>

Figure 1: B+ Tree diagram

Formally, a B+Tree is an M -way search tree with the following properties:
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• It is perfectly balanced (i.e., every leaf node is at the same depth).
• Every inner node other than the root is at least half full (M/2− 1 <= num of keys <= M − 1).
• Every inner node with k keys has k+1 non-null children.

Every node in a B+Tree contains an array of key/value pairs. The keys in these pairs are derived from the
attribute(s) that the index is based on. The values will differ based on whether a node is an inner node or
a leaf node. For inner nodes, the value array will contain pointers to other nodes. Two approaches for leaf
node values are record IDs and tuple data. Record IDs refer to a pointer to the location of the tuple. Leaf
nodes that have tuple data store the the actual contents of the tuple in each node.

Though it is not necessary according to the definition of the B+Tree, arrays at every node are almost always
sorted by the keys.

Selection Conditions
Because B+Trees are in sorted order, look ups have fast traversal and also do not require the entire key. The
DBMS can use a B+Tree index if the query provides any of the attributes of the search key. This differs
from a hash index, which requires all attributes in the search key.

A,C B,B C,C

A,C B,AA,A A,B B,B B,C C,C C,D

Find Key=(A,*)
A ≤ A

A ≤ B

Figure 2: To perform a prefix search on a B+Tree, one looks at the first attribute on
the key, follows the path down and performs a sequential scan across the leaves to find
all they keys that one wants.

Insertion
To insert a new entry into a B+Tree, one must traverse down the tree and use the inner nodes to figure out
which leaf node to insert the key into.

1. Find correct leaf L.
2. Add new entry into L in sorted order:

• If L has enough space, the operation is done.
• Otherwise split L into two nodes L and L2. Redistribute entries evenly and copy up middle key.

Insert index entry pointing to L2 into parent of L.
3. To split an inner node, redistribute entries evenly, but push up the middle key.

Deletion
Whereas in inserts we occasionally had to split leaves when the tree got too full, if a deletion causes a tree
to be less than half-full, we must merge in order to re-balance the tree.

1. Find correct leaf L.
2. Remove the entry:

• If L is at least half full, the operation is done.
• Otherwise, you can try to redistribute, borrowing from sibling.
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• If redistribution fails, merge L and sibling.
3. If merge occurred, you must delete entry in parent pointing to L.

Non-Unique Indexes
Like in hash tables, B+Trees can deal with non-unique indexes by duplicating keys or storing value lists. In
the duplicate keys approach, the same leaf node layout is used but duplicate keys are stored multiple times.
In the value lists approach, each key is stored only once and maintains a linked list of unique values.

Duplicate Keys
There are two approaches to duplicate keys in a B+Tree.

The first approach is to append record IDs as part of the key. Since each tuple’s record ID is unique, this
will ensure that all the keys are identifiable.

The second approach is to allow leaf nodes to spill into overflow nodes that contain the duplicate keys.
Although no redundant information is stored, this approach is more complex to maintain and modify.

Clustered Indexes
The table is stored in the sort order specified by the primary key, as either heap- or index-organized storage.
Since some DBMSs always use a clustered index, they will automatically make a hidden row id primary key
if a table doesn’t have an explicit one, but others cannot use them at all.

Heap Clustering
Tuples are sorted in the heap’s pages using the order specified by a clustering index. DBMS can jump
directly to the pages if clustering index’s attributes are used to access tuples.

Index Scan Page Sorting
Since directly retrieving tuples from an unclustered index is inefficient, the DBMS can first figure out all the
tuples that it needs and then sort them based on their page id.

3 B+Tree Design Choices
3.1 Node Size
Depending on the storage medium, we may prefer larger or smaller node sizes. For example, nodes stored
on hard drives are usually on the order of megabytes in size to reduce the number of seeks needed to find
data and amortize the expensive disk read over a large chunk of data, while in-memory databases may use
page sizes as small as 512 bytes in order to fit the entire page into the CPU cache as well as to decrease data
fragmentation. This choice can also be dependent on the type of workload, as point queries would prefer
as small a page as possible to reduce the amount of unnecessary extra info loaded, while a large sequential
scan might prefer large pages to reduce the number of fetches it needs to do.

3.2 Merge Threshold
While B+Trees have a rule about merging underflowed nodes after a delete, sometimes it may be beneficial
to temporarily violate the rule to reduce the number of deletion operation. For instance, eager merging could
lead to thrashing, where a lot of successive delete and insert operations lead to constant splits and merges. It
also allows for batched merging where multiple merge operations happen all at once, reducing the amount
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of time that expensive write latches have to be taken on the tree.

3.3 Variable Length Keys
Currently we have only discussed B+Trees with fixed length keys. However we may also want to support
variable length keys, such as the case where a small subset of large keys lead to a lot of wasted space. There
are several approaches to this:

1. Pointers
Instead of storing the keys directly, we could just store a pointer to the key. Due to the inefficiency of
having to chase a pointer for each key, the only place that uses this method in production is embedded
devices, where its tiny registers and cache may benefit from such space savings

2. Variable Length Nodes
We could also still store the keys like normal and allow for variable length nodes. This is infeasible
and largely not used due to the significant memory management overhead of dealing with variable
length nodes.

3. Padding
Instead of varying the key size, we could set each key’s size to the size of the maximum key and pad
out all the shorter keys. In most cases this is a massive waste of memory, so you don’t see this used
by anyone either.

4. Key Map/Indirection
The method that nearly everyone uses is replacing the keys with an index to the key-value pair in a
separate dictionary. This offers significant space savings and potentially shortcuts point queries (since
the key-value pair the index points to is the exact same as the one pointed to by leaf nodes). Due to the
small size of the dictionary index value, there is enough space to place a prefix of each key alongside
the index, potentially allowing some index searching and leaf scanning to not even have to chase the
pointer (if the prefix is at all different from the search key).
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Figure 3: An example of Key Map/Indirection. The map stores a small prefix of the
key, as well as a pointer to the key-value pair.
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3.4 Intra-Node Search
Once we reach a node, we still need to search within the node (either to find the next node from an inner
node, or to find our key value in a leaf node). While this is relatively simple, there are still some tradeoffs to
consider:

1. Linear
The simplest solution is to just scan every key in the node until we find our key. On the one hand, we
don’t have to worry about sorting the keys, making insertions and deletes much quicker. On the other
hand, this is relatively inefficient and has a complexity of O(n) per search.

2. Binary
A more efficient solution for searching would be to keep each node sorted and use binary search to
find the key. This is as simple as jumping to the middle of a node and pivoting left or right depending
on the comparison between the keys. Searches are much more efficient this way, as this method only
has the complexity of O(ln(n)) per search. However, insertions become more expensive as we must
maintain the sort of each node.

3. Interpolation
Finally, in some circumstances we may be able to utilize interpolation to find the key. This method
takes advantage of any metadata stored about the node (such as max element, min element, average,
etc.) and uses it to generate an approximate location of the key. For example, if we are looking for
8 in a node and we know that 10 is the max key and 10 − (n + 1) is the smallest key (where n is
the number of keys in each node), then we know to start searching 2 slots down from the max key,
as the key one slot away from the max key must be 9 in this case. Despite being the fastest method
we have given, this method is only seen in academic databases due to its limited applicability to keys
with certain properties (like integers) and complexity.

4 Optimizations
4.1 Prefix Compression
Most of the time when we have keys in the same node there will be some partial overlap of some prefix of
each key (as similar keys will end up right next to each other in a sorted B+Tree). Instead of storing this
prefix as part of each key multiple times, we can simply store the prefix once at the beginning of the node
and then only include the unique sections of each key in each slot.

robbed robbing robot

bed bing ot

Prefix:rob

Figure 4: An example of prefix compression. Since the keys are in lexicographic
order, they are likely to share some prefix.
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4.2 Deduplication
In the case of an index which allows non-unique keys, we may end up with leaf nodes containing the same
key over and over with different values attached. One optimization of this could be only writing the key
once and then following it with all of its associated values.

4.3 Bulk Insert
When a B+Tree is initially built, having to insert each key the usual way would lead to constant split oper-
ations. Since we already give leaves sibling pointers, initial insertion of data is much more efficient if we
construct a sorted linked list of leaf nodes and then easily build the index from the bottom up using the first
key from each leaf node. Note that depending on our context we may wish to pack the leaves as tightly as
possible to save space or leave space in each leaf to allow for more inserts before a split is necessary.
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1 Index Concurrency Control
A concurrency control protocol is the method that the DBMS uses to ensure “correct” results for concurrent
operations on a shared object.

A protocol’s correctness criteria can vary:

• Logical Correctness: This means that the thread is able to read values that it should expects to read,
e.g. a thread should read back the value it had written previously.

• Physical Correctness: This means that the internal representation of the object is sound, e.g. there
are not pointers in the data structure that will cause a thread to read invalid memory locations.

The logical contents of the index is the only thing we care about in this lecture. They are not quite like other
database elements so we can treat them differently.

2 Locks vs. Latches
There is an important distinction between locks and latches when discussing how the DBMS protects its
internal elements.

Locks
A lock is a higher-level, logical primitive that protects the contents of a database (e.g., tuples, tables,
databases) from other transactions. Transactions will hold a lock for its entire duration. Database systems
can expose to the user the locks that are being held as queries are run. Locks need to be able to rollback
changes.

Latches
Latches are the low-level protection primitives used for critical sections the DBMS’s internal data structures
(e.g., data structure, regions of memory) from other threads. Latches are held for only the duration of the
operation being made. Latches do not need to be able to rollback changes. There are two modes for latches:

• READ: Multiple threads are allowed to read the same item at the same time. A thread can acquire the
read latch even if another thread has acquired it as well.

• WRITE: Only one thread is allowed to access the item. A thread cannot acquire a write latch if another
thread holds the latch in any mode. A thread holding a write latch also prevents other threads from
acquiring a read latch.

3 Latch Implementations
The underlying primitive that used to implement a latch is through an atomic compare-and-swap (CAS)
instruction that modern CPUs provide. With this, a thread can check the contents of a memory location to
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see whether it has a certain value. If it does, then the CPU will swap the old value with a new one. Otherwise
the memory location remains unmodified.

There are several approaches to implementing a latch in a DBMS. Each approach has different trade-offs in
terms of engineering complexity and runtime performance. These test-and-set steps are performed atomi-
cally (i.e., no other thread can update the value in between the test and set steps.

Blocking OS Mutex
One possible implementation of latches is the OS built-in mutex infrastructure. Linux provides the futex
(fast user-space mutex), which is comprised of (1) a spin latch in user-space and (2) an OS-level mutex. If
the DBMS can acquire the user-space latch, then the latch is set. It appears as a single latch to the DBMS
even though it contains two internal latches. If the DBMS fails to acquire the user-space latch, then it goes
down into the kernel and tries to acquire a more expensive mutex. If the DBMS fails to acquire this second
mutex, then the thread notifies the OS that it is blocked on the mutex and then it is descheduled.

OS mutex is generally a bad idea inside of DBMSs as it is managed by OS and has large overhead.

• Example: std::mutex
• Advantages: Simple to use and requires no additional coding in DBMS.
• Disadvantages: Expensive and non-scalable (about 25 ns per lock/unlock invocation) because of OS

scheduling.

Test-and-Set Spin Latch (TAS)
Spin latches are a more efficient alternative to an OS mutex as it is controlled by the DBMSs. A spin latch
is essentially a location in memory that threads try to update (e.g., setting a boolean value to true). A thread
performs CAS to attempt to update the memory location. The DBMS can control what happens if it fails to
get the latch. It can choose to try again (for example, using a while loop) or allow the OS to deschedule it.
Thus, this method gives the DBMS more control than the OS mutex, where failing to acquire a latch gives
control to the OS.

• Example: std::atomic<T>
• Advantages: Latch/unlatch operations are efficient (single instruction to lock/unlock).
• Disadvantages: Not scalable nor cache-friendly because with multiple threads, the CAS instructions

will be executed multiple times in different threads. These wasted instructions will pile up in high
contention environments; the threads look busy to the OS even though they are not doing useful work.
This leads to cache coherence problems because threads are polling cache lines on other CPUs.

Reader-Writer Latches
Mutexes and Spin Latches do not differentiate between reads/writes (i.e., they do not support different
modes). The DBMS needs a way to allow for concurrent reads, so if the application has heavy reads it will
have better performance because readers can share resources instead of waiting.

A Reader-Writer Latch allows a latch to be held in either read or write mode. It keeps track of how many
threads hold the latch and are waiting to acquire the latch in each mode. Reader-writer latches use one of the
previous two latch implementations as primitives and have additional logic to handle reader-writer queues,
which are queues requests for the latch in each mode. Different DBMSs can have different policies for how
it handles the queues.

• Advantages: Allows for concurrent readers.
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• Disadvantages: The DBMS has to manage read/write queues to avoid starvation. Larger storage
overhead than Spin Latches due to additional meta-data.

4 Hash Table Latching
It is easy to support concurrent access in a static hash table due to the limited ways threads access the data
structure. For example, all threads move in the same direction when moving from slot to the next (i.e.,
top-down). Threads also only access a single page/slot at a time. Thus, deadlocks are not possible in this
situation because no two threads could be competing for latches held by the other. When we need to resize
the table, we can just take a global latch on the entire table to perform the operation.

Latching in a dynamic hashing scheme (e.g., extendible) is a more complicated scheme because there is
more shared state to update, but the general approach is the same.

There are two approaches to support latching in a hash table that differ on the granularity of the latches:

• Page Latches: Each page has its own Reader-Writer latch that protects its entire contents. Threads
acquire either a read or write latch before they access a page. This decreases parallelism because
potentially only one thread can access a page at a time, but accessing multiple slots in a page will be
fast for a single thread because it only has to acquire a single latch.

• Slot Latches: Each slot has its own latch. This increases parallelism because two threads can access
different slots on the same page. But it increases the storage and computational overhead of accessing
the table because threads have to acquire a latch for every slot they access, and each slot has to store
data for the latches. The DBMS can use a single mode latch (i.e., Spin Latch) to reduce meta-data and
computational overhead at the cost of some parallelism.

It is also possible to create a latch-free linear probing hash table directly using compare-and-swap (CAS)
instructions. Insertion at a slot can be achieved by attempting to compare-and-swap a special ”null” value
with the tuple we wish to insert. If this fails, we can probe the next slot, continuing until it succeeds.

5 B+Tree Latching
The challenge of B+Tree latching is preventing the two following problems:

• Threads trying to modify the contents of a node at the same time.
• One thread traversing the tree while another thread splits/merges nodes.

Latch crabbing/coupling is a protocol to allow multiple threads to access/modify B+Tree at the same time.
The basic idea is as follows.

1. Get latch for the parent.
2. Get latch for the child.
3. Release latch for the parent if it is deemed “safe”. A “safe” node is one that will not split (not full on

insertion) or merge when updated (more than half full on deletion).

Basic Latch Crabbing Protocol:

• Search: Start at the root and go down, repeatedly acquire latch on the child and then unlatch parent.
• Insert/Delete: Start at the root and go down, obtaining X latches as needed. Once the child is latched,

check if it is safe. If the child is safe, release latches on all its ancestors.

Note that read latches do not need to worry about the “safe” condition. The notion of “safe” also depends
on whether the operation is an insertion or a deletion. A full node is “safe” for deletion since a merge will
not be needed but is not “safe” for an insertion since we may need to split the node.
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The order in which latches are released is not important from a correctness perspective. However, from a
performance point of view, it is better to release the latches that are higher up in the tree since they block
access to a larger portion of leaf nodes.

Improved Latch Crabbing Protocol: The problem with the basic latch crabbing algorithm is that transac-
tions always acquire an exclusive latch on the root for every insert/delete operation. This limits parallelism.
Instead, one can assume that having to resize (i.e., split/merge nodes) is rare, and thus transactions can ac-
quire shared latches down to the leaf nodes. Each transaction will assume that the path to the target leaf
node is safe, and use READ latches and crabbing to reach it and verify. If the leaf node is not safe, then we
abort and do the previous algorithm where we acquire WRITE latches.

• Search: Same algorithm as before.
• Insert/Delete: Set READ latches as if for search, go to leaf, and set WRITE latch on leaf. If the leaf is

not safe, release all previous latches, and restart the transaction using previous Insert/Delete protocol.

Leaf Node Scans
The threads in these protocols acquire latches in a “top-down” manner. This means that a thread can only
acquire a latch from a node that is below its current node. If the desired latch is unavailable, the thread must
wait until it becomes available. Given this, there can never be deadlocks.

Leaf node scans are susceptible to deadlocks because now we have threads trying to acquire locks in two dif-
ferent directions at the same time (i.e., left-to-right and right-to-left). Index latches do not support deadlock
detection or avoidance.

Thus, the only way programmers can deal with this problem is through coding discipline. The leaf node
sibling latch acquisition protocol must support a “no-wait” mode. That is, the B+tree code must cope with
failed latch acquisitions. This means that if a thread tries to acquire a latch on a leaf node but that latch is
unavailable, then it will immediately abort its operation (releasing any latches that it holds) and then restart
the operation.
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1 Sorting
DBMSs need to sort data because tuples in a table have no specific order under the relation model. Sorting
is (potentially) used in ORDER BY, GROUP BY, JOIN, and DISTINCT operators. If the data that that needs to
be sorted fits in memory, then the DBMS can use a standard sorting algorithms (e.g., quicksort). If the data
does not fit, then the DBMS needs to use external sorting that is able to spill to disk as needed and prefers
sequential over random I/O.

The standard algorithm for sorting data which is too large to fit in memory is external merge sort. It
is a divide-and-conquer sorting algorithm that splits the data set into separate runs and then sorts them
individually. It can spill runs to disk as needed then read them back in one at a time. The algorithm is
comprised of two phases:

Phase #1 – Sorting: First, the algorithm sorts small chunks of data that fit in main memory, and then writes
the sorted pages back to disk.

Phase #2 – Merge: Then, the algorithm combines the sorted sub-files into a larger single file.

Two-way Merge Sort
The most basic version of the algorithm is the two-way merge sort. The algorithm reads each page during
the sorting phase, sorts it, and writes the sorted version back to disk. Then, in the merge phase, it uses three
buffer pages. It reads two sorted pages in from disk, and merges them together into a third buffer page.
Whenever the third page fills up, it is written back to disk and replaced with an empty page. Each set of
sorted pages is called a run. The algorithm then recursively merges the runs together.

If N is the total number of data pages, the algorithm makes 1+ dlog2Ne total passes through the data (1 for
the first sorting step then dlog2Ne for the recursive merging). The total I/O cost is 2N × (# of passes) since
each pass performs an I/O read and an I/O write for each page.

General (K-way) Merge Sort
The generalized version of the algorithm allows the DBMS to take advantage of using more than three buffer
pages. Let B be the total number of buffer pages available. Then, during the sort phase, the algorithm can
read B pages at a time and write

⌈
N
B

⌉
sorted runs back to disk. The merge phase can also combine up to

B − 1 runs in each pass, again using one buffer page for the combined data and writing back to disk as
needed.

In the generalized version, the algorithm performs 1 +
⌈
logB−1

⌈
N
B

⌉⌉
passes (one for the sorting phase and⌈

logB−1

⌈
N
B

⌉⌉
for the merge phase. Then, the total I/O cost is 2N × (# of passes) since it again has to make

a read and write for each page in each pass.
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Double Buffering Optimization
One optimization for external merge sort is prefetching the next run in the background and storing it in a
second buffer while the system is processing the current run. This reduces the wait time for I/O requests at
each step by continuously utilizing the disk. This optimization requires the use of multiple threads, since
the prefetching should occur while the computation for the current run is happening.

Using B+Trees
It is sometimes advantageous for the DBMS to use an existing B+tree index to aid in sorting rather than
using the external merge sort algorithm. In particular, if the index is a clustered index, the DBMS can just
traverse the B+tree. Since the index is clustered, the data will be stored in the correct order, so the I/O access
will be sequential. This means it is always better than external merge sort since no computation is required.
On the other hand, if the index is unclustered, traversing the tree is almost always worse, since each record
could be stored in any page, so nearly all record accesses will require a disk read.

2 Aggregations
An aggregation operator in a query plan collapses the values of one or more tuples into a single scalar value.
There are two approaches for implementing an aggregation: (1) sorting and (2) hashing.

Sorting
The DBMS first sorts the tuples on the GROUP BY key(s). It can use either an in-memory sorting algorithm
if everything fits in the buffer pool (e.g., quicksort) or the external merge sort algorithm if the size of the
data exceeds memory. The DBMS then performs a sequential scan over the sorted data to compute the
aggregation. The output of the operator will be sorted on the keys.

When performing sorting aggregations, it is important to order the query operations to maximize efficiency.
For example, if the query requires a filter, it is better to perform the filter first and then sort the filtered data
to reduce the amount of data that needs to be sorted.

Hashing
Hashing can be computationally cheaper than sorting for computing aggregations. The DBMS populates
an ephemeral hash table as it scans the table. For each record, check whether there is already an entry in
the hash table and perform the appropriate modification. If the size of the hash table is too large to fit in
memory, then the DBMS has to spill it to disk. There are two phases to accomplishing this:

• Phase #1 – Partition: Use a hash function h1 to split tuples into partitions on disk based on target
hash key. This will put all tuples that match into the same partition. The DBMS spills partitions to
disk via output buffers.

• Phase #2 – ReHash: For each partition on disk, read its pages into memory and build an in-memory
hash table based on a second hash function h2 (where h1 6= h2). Then go through each bucket of
this hash table to bring together matching tuples to compute the aggregation. This assumes that each
partition fits in memory.

During the ReHash phase, the DBMS can store pairs of the form (GroupByKey→RunningValue) to compute
the aggregation. The contents of RunningValue depends on the aggregation function. To insert a new tuple
into the hash table:

• If it finds a matching GroupByKey, then update the RunningValue appropriately.
• Else insert a new (GroupByKey→RunningValue) pair.
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1 Joins
The goal of a good database design is to minimize the amount of information repetition. This is why tables
are composed based on normalization theory. Joins are therefore needed to reconstruct the original tables.

This class will cover inner equijoin algorithms for combining two-tables. An equijoin algorithm joins
tables where keys are equal. These algorithms can be tweaked to support other joins.

Operator Output
For a tuple r ∈ R and a tuple s ∈ S that match on join attributes, the join operator concatenates r and s
together into a new output tuple.

In reality, contents of output tuples generated by a join operator varies. It depends on the DBMS’s query
processing model, storage model, and the query itself. There are multiple approaches to the contents of the
join operator output.

• Data: This approach copies the values for the attributes in the outer and inner tables into tuples put
into an intermediate result table just for that operator. The advantage of this approach is that future
operators in the query plan never need to go back to the base tables to get more data. The disadvantage
is that this requires more memory to materialize the entire tuple. This is called early materialization.
The DBMS can also do additional computation and omit attributes which will not be needed later in
the query to further optimize this approach.

• Record Ids: In this approach, the DBMS only copies the join keys along with the record ids of the
matching tuples. This approach is ideal for column stores because the DBMS does not copy data that
is not needed for the query. This is called late materialization.

Cost Analysis
The cost metric used here to analyze the different join algorithms will be the number of disk I/Os used to
compute the join. This includes I/Os incurred by reading data from disk as well as writing any intermediate
data out to disk. Note that only I/Os from computing the join are considered, while I/O incurred when
outputting the result is not. This is because the output for any algorithm will be the same, so the output cost
will not change among different algorithms.

Variables used in this lecture:
• M pages in table R (Outer Table), m tuples total
• N pages in table S (Inner Table), n tuples total

In general, there will be many algorithms/optimizations which can reduce join costs in some cases, but no
single algorithm which works well in every scenario.
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2 Nested Loop Join
At a high-level, this type of join algorithm is comprised of two nested for loops that iterate over the tuples
in both tables and compares each unique of them. If the tuples match the join predicate, then output them.
The table in the outer for loop is called the outer table, while the table in the inner for loop is called the
inner table.

The DBMS will always want to use the “smaller” table as the outer table. Smaller can be in terms of the
number of tuples or number of pages. The DBMS will also want to buffer as much of the outer table in
memory as possible. It can also try to leverage an index to find matches in inner table.

Simple Nested Loop Join
For each tuple in the outer table, compare it with each tuple in the inner table. This is the worst case
scenario where the DBMS must do an entire scan of the inner table for each tuple in the outer table without
any caching or access locality.
Cost: M + (m×N)

Block Nested Loop Join
For each block in the outer table, fetch each block from the inner table and compare all the tuples in those
two blocks. This algorithm performs fewer disk access because the DBMS scans the inner table for every
outer table block instead of for every tuple.
Cost: M + (M ×N)

If the DBMS has B buffers available to compute the join, then it can use B − 2 buffers to scan the outer
table. It will use one buffer to scan the inner table and one buffer to store the output of the join.
Cost: M +

(⌈
M

B−2

⌉
×N

)
Index Nested Loop Join
The previous nested loop join algorithms perform poorly because the DBMS has to do a sequential scan to
check for a match in the inner table. However, if the database already has an index for one of the tables on
the join key, it can use that to speed up the comparison. The DBMS can either use an existing index or build
a temporary one for the join operation.

The outer table will be the one without an index. The inner table will be the one with the index.

Assume the cost of each index probe is some constant value C per tuple.
Cost: M + (m× C)

3 Sort-Merge Join
At a high-level, a sort-merge join sorts the two tables on their join key(s). The DBMS can use the external
mergesort algorithm for this. It then steps through each of the tables with cursors and emits matches (like in
mergesort).

This algorithm is useful if one or both tables are already sorted on join attribute(s) (like with a clustered
index) or if the output needs to be sorted on the join key anyways.

The worst case scenario for this algorithm is if the join attribute for all the tuples in both tables contain the
same value, which is very unlikely to happen in real databases. In this case, the cost of merging would be
M ·N . Most of the time though, the keys are mostly unique so the merge cost is approximately M +N .
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Assume that the DBMS has B buffers to use for the algorithm:

• Sort Cost for Table R: 2M × 1 +
⌈
logB−1

⌈
M
B

⌉⌉
• Sort Cost for Table S: 2N × 1 +

⌈
logB−1

⌈
N
B

⌉⌉
• Merge Cost: (M +N)

Total Cost: Sort + Merge

4 Hash Join
The high-level idea of the hash join algorithm is to use a hash table to split up the tuples into smaller chunks
based on their join attribute(s). This reduces the number of comparisons that the DBMS needs to perform
per tuple to compute the join. Hash join can only be used for equi-joins on the complete join key.

If tuple r ∈ R and a tuple s ∈ S satisfy the join condition, then they have the same value for the join
attributes. If that value is hashed to some value i, the R tuple has to be in bucket ri, and the S tuple has to
be in bucket si. Thus, the R tuples in bucket ri need only to be compared with the S tuples in bucket si.

Basic Hash Join
• Phase #1 – Build: First, scan the outer relation and populate a hash table using the hash function
h1 on the join attributes. The key in the hash table is the join attributes. The value depends on the
implementation (can be full tuple values or a tuple id).

• Phase #2 – Probe: Scan the inner relation and use the hash function h1 on each tuple’s join attributes
to jump to the corresponding location in the hash table and find a matching tuple. Since there may be
collisions in the hash table, the DBMS will need to examine the original values of the join attribute(s)
to determine whether tuples are truly matching.

If the DBMS knows the size of the outer table, the join can use a static hash table. If it does not know the
size, then the join has to use a dynamic hash table or allow for overflow pages.

One optimization for the probe phase is the usage of a Bloom Filter. This is a probabalistic data structure
that can fit in CPU caches and answer the question is key x in the hash table? with either definitely no
or probably yes. This can reduce the amount of disk I/O by preventing disk reads that do not result in an
emitted tuple.

Grace Hash Join / Hybrid Hash Join
When the tables do not fit on main memory, the DBMS has to swap tables in and out essentially at random,
which leads to poor performance. The Grace Hash Join is an extension of the basic hash join that also hashes
the inner table into partitions that are written out to disk.

• Phase #1 – Build: First, scan both the outer and inner tables and populate a hash table using the hash
function h1 on the join attributes. The hash table’s buckets are written out to disk as needed. If a single
bucket does not fit in memory, the DBMS can use recursive partitioning with different hash function
h2 (where h1 6= h2) to further divide the bucket. This can continue recursively until the buckets fit
into memory.

• Phase #2 – Probe: For each bucket level, retrieve the corresponding pages for both outer and inner
tables. Then, perform a nested loop join on the tuples in those two pages. The pages will fit in
memory, so this join operation will be fast.

Partitioning Phase Cost: 2× (M +N)
Probe Phase Cost: (M +N)
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Total Cost: 3× (M +N)

5 Conclusion
Joins are an essential part of interacting with relational databases, and it is therefore critical to ensure that a
DBMSs has efficient algorithms to execute joins.

Figure 1: The table above assume the following: M = 1000,m = 100000, N =
500, n = 40000, and 0.1 ms/IO

Hash joins are almost always better than sort-based join algorithms, but there are cases in which sorting-
based joins would be preferred. This includes queries on non-uniform data, when the data is already sorted
on the join key, and when the result needs to be sorted. Good DBMSs will use either, or both.
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1 Query Plan
The DBMS converts a SQL statement into a query plan. Operators in the query plan are arranged in a tree.
Data flows from the leaves of this tree towards the root. The output of the root node in the tree is the result
of the query. Typically operators are binary (1–2 children). The same query plan can be executed in multiple
ways.

2 Processing Models
A DBMS processing model defines how the system executes a query plan. It specifies things like the
direction in which the query plan is evaluated and what kind of data is passed between operators along the
way. There are different models of processing models that have various trade-offs for different workloads.

These models can also be implemented to invoke the operators either from top-to-bottom or from bottom-
to-top. Although the top-to-bottom approach is much more common, the bottom-to-top approach can allow
for tighter control of caches/registers in pipelines.

The three execution models that we consider are:

• Iterator Model
• Materialization Model
• Vectorized / Batch Model

Iterator Model
The iterator model, also known as the Volcano or Pipeline model, is the most common processing model
and is used by almost every (row-based) DBMS.

The iterator model works by implementing a Next function for every operator in the database. Each node in
the query plan calls Next on its children until the leaf nodes are reached, which start emitting tuples up to
their parent nodes for processing. Each tuple is then processed up the plan as far as possible before the next
tuple is retrieved. This is useful in disk-based systems because it allows us to fully use each tuple in memory
before the next tuple or page is accessed. A sample diagram of the iterator model is shown in Figure 1.

Every query plan operator implements a Next function as follows:

• On each call to Next, the operator returns either a single tuple or a null marker if there are no more
tuples to emit.

• The operator implements a loop that calls Next on its children to retrieve their tuples and then process
them. In this way, calling Next on a parent calls Next on its children. In response, the child node will
return the next tuple that the parent must process.

https://15445.courses.cs.cmu.edu/fall2021/
https://15445.courses.cs.cmu.edu/fall2021/


Fall 2021 – Lecture #12 Query Processing I

The iterator model allows for pipelining where the DBMS can process a tuple through as many operators as
possible before having to retrieve the next tuple. The series of tasks performed for a given tuple in the query
plan is called a pipeline.

Some operators will block until children emit all of their tuples. Examples of such operators include joins,
subqueries, and ordering (ORDER BY). Such operators are known as pipeline breakers.

Output control works easily with this approach (LIMIT) because an operator can stop invoking Next on its
child (or children) operator(s) once it has all the tuples that it requires.

Figure 1: Iterator Model Example – Pseudo code of the different Next functions for
each of the operators. The Next functions are essentially for-loops that iterate over
the output of their child operator. For example, the root node calls Next on its child,
the join operator, which is an access method that loops over the relation R and emits a
tuple up that is then operated on. After all tuples have been processed, a null pointer
(or another indicator) is sent that lets the parent nodes know to move on.

Materialization Model
The materialization model is a specialization of the iterator model where each operator processes its input
all at once and then emits its output all at once. Instead of having a next function that returns a single tuple,
each operator returns all of its tuples every time it is reached. To avoid scanning too many tuples, the DBMS
can propagate down information about how many tuples are needed to subsequent operators (e.g. LIMIT).
The operator “materializes” its output as a single result. The output can be either a whole tuple (NSM) or a
subset of columns (DSM). A diagram of the materialization model is shown in Figure 2.

Every query plan operator implements an Output function:

• The operator processes all the tuples from its children at once.
• The return result of this function is all the tuples that operator will ever emit. When the operator

finishes executing, the DBMS never needs to return to it to retrieve more data.

This approach is better for OLTP workloads because queries typically only access a small number of tuples
at a time. Thus, there are fewer function calls to retrieve tuples. The materialization model is not suited
for OLAP queries with large intermediate results because the DBMS may have to spill those results to disk
between operators.

Vectorization Model
Like the iterator model, each operator in the vectorization model implements a Next function. However,
each operator emits a batch (i.e. vector) of data instead of a single tuple. The operator’s internal loop
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Figure 2: Materialization Model Example – Starting at the root, the
child.Output() function is called, which invokes the operators below, which returns
all tuples back up.

implementation is optimized for processing batches of data instead of a single item at a time. The size of
the batch can vary based on hardware or query properties. See Figure 3 for an example of the vectorization
model.

Figure 3: Vectorization Model Example – The vectorization model is very similar to
the iterator model except at every operator, an output buffer is compared to the desired
emission size. If the buffer is larger, then a tuple batch is sent up.

The vectorization model approach is ideal for OLAP queries that have to scan a large number of tuples
because there are fewer invocations of the Next function.

The vectorization model allows operators to more easily use vectorized (SIMD) instructions to process
batches of tuples.

Processing Direction
• Approach #1: Top-to-Bottom

– Start with the root and “pull” data from children to parents
– Tuples are always passed with function calls

• Approach #2: Bottom-to-Top
– Start with leaf nodes and “push” data from children to parents
– Allows for tighter control of caches / registers in operator pipelines
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3 Access Methods
An access method is how the DBMS accesses the data stored in a table. In general, there are two approaches
to access models; data is either read from a table or from an index with a sequential scan.

Sequential Scan
The sequential scan operator iterates over every page in the table and retrieves it from the buffer pool. As
the scan iterates over all the tuples on each page, it evaluates the predicate to decide whether or not to emit
the tuple to the next operator.

The DBMS maintains an internal cursor that tracks the last page/slot that it examined.

A sequential table scan is almost always the least efficient method by which a DBMS may execute a query.
There are a number of optimizations available to help make sequential scans faster:

• Prefetching: Fetch the next few pages in advance so that the DBMS does not have to block on storage
I/O when accessing each page.

• Buffer Pool Bypass: The scan operator stores pages that it fetches from disk in its local memory
instead of the buffer pool in order to avoid sequential flooding.

• Parallelization: Execute the scan using multiple threads/processes in parallel.
• Zone Map: Pre-compute aggregations for each tuple attribute in a page. The DBMS can then decide

whether it needs to access a page by checking its Zone Map first. The Zone Maps for each page are
stored in separate pages and there are typically multiple entries in each Zone Map page. Thus, it is
possible to reduce the total number of pages examined in a sequential scan. See figure Figure 4 for an
example of a Zone Map.

• Late Materialization: DSM DBMSs can delay stitching together tuples until the upper parts of the
query plan. This allows each operator to pass the minimal amount of information needed to the next
operator (e.g. record ID, offset to record in column). This is only useful in column-store systems.

• Heap Clustering: Tuples are stored in the heap pages using an order specified by a clustering index.

Figure 4: Zone Map Example – The zone map stores pre-computed aggregates for
values in a page. In the example above, the select query realizes from the zone map
that the max value in the original data is only 400. Then, instead of having to iterate
through every tuple in the page, the query can avoid accessing the page at all since
none of the values will be greater than 600.

Index Scan
In an index scan, the DBMS picks an index to find the tuples that a query needs.

There are many factors involved in the DBMSs’ index selection process, including:

• What attributes the index contains
• What attributes the query references
• The attribute’s value domains
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Figure 5: Index Scan Example – Consider a single table with 100 tuples and two
indexes: age and department. In the first scenario, it is better to use the department
index in the scan because it only has two tuples to match. Choosing the age index
would not be much better than a simple sequential scan. In the second scenario, the
age index would eliminate more unnecessary scans and is the optimal choice.

• Predicate composition
• Whether the index has unique or non-unique keys

A simple example of an index scan is shown in Figure 5.

More advanced DBMSs support multi-index scans. When using multiple indexes for a query, the DBMS
computes sets of record IDs using each matching index, combines these sets based on the query’s predicates,
and retrieves the records and apply any predicates that may remain. The DBMS can use bitmaps, hash tables,
or Bloom filters to compute record IDs through set intersection.

4 Modification Queries
Operators that modify the database (INSERT, UPDATE, DELETE) are responsible for checking constraints and
updating indexes. For UPDATE/DELETE, child operators pass Record IDs for target tuples and must keep track
of previously seen tuples.

There are two implementation choices on how to handle INSERT operators:

• Choice #1: Materialize tuples inside of the operator.
• Choice #2: Operator inserts any tuple passed in from child operators.

Halloween Problem
The Halloween Problem is an anomaly in which an update operation changes the physical location of a
tuple, causing a scan operator to visit the tuple multiple times. This can occur on clustered tables or index
scans.

This phenomenon was originally discovered by IBM researchers while building System R on Halloween
day in 1976.

5 Expression Evaluation
The DBMS represents a WHERE clause as an expression tree (see Figure 6 for an example). The nodes in the
tree represent different expression types.

Some examples of expression types that can be stored in tree nodes:

• Comparisons (=, <, >, !=)
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Figure 6: Expression Evaluation Example – A WHERE clause and a diagram of its
corresponding expression.

• Conjunction (AND), Disjunction (OR)
• Arithmetic Operators (+, -, *, /, %)
• Constant and Parameter Values
• Tuple Attribute References

To evaluate an expression tree at runtime, the DBMS maintains a context handle that contains metadata for
the execution, such as the current tuple, the parameters, and the table schema. The DBMS then walks the
tree to evaluate its operators and produce a result.

Evaluating predicates in this manner is slow because the DBMS must traverse the entire tree and determine
the correct action to take for each operator. A better approach is to just evaluate the expression directly.
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1 Background
Previous discussions of query executions assumed that the queries executed with a single worker (i.e thread).
However, in practice, queries are often executed in parallel with multiple workers.

Parallel execution provides a number of key benefits for DBMSs:

• Increased performance in throughput (more queries per second) and latency (less time per query).
• Increased responsiveness and availability from the perspective of external clients of the DBMS.
• Potentially lower total cost of ownership (TCO). This cost includes both the hardware procurement

and software license, as well as the labor overhead of deploying the DBMS and the energy needed to
run the machines.

There are two types of parallelism that DBMSs support: inter-query parallelism and intra-query parallelism.

2 Parallel vs Distributed Databases
In both parallel and distributed systems, the database is spread out across multiple “resources” to improve
parallelism. These resources may be computational (e.g., CPU cores, CPU sockets, GPUs, additional ma-
chines) or storage (e.g., disks, memory).

It is important to distinguish between parallel and distributed systems.

• Parallel DBMS In a parallel DBMS, resources, or nodes, are physically close to each other. These
nodes communicate with high-speed interconnect. It is assumed that communication between re-
sources is not only fast, but also cheap and reliable.

• Distributed DBMS In a distributed DBMS, resources may be far away from each other; this might
mean the database spans racks or data centers in different parts of the world. As a result, resources
communicate using a slower interconnect over a public network. Communication costs between nodes
are higher and failures cannot be ignored.

Even though a database may be physically divided over multiple resources, it still appears as a single logical
database instance to the application. Thus, a SQL query executed against a single-node DBMS should
generate the same result on a parallel or distributed DBMS.

3 Process Models
A DBMS process model defines how the system supports concurrent requests from a multi-user applica-
tion/environment. The DBMS is comprised of more or more workers that are responsible for executing
tasks on behalf of the client and returning the results. An application may send a large request or multiple
requests at the same time that must be divided across different workers.

There are three different process models that a DBMS may adopt: process per worker, process pool, and
thread per worker.
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Figure 1: Process per Worker Model

Figure 2: Process Pool Model

Process per Worker
The first and most basic approach is process per worker. Here, each worker is a separate OS process, and
thus relies on OS scheduler. An application sends a request and opens a connection to the databases system.
Some dispatcher receives the request and forks off a worker to handle this connection. The application now
communicates directly with the worker who is responsible for executing the request that the query wants.
This sequence of events is shown in Figure 1.

An advantage of the process per worker approach is that a process crash doesn’t disrupt the whole system
because each worker runs in the context of its own OS process.

This process model raises the issue of multiple workers on separate processes making numerous copies of
the same page. A solution to maximize memory usage is to use shared-memory for global data structures so
that they can be shared by workers running in different processes.

Examples of systems that utilize the process-per-worker process model include IBM DB2, Postgres, and
Oracle.

Process Pool
An extension of the process per worker model is the process pool model. Instead of forking off processes
for each connection request, workers are kept in a pool and selected by the dispatcher when a query arrives.
Because the processes exist together in a pool, processes can share queries amongst themselves. A diagram
of the process pool model is shown in Figure 2.

Like process per worker, the process pool also relies on the OS scheduler and shared memory.

A drawback to this approach is poor CPU cache locality as the same processes are not guaranteed to be used
between queries.

Examples of systems that utilize the process pool process model include IBM DB2 and Postgres (post-2015).

Thread per Worker
The third and most common model is thread per worker. Instead of having different processes doing dif-
ferent tasks, each database system has only one process with multiple worker threads. In this environment,
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Figure 3: Thread per Worker Model

the DBMS has full control over the tasks and threads, it can manage it own scheduling. The multi-threaded
model may or may not use a dispatcher thread. A diagram of the thread per worker model is shown in
Figure 3.

Using multi-threaded architecture provides certain advantages. For one, there is less overhead per context
switch. Additionally, a shared model does not have to be maintained. However, the thread per worker model
does not necessarily imply that the DBMS supports intra-query parallelism.

Scheduling
In conclusion, for each query plan, the DBMS has to decide where, when, and how to execute. Relevant
questions include:

• How many tasks should it use?
• How many CPU cores should it use?
• What CPU core should the tasks execute on?
• Where should a task store its output?

When making decisions regarding query plans, the DBMS always knows more than the OS and should be
prioritized as such.

4 Inter-Query Parallelism
In inter-query parallelism, the DBMS executes different queries are concurrently. Because multiple work-
ers are running requests simultaneously, overall performance is improved. This increases throughput and
reduces latency.

If the queries are read-only, then little coordination is required between queries. However, if multiple queries
are updating the database concurrently, more complicated conflicts arise. These issues are discussed further
in lecture 15.

5 Intra-Query parallelism
In intra-query parallelism, the DBMS executes the operations of a single query in parallel. This decreases
latency for long-running queries.

The organization of intra-query parallelism can be thought of in terms of a producer/consumer paradigm.
Each operator is a producer of data as well as a consumer of data from some operator running below it.

Parallel algorithms exist for every relational operator. The DBMS can either have multiple threads access
centralized data structures or use partitioning to divide work up.

Within intra-query parallelism, there are three types of parallelism: intra-operator, inter-operator, and bushy.
These approaches are not mutually exclusive. It is the DBMS’ responsibility to combine these techniques in
a way that optimizes performance on a given workload.
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Figure 4: Intra-Operator Parallelism – The query plan for this SELECT is a sequen-
tial scan on A that is fed into a filter operator. To run this in parallel, the query plan is
partitioned into disjoint fragments. A given plan fragment is operated on a by a distinct
worker. The exchange operator calls Next concurrently on all fragments which then
retrieve data from their respective pages.

Intra-Operator Parallelism (Horizontal)
In intra-operator parallelism, the query plan’s operators are decomposed into independent fragments that
perform the same function on different (disjoint) subsets of data.

The DBMS inserts an exchange operator into the query plan to coalesce results from child operators. The
exchange operator prevents the DBMS from executing operators above it in the plan until it receives all of
the data from the children. An example of this is shown in Figure 4.

In general, there are three types of exchange operators:

• Gather: Combine the results from multiple workers into a single output stream. This is the most
common type used in parallel DBMSs.

• Repartition: Reorganize multiple input streams across multiple output streams. This allows the
DBMS take inputs that are partitioned one way and then redistribute them in another way.

• Distribute: Split a single input stream into multiple output streams.

Inter-Operator Parallelism (Vertical)
In inter-operator parallelism, the DBMS overlaps operators in order to pipeline data from one stage to the
next without materialization. This is sometimes called pipelined parallelism. See example in Figure 5.

This approach is widely used in stream processing systems, which are systems that continually execute a
query over a stream of input tuples.

Bushy Parallelism
Bushy parallelism is a hybrid of intra-operator and inter-operator parallelism where workers execute multiple
operators from different segments of the query plan at the same time.

The DBMS still uses exchange operators to combine intermediate results from these segments. An example
is shown in Figure 6.
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Figure 5: Inter-operator Parallelism – In the JOIN statement to the left, a single
worker performs the join and then emits the result to another worker that performs the
projection and then emits the result again.

Figure 6: Bushy Parallelism – To perform a 4-way JOIN on three tables, the query
plan is divided into four fragments as shown. Different portions of the query plan run
at the same time, in a manner similar to inter-operator parallelism.

6 I/O Parallelism
Using additional processes/threads to execute queries in parallel will not improve performance if the disk is
always the main bottleneck. Therefore, it is important to be able to split a database across multiple storage
devices.

To get around this, DBMSs use I/O parallelism to split installation across multiple devices. Two approaches
to I/O parallelism are multi-disk parallelism and database partitioning.

Multi-Disk Parallelism
In multi-disk parallelism, the OS/hardware is configured to store the DBMS’s files across multiple storage
devices. This can be done through storage appliances or RAID configuration. All of the storage setup is
transparent to the DBMS so workers cannot operate on different devices because the DBMS is unaware of
the underlying parallelism.
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Database Partitioning
In database partitioning, the database is split up into disjoint subsets that can be assigned to discrete disks.
Some DBMSs allow for specification of the disk location of each individual database. This is easy to do at
the file-system level if the DBMS stores each database in a separate directory. The log file of changes made
is usually shared.

The idea of logical partitioning is to split single logical table into disjoint physical segments that are stored/-
managed separately. Such partitioning is ideally transparent to the application. That is, the application
should be able to access logical tables without caring how things are stored.

The two approaches to partitioning are vertical and horizontal partitioning.

In vertical partitioning, a table’s attributes are stored in a separate location (like a column store). The tuple
information must be stored in order to reconstruct the original record.

In horizontal partitioning, the tuples of a table are divided into disjoint segments based on some partitioning
keys. There are different ways to decide how to partition (e.g., hash, range, or predicate partitioning). The
efficacy of each approach depends on the queries.
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1 Overview
Because SQL is declarative, the query only tells the DBMS what to compute, but not how to compute
it. Thus, the DBMS needs to translate a SQL statement into an executable query plan. But there are
different ways to execute each operator in a query plan (e.g., join algorithms) and there will be differences
in performance among these plans. The job of the DBMS’s optimizer is to pick an optimal plan for any
given query.

The first implementation of a query optimizer was IBM System R and was designed in the 1970s. Prior
to this, people did not believe that a DBMS could ever construct a query plan better than a human. Many
concepts and design decisions from the System R optimizer are still in use today.

There are two high-level strategies for query optimization.

The first approach is to use static rules, or heuristics. Heuristics match portions of the query with known
patterns to assemble a plan. These rules transform the query to remove inefficiencies. Although these rules
may require consultation of the catalog to understand the structure of the data, they never need to examine
the data itself.

An alternative approach is to use cost-based search to read the data and estimate the cost of executing
equivalent plans. The cost model chooses the plan with the lowest cost.

Query optimization is the most difficult part of building a DBMS. Some systems have attempted to ap-
ply machine learning to improve the accuracy and efficiency of optimizers, but no major DBMS currently
deploys an optimizer based on this technique.

Logical vs. Physical Plans
The optimizer generates a mapping of a logical algebra expression to the optimal equivalent physical algebra
expression. The logical plan is roughly equivalent to the relational algebra expressions in the query.

Physical operators define a specific execution strategy using an access path for the different operators in the
query plan. Physical plans may depend on the physical format of the data that is processed (i.e. sorting,
compression).

There does not always exist a one-to-one mapping from logical to physical plans.

2 Relational Algebra Equivalence
Much of query optimization relies on the underlying concept that the high level properties of relational
algebra are preserved across equivalent expressions. Two relational algebra expressions are equivalent if
they generate the same set of tuples.

https://15445.courses.cs.cmu.edu/fall2021/
https://15445.courses.cs.cmu.edu/fall2021/


Fall 2021 – Lecture #13 Query Planning & Optimization I

Figure 1: Architecture Overview – The application connected to the database system
and sends a SQL query, which may be rewritten to a different format. The SQL string
is parsed into tokens that make up the syntax tree. The binder converts named objects
in the syntax tree to internal identifiers by consulting the system catalog. The binder
emits a logical plan which may be fed to a tree rewriter for additional schema info.
The logical plan is given to the optimizer which selects the most efficient procedure to
execute the plan.

This technique of transforming the underlying relational algebra representation of a logical plan is known
as query rewriting.

One example of relational algebra equivalence is predicate pushdown, in which a predicate is applied in
a different position of the sequence to avoid unnecessary work. Figure 2 shows an example of predicate
pushdown.

Figure 2: Predicate Pushdown: – Instead of performing the filter after the join, the
filter can be applied earlier in order to pass fewer elements into the filter.

3 Logical Query Optimization
Some selection optimizations include:

• Perform filters as early as possible (predicate pushdown).
• Reorder predicates so that the DBMS applies the most selective one first.
• Breakup a complex predicate and pushing it down (split conjunctive predicates).

An example of predicate pushdown is shown in Figure 2.
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Some projection optimizations include:

• Perform projections as early as possible to create smaller tuples and reduce intermediate results (pro-
jection pushdown).

• Project out all attributes except the ones requested or requires.

An example of projection pushdown in shown in Figure 3.

Figure 3: Projection Pushdown – Since the query only asks for the student name and
ID, the DBMS can remove all columns except for those two before applying the join.

Another optimization that a DBMS can use is to remove impossible or unnecessary predicates. In this
optimization, the DBMS elides evaluation of predicates whose result does not change per tuple in a ta-
ble. Bypassing these predicates reduces computation cost. Figure 4 shows two examples of unnecessary
predicates.

Figure 4: Unnecessary Predicates – The predicate in the first query will always be
false and can be disregarded. The former query can be rewritten as the latter query to
produce the same result but save on computation.

A similar optimization is merging predicates. An example of this optimization is shown in Figure 5.

Figure 5: Merging Predicates – The WHERE predicate in query 1 has redundancy as
what it is searching for is any value between 1 and 150. Query 2 shows the more
succinct way to express request in query 1.
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The ordering of JOIN operations is a key determinant of query performance. Exhaustive enumeration of all
possible join orders is inefficient, so join-ordering optimization requires a cost model. However, we can still
eliminate unnecessary joins with a heuristic approach to optimization. An example of join elimination is
shown in Figure 6.

Figure 6: Join Elimination – The join in query 1 is wasteful because every tuple in A
must exist in A. Query 1 can instead be written as query 2.

The DBMS can also optimize nested sub-queries without referencing a cost model. There are two different
approaches to this type of optimization:

• Re-write the query by de-correlating and / or flattening it. An example of this is shown in Figure 7.
• Decompose the nested query and store the result to a temporary table. An example of this is shown in

Figure 8.

Figure 7: Subquery Optimization - Rewriting The former query can be rewritten as
the latter query by rewriting the subquery as a JOIN. Removing a level of nesting in
this way effectively flattens the query.
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Figure 8: Subquery Optimization - Decomposition – For complex queries with
subqueries, the DBMS optimizer may break up the original query into blocks and
focus on optimizing each individual block at a a time. In this example, the optimizer
decomposes a query with a nested aggregation by pulling the nested query out into its
own query, and subsequently using this result to realize the logic of the original query.
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1 Cost Estimations
DBMS’s use cost models to estimate the cost of executing a plan. These models evaluate equivalent plans
for a query to help the DBMS select the most optimal one.

The cost of a query depends on several underlying metrics, including:

• CPU: small cost, but tough to estimate.
• Disk I/O: the number of block transfers.
• Memory: the amount of DRAM used.
• Network: the number of messages sent.

Exhaustive enumeration of all valid plans for a query is much too slow for an optimizer to perform. For
joins alone, which are commutative and associative, there are 4n different orderings of every n-way join.
Optimizers must limit their search space in order to work efficiently.

To approximate costs of queries, DBMS’s maintain internal statistics about tables, attributes, and indexes in
their internal catalogs. Different systems maintain these statistics in different ways. Most systems attempt
to avoid on-the-fly computation by maintaining an internal table of statistics. These internal tables may then
be updated in the background.

For each relation R, the DBMS maintains the following information:

• NR: Number of tuples in R
• V (A,R): Number of distinct values of attribute A

With the information listed above, the optimizer can derive the selection cardinality SC(A,R) statistic. The
selection cardinality is the average number of records with a value for an attribute A given NR

V (A,R) . Note that
this assumes data uniformity. This assumption is often incorrect, but it simplifies the optimization process.

Selection Statistics
The selection cardinality can be used to determine the number of tuples that will be selected for a given
input.

Equality predicates on unique keys are simple to estimate (see Figure 1). A more complex predicate is
shown in Figure 2.

The selectivity (sel) of a predicate P is the fraction of tuples that qualify. The formula used to compute
selective depends on the type of predicate. Selectivity for complex predicates is hard to estimate accurately
which can pose a problem for certain systems. An example of a selectivity computation is shown in Figure 3.
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Figure 1: Simple Predicate Example – In this example, determining what index to
use is easy because the query contains an equality predicate on a unique key.

Figure 2: Complex Predicate Example – More complex predicates, such as range or
conjunctions, are harder to estimate because the selection cardinalities of the predicates
must be combined in non-trivial ways.

Figure 3: Selectivity of Negation Query Example – The selectivity of the negation
query is computed by subtracting the selectivity of the positive query from 1. In the
example, the answer comes out to be 4

5 which is accurate.

Observe that the selectivity of a predicate is equivalent to the probability of that predicate. This allows
probability rules to be applied in many selectivity computations. This is particularly useful when dealing
with complex predicates. For example, if we assume that multiple predicates involved in a conjunction are
independent, we can compute the total selectivity of the conjunction as the product of the selectivities of the
individual predicates.

Selectivity Computation Assumptions
In computing the selection cardinality of predicates, the following three assumptions are used.

• Uniform Data: The distribution of values (except for the heavy hitters) is the same.
• Independent Predicates: The predicates on attributes are independent.
• Inclusion Principle: The domain of join keys overlap such that each key in the inner relation will

also exist in the outer table.

These assumptions are often not satisfied by real data. For example, correlated attributes break the assump-
tion of independence of predicates.
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2 Histograms
Real data is often skewed and is tricky to make assumptions about. However, storing every single value of
a data set is expensive. One way to reduce the amount of memory used by storing data in a histogram to
group together values. An example of a graph with buckets is shown in Figure 4.

Figure 4: Equi-Width Histogram: The first figure shows the original frequency count
of the entire data set. The second figure is an equi-width histogram that combines
together the counts for adjacent keys to reduce the storage overhead.

Another approach is to use a equi-depth histogram that varies the width of buckets so that the total number
of occurrences for each bucket is roughly the same. An example is shown in Figure 5.

Figure 5: Equi-Depth Histogram – To ensure that each bucket has roughly the same
number of counts, the histogram varies the range of each bucket.

In place of histograms, some systems may use sketches to generate approximate statistics about a data set.

3 Sampling
DBMS’s can use sampling to apply predicates to a smaller copy of the table with a similar distribution (see
Figure 6). The DBMS updates the sample whenever the amount of changes to the underlying table exceeds
some threshold (e.g., 10% of the tuples).
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Figure 6: Sampling – Instead of using one billion values in the table to estimate
selectivity, the DBMS can derive the selectivities for predicates from a subset of the
original table.

4 Plan Enumeration
After performing rule-based rewriting, the DBMS will enumerate different plans for the query and estimate
their costs. It then chooses the best plan for the query after exhausting all plans or some timeout.

Single-Relation Query Plans
For single-relation query plans, the biggest obstacle is choosing the best access method (i.e., sequential scan,
binary search, index scan, etc.) Most new database systems just use heuristics, instead of a sophisticated
cost model, to pick an access method.

For OLTP queries, this is especially easy because they are sargable (Search Argument Able), which means
that there exists a best index that can be selected for the query. This can also be implemented with simple
heuristics.

Multi-Relation Query Plans
As the number of joins increases, the number of alternative plans grows rapidly. To deal with this, we
need to restrict the search space. IBM System R made the fundamental decision to only consider left-deep
join trees (see Figure 7). This is because left-deep join trees are better suited for the pipeline model since
the the DBMS does not need to materialize the outputs of the join operators. If the DBMS’s optimizer
only considers left-deep trees, then it will reduce the amount of memory that the search processes uses and
potentially reduce the search time. Most modern DBMSs do not make this restriction during optimization.

Figure 7: System R Optimizer – The first cost-based query optimizer in IBM System
R only considered left-deep join trees.
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To make query plans, the DBMS must first enumerate the orderings, then the plans for each operator, fol-
lowed by the access paths for each table. See Figure 8 for an example. Dynamic programming can be used
to reduce the number of cost estimations.

Figure 8: Candidate Plans Example – The first step is to enumerate all relation
orderings. Any orderings with cross-products or non-left deep joins can be pruned. In
the second step, all join algorithm choices (e.g. nested loop join, hash join, sort-merge
join) are enumerated. In step three, the access methods are enumerated to find the
cheapest path.
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1 Transactions
A transaction is the execution of a sequence of one or more operations (e.g., SQL queries) on a shared
database to perform some higher level function. They are the basic unit of change in a DBMS. Partial
transactions are not allowed (i.e. transactions must be atomic).

Example: Move $100 from Lin’s bank account to his promotor’s account

1. Check whether Lin has $100.
2. Deduct $100 from his account.
3. Add $100 to his promotor’s account.

Either all of the steps need to be completed or none of them should be completed.

The Strawman System
A simple system for handling transactions is to execute one transaction at a time usinga single worker (e.g.
one thread). Thus, only one transaction can be running at a time. To execute the transaction, the DBMS
copies the entire database file and makes the transaction changes to this new file. If the transaction succeeds,
then the new file becomes the current database file. If the transaction fails, the DBMS discards the new
file and none of the transaction’s changes have been saved. This method is slow as it does not allow for
concurrent transactions and requires copying the whole database file for every transaction.

A (potentially) better approach is to allow concurrent execution of independent transactions while also
maintaining correctness and fairness (as in all transactions are treated with equal priority and don’t get
”starved” by never being executed). But executing concurrent transactions in a DBMS is challenging. It
is difficult to ensure correctness (for example, if Lin only has $100 and tries to pay off two promoters at
once, who should get paid?) while also executing transactions quickly (our strawman example guarantees
sequential correctness, but at the cost of parallelism).

Arbitrary interleaving of operations can lead to:

• Temporary Inconsistency: Unavoidable, but not an issue.
• Permanent Inconsistency: Unacceptable, cause problems with correctness and integrity of data.

The scope of a transaction is only inside the database. It cannot make changes to the outside world because
it cannot roll those back. For example, if a transaction causes an email to be sent, this cannot be rolled back
by the DBMS if the transaction is aborted.

2 Definitions
Formally, a database can be represented as a set of named data objects (A,B,C, . . .). These objects can be
attributes, tuples, pages, tables, or even databases. The algorithms that we will discuss work on any type of
object but all objects must be of the same type.
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A transaction is a sequence of read and write operations (i.e., R(A),W (B)) on those objects. To simplify
discurssion, this definition assumes the database is a fixed size, so the operations can only be reads and
updates, not inserts or deletions.

The boundaries of transactions are defined by the client. In SQL, a transaction starts with the BEGIN com-
mand. The outcome of a transaction is either COMMIT or ABORT. For COMMIT, either all of the transaction’s
modifications are saved to the database, or the DBMS overrides this and aborts instead.

For ABORT, all of the transaction’s changes are undone so that it is like the transaction never happened.
Aborts can be either self-inflicted or caused by the DBMS.

The criteria used to ensure the correctness of a database is given by the acronym ACID.

• Atomicity: Atomicity ensures that either all actions in the transaction happen, or none happen.
• Consistency: If each transaction is consistent and the database is consistent at the beginning of the

transaction, then the database is guaranteed to be consistent when the transaction completes.
• Isolation: Isolation means that when a transaction executes, it should have the illusion that it is isolated

from other transactions.
• Durability: If a transaction commits, then its effects on the database should persist.

3 ACID: Atomicity
The DBMS guarantees that transactions are atomic. The transaction either executes all its actions or none
of them. There are two approaches to this:

Approach #1: Logging
DBMS logs all actions so that it can undo the actions of aborted transactions. It maintains undo records both
in memory and on disk. Logging is used by almost all modern systems for audit and efficiency reasons.

Approach #2: Shadow Paging
The DBMS makes copies of pages modified by the transactions and transactions make changes to those
copies. Only when the transaction commits is the page made visible. This approach is typically slower at
runtime than a logging-based DBMS. However, one benefit is, if you are only single threaded, there is no
need for logging, so there are less writes to disk when transactions modify the database. This also makes
recovery simple, as all you need to do is delete all pages from uncommitted transactions. In general, though,
better runtime performance is preferred over better recovery performance, so this is rarely used in practice.

4 ACID: Consistency
At a high level, consisitency means the “world” represented by the database is logically correct. All ques-
tions (i.e., queries) that the application asks about the data will return logically correct results. There are
two notions of consistency:

Database Consistency: The database accurately represents the real world entity it is modeling and follows
integrity constraints. (E.g. The age of a person cannot not be negative). Additionally, transactions in the
future should see the effects of transactions committed in the past inside of the database.

Transaction Consistency: If the database is consistent before the transaction starts, it will also be consistent
after. Ensuring transaction consistency is the application’s responsibility.
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5 ACID: Isolation
The DBMS provides transactions the illusion that they are running alone in the system. They do not see the
effects of concurrent transactions. This is equivalent to a system where transactions are executed in serial
order (i.e., one at a time). But to achieve better performance, the DBMS has to interleave the operations of
concurrent transactions while maintaining the illusion of isolation.

Concurrency Control
A concurrency control protocol is how the DBMS decides the proper interleaving of operations from multi-
ple transactions at runtime.

There are two categories of concurrency control protocols:

1. Pessimistic: The DBMS assumes that transactions will conflict, so it doesn’t let problems arise in the
first place.

2. Optimistic: The DBMS assumes that conflicts between transactions are rare, so it chooses to deal
with conflicts when they happen after the transactions commit.

The order in which the DBMS executes operations is called an execution schedule. The goal of a concurrency
control protocol is to generate an execution schedule that is is equivalent to some serial execution:

• Serial Schedule: Schedule that does not interleave the actions of different transactions.
• Equivalent Schedules: For any database state, if the effect of execution the first schedule is identical

to the effect of executing the second schedule, the two schedules are equivalent.
• Serializable Schedule: A serializable schedule is a schedule that is equivalent to any serial execution

of the transactions. Different serial executions can produce different results, but all are considered
“correct”.

A conflict between two operations occurs if the operations are for different transactions, they are performed
on the same object, and at least one of the operations is a write. There are three variations of conflicts:

• Read-Write Conflicts (“Unrepeatable Reads”): A transaction is not able to get the same value when
reading the same object multiple times.

• Write-Read Conflicts (“Dirty Reads”): A transaction sees the write effects of a different transaction
before that transaction committed its changes.

• Write-Write conflict (“Lost Updates”): One transaction overwrites the uncommitted data of another
concurrent transaction.

There are two types for serializability: (1) conflict and (2) view. Neither definition allows all schedules
that one would consider serializable. In practice, DBMSs support conflict serializability because it can be
enforced efficiently.

Conflict Serializability
Two schedules are conflict equivalent if they involve the same operations of the same transactions and
every pair of conflicting operations is ordered in the same way in both schedules. A schedule S is conflict
serializable if it is conflict equivalent to some serial schedule.

One can verify that a schedule is conflict serializable by swapping non-conflicting operations until a serial
schedule is formed. For schedules with many transactions, this becomes too expensive. A better way to
verify schedules is to use a dependency graph (precedence graph).

In a dependency graph, each transaction is a node in the graph. There exists a directed edge from node Ti

to Tj iff an operation Oi from Ti conflicts with an operation Oj from Tj and Oi occurs before Oj in the
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schedule. Then, a schedule is conflict serializable iff the dependency graph is acyclic.

View Serializability
View serializability is a weaker notion of serializibility that allows for all schedules that are conflict serial-
izable and “blind writes” (i.e. performing writes without reading the value first). Thus, it allows for more
schedules than conflict serializability, but is difficult to enforce efficiently. This is because the DBMS does
not know how the application will “interpret” values.

6 ACID: Durability
All of the changes of committed transactions must be durable (i.e., persistent) after a crash or restart. The
DBMS can either use logging or shadow paging to ensure that all changes are durable.
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1 Transaction Locks
A DBMS uses locks to dynamically generate an execution schedule for transactions that is serializable with-
out knowing each transaction’s read/write set ahead of time. These locks protect database objects during
concurrent access when there are multiple readers and writes. The DBMS contains a centralized lock man-
ager that decides whether a transaction can acquire a lock or not. It also provides a global view of whats
going on inside the system.

There are two basic types of locks:

• Shared Lock (S-LOCK): A shared lock that allows multiple transactions to read the same object at the
same time. If one transaction holds a shared lock, then another transaction can also acquire that same
shared lock.

• Exclusive Lock (X-LOCK): An exclusive lock allows a transaction to modify an object. This lock
prevents other transactions from taking any other lock (S-LOCK or X-LOCK) on the object. Only one
transaction can hold an exclusive lock at a time.

Transactions must request locks (or upgrades) from the lock manager. The lock manager grants or blocks
requests based on what locks are currently held by other transactions. Transactions must release locks
when they no longer need them to free up the object. The lock manager updates its internal lock-table with
information about which transactions hold which locks and which transactions are waiting to acquire locks.

The DBMS’s lock-table does not need to be durable since any transaction that is active (i.e., still running)
when the DBMS crashes is automatically aborted.

2 Two-Phase Locking
Two-Phase locking (2PL) is a pessimistic concurrency control protocol that uses locks to determine whether
a transaction is allowed to access an object in the database on the fly. The protocol does not need to know
all of the queries that a transaction will execute ahead of time.

Phase #1– Growing: In the growing phase, each transaction requests the locks that it needs from the
DBMS’s lock manager. The lock manager grants/denies these lock requests.

Phase #2– Shrinking: Transactions enter the shrinking phase immediately after it releases its first lock. In
the shrinking phase, transactions are only allowed to release locks. They are not allowed to acquire new
ones.

On its own, 2PL is sufficient to guarantee conflict serializability. It generates schedules whose precedence
graph is acyclic. But it is susceptible to cascading aborts, which is when a transaction aborts and now
another transaction must be rolled back, which results in wasted work.

There are also potential schedules that are serializable but would not be allowed by 2PL (locking can limit
concurrency).
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Strong Strict Two-Phase Locking
A schedule is strict if any value written by a transaction is never read or overwritten by another transaction
until the first transaction commits. Strong Strict 2PL (also known as Rigorous 2PL) is a variant of 2PL where
the transactions only release locks when they commit.

The advantage of this approach is that the DBMS does not incur cascading aborts. The DBMS can also
reverse the changes of an aborted transaction by restoring the original values of modified tuples. However,
Strict 2PL generates more cautious/pessimistic schedules that limit concurrency.

3 Deadlock Handling
A deadlock is a cycle of transactions waiting for locks to be released by each other. There are two approaches
to handling deadlocks in 2PL: detection and prevention.

Approach #1: Deadlock Detection
To detect deadlocks, the DBMS creates a waits-for graph where transactions are nodes, and there exists a
directed edge from Ti to Tj if transaction Ti is waiting for transaction Tj to release a lock. The system will
periodically check for cycles in the waits-for graph (usually with a background thread) and then make a
decision on how to break it. Latches are not needed when constructing the graph since if the DBMS misses
a deadlock in one pass, it will find it in the subsequent passes.

When the DBMS detects a deadlock, it will select a “victim” transaction to abort to break the cycle. The
victim transaction will either restart or abort depending on how the application invoked it.

The DBMS can consider multiple transaction properties when selecting a victim to break the deadlock:

1. By age (newest or oldest timestamp).
2. By progress (least/most queries executed).
3. By the # of items already locked.
4. By the # of transactions needed to rollback with it.
5. # of times a transaction has been restarted in the past (to avoid starvation).

There is no one choice that is better than others. Many systems use a combination of these factors.

After selecting a victim transaction to abort, the DBMS can also decide on how far to rollback the transac-
tion’s changes. It can either rollback the entire transaction or just enough queries to break the deadlock.

Approach #2: Deadlock Prevention
Instead of letting transactions try to acquire any lock they need and then deal with deadlocks afterwards,
deadlock prevention 2PL stops transactions from causing deadlocks before they occur. When a transaction
tries to acquire a lock held by another transaction (which could cause a deadlock), the DBMS kills one of
them. To implement this, transactions are assigned priorities based on timestamps (older transactions have
higher priority). These schemes guarantee no deadlocks because only one type of direction is allowed when
waiting for a lock. When a transaction restarts, the DBMS reuses the same timestamp.

There are two ways to kill transactions under deadlock prevention:

• Wait-Die (“Old Waits for Young”): If the requesting transaction has a higher priority than the hold-
ing transaction, it waits. Otherwise, it aborts.

• Wound-Wait (“Young Waits for Old”): If the requesting transaction has a higher priority than the
holding transaction, the holding transaction aborts and releases the lock. Otherwise, the requesting
transaction waits.
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4 Lock Granularities
If a transaction wants to update one billion tuples, it has to ask the DBMS’s lock manager for a billion locks.
This will be slow because the transaction has to take latches in the lock manager’s internal lock table data
structure as it acquires/releases locks.

To avoid this overhead, the DBMS can use to use a lock hierarchy that allows a transaction to take more
coarse-grained locks in the system. For example, it could acquire a single lock on the table with one billion
tuples instead of one billion separate locks. When a transaction acquires a lock for an object in this hierarchy,
it implicitly acquires the locks for all its children objects.

Intention locks allow a higher level node to be locked in shared mode or exclusive mode without having to
check all descendant nodes. If a node is in an intention mode, then explicit locking is being done at a lower
level in the tree.

• Intention-Shared (IS): Indicates explicit locking at a lower level with shared locks.
• Intention-Exclusive (IX): Indicates explicit locking at a lower level with exclusive or shared locks.
• Shared+Intention-Exclusive (SIX): The sub-tree rooted at that node is locked explicitly in shared

mode and explicit locking is being done at a lower level with exclusive-mode locks.
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1 Timestamp Ordering Concurrency Control
Timestamp ordering (T/O) is an optimistic class of concurrency control protocols where the DBMS assumes
that transaction conflicts are rare. Instead of requiring transactions to acquire locks before they are allowed
to read/write to a database object, the DBMS instead uses timestamps to determine the serializability order
of transactions.

Each transaction Ti is assigned a unique fixed timestamp TS(Ti) that is monotonically increasing. Different
schemes assign timestamps at different times during the transaction. Some advanced schemes even assign
multiple timestamps per transaction.

If TS(Ti) < TS(Tj), then the DBMS must ensure that the execution schedule is equivalent to a serial schedule
where Ti appears before Tj .

There are multiple timestamp allocation implementation strategies. The DBMS can use the system clock as
a timestamp, but issues arise with edge cases like daylight savings. Another option is to use a logical counter.
However, this has issues with overflow and with maintaining the counter across a distributed system with
multiple machines. There are also hybrid approaches that use a combination of both methods.

2 Basic Timestamp Ordering (BASIC T/O)
The basic timestamp ordering protocol (BASIC T/O) allows reads and writes on database objects without
using locks. Instead, every database object X is tagged with timestamp of the last transaction that success-
fully performed a read (denoted as R-TS(X)) or write (denoted as W-TS(X)) on that object. The DBMS
then checks these timestamps for every operation. If a transaction tries to access an object in a way which
violates the timestamp ordering, the transaction is aborted and restarted. The underlying assumption is that
violations will be rare and thus these restarts will also be rare.

Read Operations
For read operations, if TS(Ti) < W-TS(X), this violates timestamp order of Ti with regard to the previous
writer of X. Thus, Ti is aborted and restarted with a new timestamp. Otherwise, the read is valid and Ti is
allowed to read X. The DBMS then updates R-TS(X) to be the max of R-TS(X) and TS(Ti). It also has to
make a local copy of X to ensure repeatable reads for Ti.

Write Operations
For write operations, if TS(Ti) < R-TS(X) or TS(Ti) < W-TS(X), Ti must be restarted. Otherwise, the
DBMS allows Ti to write X and updates W-TS(X). Again, it needs to make a local copy of X to ensure
repeatable reads for Ti.

Optimization: Thomas Write Rule
An optimization for writes is if TS(Ti) < W-TS(X), the DBMS can instead ignore the write and allow the
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transaction to continue instead of aborting and restarting it. This is called the Thomas Write Rule. Note that
this violates timestamp order of Ti but this is okay because no other transaction will ever read Ti’s write to
object X.

The Basic T/O protocol generates a schedule that is conflict serializable if it does not use Thomas Write Rule.
It cannot have deadlocks because no transaction ever waits. However, there is a possibility of starvation for
long transactions if short transactions keep causing conflicts.

It also permits schedules that are not recoverable. A schedule is recoverable if transactions commit only after
all transactions whose changes they read, commit. Otherwise, the DBMS cannot guarantee that transactions
read data that will be restored after recovering from a crash.

Potential Issues:

• High overhead from copying data to transaction’s workspace and from updating timestamps.
• Long running transactions can get starved. The likelihood that a transaction will read something from

a newer transaction increases.
• Suffers from the timestamp allocation bottleneck on highly concurrent systems.

3 Optimistic Concurrency Control (OCC)
Optimistic concurrency control (OCC) is another optimistic concurrency control protocol which also uses
timestamps to validate transactions. OCC works best when the number of conflicts is low. This is when
either all of the transactions are read-only or when transactions access disjoint subsets of data. If the database
is large and the workload is not skewed, then there is a low probability of conflict, making OCC a good
choice.

In OCC, the DBMS creates a private workspace for each transaction. All modifications of the transaction
are applied to this workspace. Any object read is copied into workspace and any object written is copied to
the workspace and modified there. No other transaction can read the changes made by another transaction
in its private workspace.

When a transaction commits, the DBMS compares the transaction’s workspace write set to see whether it
conflicts with other transactions. If there are no conflicts, the write set is installed into the “global” database.

OCC consists of three phases:

1. Read Phase: Here, the DBMS tracks the read/write sets of transactions and stores their writes in a
private workspace.

2. Validation Phase: When a transaction commits, the DBMS checks whether it conflicts with other
transactions.

3. Write Phase: If validation succeeds, the DBMS applies the private workspace changes to the database.
Otherwise, it aborts and restarts the transaction.

Validation Phase
The DBMS assigns transactions timestamps when they enter the validation phase. To ensure only serial-
izable schedules are permitted, the DBMS checks Ti against other transactions for RW and WW conflicts
and makes sure that all conflicts go one way (from older transactions to younger transactions). The DBMS
checks the timestamp ordering of the committing transaction with all other running transactions. Transac-
tions that have not yet entered the validation phase are assigned a timestamp of ∞.

If TS(Ti) < TS(Tj), then one of the following three conditions must hold:

1. Ti completes all three phases before Tj begins
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2. Ti completes before Tj starts its Write phase, and Ti does not write to any object read by Tj .
3. Ti completes its Read phase before Tj completes its Read phase, and Ti does not write to any object

that is either read or written by Tj .

Potential Issues:

• High overhead for copying data locally into the transaction’s private workspace.
• Validation/Write phase bottlenecks.
• Aborts are potentially more wasteful than in other protocols because they only occur after a transaction

has already executed.
• Suffers from timestamp allocation bottleneck.

4 Isolation Levels
Serializability is useful because it allows programmers to ignore concurrency issues but enforcing it may
allow too little parallelism and limit performance. We may want to use a weaker level of consistency to
improve scalability.

Isolation levels control the extent that a transaction is exposed to the actions of other concurrent transactions.

Anomalies:

• Dirty Read: Reading uncommitted data.
• Unrepeatable Reads: Redoing a read results in a different result.
• Phantom Reads: Insertion or deletions result in different results for the same range scan queries.

Isolation Levels (Strongest to Weakest):

1. SERIALIZABLE: No Phantoms, all reads repeatable, and no dirty reads.
2. REPEATABLE READS: Phantoms may happen.
3. READ-COMMITTED: Phantoms and unrepeatable reads may happen.
4. READ-UNCOMMITTED: All anomalies may happen.

The isolation levels defined as part of SQL-92 standard only focused on anomalies that can occur in a
2PL-based DBMS. There are two additional isolation levels:

1. CURSOR STABILITY
• Between repeatable reads and read committed
• Prevents Lost Update Anomaly.
• Default isolation level in IBM DB2.

2. SNAPSHOT ISOLATION
• Guarantees that all reads made in a transaction see a consistent snapshot of the database that

existed at the time the transaction started.
• A transaction will commit only if its writes do not conflict with any concurrent updates made

since that snapshot.
• Susceptible to write skew anomaly.
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1 Multi-Version Concurrency Control
Multi-Version Concurrency Control (MVCC) is a larger concept than just a concurrency control protocol. It
involves all aspects of the DBMS’s design and implementation. MVCC is the most widely used scheme in
DBMSs. It is now used in almost every new DBMS implemented in last 10 years. Even some systems (e.g.,
NoSQL) that do not support multi-statement transactions use it.

With MVCC, the DBMS maintains multiple physical versions of a single logical object in the database.
When a transaction writes to an object, the DBMS creates a new version of that object. When a transaction
reads an object, it reads the newest version that existed when the transaction started.

The fundamental concept/benefit of MVCC is that writers do not block writers and readers do not block
readers. This means that one transaction can modify an object while other transactions read old versions.

One advantage of using MVCC is that read-only transactions can read a consistent snapshot of the database
without using locks of any kind. Additionally, multi-versioned DBMSs can easily support time-travel
queries, which are queries based on the state of the database at some other point in time (e.g. perform-
ing a query on the database as it was 3 hours ago).

There are four important MVCC design decisions:

1. Concurrency Control Protocol
2. Version Storage
3. Garbage Collection
4. Index Management

The choice of concurrency protocol is between the approaches discussed in previous lectures (two-phase
locking, timestamp ordering, optimistic concurrency control).

2 Version Storage
This how the DBMS will store the different physical versions of a logical object and how transactions find
the newest version visible to them.

The DBMS uses the tuple’s pointer field to create a version chain per logical tuple, which is essentially a
linked list of versions sorted by timestamp. This allows the DBMS to find the version that is visible to a
particular transaction at runtime. Indexes always point to the “head” of the chain, which is either the newest
or oldest version depending on implementation. A thread traverses chain until it finds the correct version.
Different storage schemes determine where/what to store for each version.
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Approach #1: Append-Only Storage
All physical versions of a logical tuple are stored in the same table space. Versions are mixed together in
the table and each update just appends a new version of the tuple into the table and updates the version
chain. The chain can either be sorted oldest-to-newest (O2N) which requires chain traversal on look-ups, or
newest-to-oldest (N2O), which requires updating index pointers for every new version.

Approach #2: Time-Travel Storage
The DBMS maintains a separate table called the time-travel table which stores older versions of tuples.
On every update, the DBMS copies the old version of the tuple to the time-travel table and overwrites the
tuple in the main table with the new data. Pointers of tuples in the main table point to past versions in the
time-travel table.

Approach #3: Delta Storage
Like time-travel storage, but instead of the entire past tuples, the DBMS only stores the deltas, or changes
between tuples in what is known as the delta storage segment. Transactions can then recreate older versions
by iterating through the deltas. This results in faster writes than time-travel storage but slower reads.

3 Garbage Collection
The DBMS needs to remove reclaimable physical versions from the database over time. A version is re-
claimable if no active transaction can “see” that version or if it was created by a transaction that was aborted.

Approach #1: Tuple-level GC
With tuple-level garbage collection, the DBMS finds old versions by examining tuples directly. There are
two approaches to achieve this:

• Background Vacuuming: Separate threads periodically scan the table and look for reclaimable ver-
sions. This works with any version storage scheme. A simple optimization is to maintain a “dirty
page bitmap,” which keeps track of which pages have been modified since the last scan. This allows
the threads to skip pages which have not changed.

• Cooperative Cleaning: Worker threads identify reclaimable versions as they traverse version chain.
This only works with O2N chains.

Approach #2: Transaction-level GC
Under transaction-level garbage collection, each transaction is responsible for keeping track of their own
old versions so the DBMS does not have to scan tuples. Each transaction maintains its own read/write set.
When a transaction completes, the garbage collector can use that to identify which tuples to reclaim. The
DBMS determines when all versions created by a finished transaction are no longer visible.

4 Index Management
All primary key (pkey) indexes always point to version chain head. How often the DBMS has to update the
pkey index depends on whether the system creates new versions when a tuple is updated. If a transaction
updates a pkey attribute(s), then this is treated as a DELETE followed by an INSERT.

Managing secondary indexes is more complicated. There are two approaches to handling them.
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Approach #1: Logical Pointers
The DBMS uses a fixed identifier per tuple that does not change. This requires an extra indirection layer that
maps the logical id to the physical location of the tuple. Then, updates to tuples can just update the mapping
in the indirection layer.

Approach #2: Physical Pointers
The DBMS uses the physical address to the version chain head. This requires updating every index when
the version chain head is updated.
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1 Crash Recovery
Recovery algorithms are techniques to ensure database consistency, transaction atomicity, and durability
despite failures. When a crash occurs, all the data in memory that has not been committed to disk is at risk
of being lost. Recovery algorithms act to prevent loss of information after a crash.

Every recovery algorithm has two parts:

• Actions during normal transaction processing to ensure that the DBMS can recover from a failure.
• Actions after a failure to recover the database to a state that ensures atomicity, consistency, and dura-

bility.

The key primitives that used in recovery algorithms are UNDO and REDO. Not all algorithms use both
primitives.

• UNDO: The process of removing the effects of an incomplete or aborted transaction.
• REDO: The process of re-instating the effects of a committed transaction for durability.

2 Storage Types
• Volatile Storage

– Data does not persist after power is lost or program exits.
– Examples: DRAM, SRAM,.

• Non-Volatile Storage
– Data persists after losing power or program exists.
– Examples: HDD, SDD.

• Stable Storage
– A non-existent form of non-volatile storage that survives all possible failures scenarios.
– Use multiple storage devices to approximate.

3 Failure Classification
Because the DBMS is divided into different components based on the underlying storage device, there are a
number of different types of failures that the DBMS needs to handle. Some of these failures are recoverable
while others are not.

Type #1: Transaction Failures
Transactions failures occur when a transaction reaches an error and must be aborted. Two types of errors
that can cause transaction failures are logical errors and internal state errors.

• Logical Errors: A transaction cannot complete due to some internal error condition (e.g., integrity,
constraint violation).
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• Internal State Errors: The DBMS must terminate an active transaction due to an error condition
(e.g., deadlock)

Type #2: System Failures
System failures are unintented failures in hardware or software that must also be accounted for in crash
recovery protocols.

• Software Failure: There is a problem with the DBMS implementation (e.g., uncaught divide-by-zero
exception) and the system has to halt.

• Hardware Failure: The computer hosting the DBMS crashes (e.g., power plug gets pulled). We
assume that non-volatile storage contents are not corrupted by system crash.

Type #3: Storage Media Failure
Storage media failures are non-repairable failures that occur when the physical storage machine is damaged.
When the storage media fails, the DBMS must be restored from an archived version.

• Non-Repairable Hardware Failure: A head crash or similar disk failure destroys all or parts of
non-volatile storage. Destruction is assumed to be detectable.

4 Buffer Pool Management Policies
The DBMS needs to ensure the following guarantees:

• The changes for any transaction are durable once the DBMS has told somebody that it committed.
• No partial changes are durable if the transaction aborted.

A steal policy dictates whether the DBMS allows an uncommitted transaction to overwrite the most recent
committed value of an object in non-volatile storage (can a transaction write uncommitted changes to disk).

• STEAL: Is allowed
• NO-STEAL: Is not allowed.

A force policy dictates whether the DBMS requires that all updates made by a transaction are reflected on
non-volatile storage before the transaction is allowed to commit.

• FORCE: Is required
• NO-FORCE: Is not required

Force writes make it easier to recover since all of the changes are preserved but result in poor runtime
performance.

The easiest buffer pool management policy to implement is called NO-STEAL + FORCE. In the NO-STEAL
+ FORCE policy, the DBMS never has to undo changes of an aborted transaction because the changes were
not written to disk. It also never has to redo changes of a committed transaction because all the changes are
guaranteed to be written to disk at commit time. An example of NO-STEAL + FORCE is show in Figure 1.

A limitation of NO STEAL + FORCE is that all of the data that a transaction needs to modify must fit on
memory. Otherwise, that transaction cannot execute because the DBMS is not allowed to write out dirty
pages to disk before the transaction commits.
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Figure 1: NO-STEAL + FORCE Example – The DBMS is using the NO-STEAL +
FORCE buffer policies. All changes from a transaction are only written to disk when
the transaction is committed. Once the schedule begins at Step #1, changes from T1

and T2 are written to the buffer pool. Because of the FORCE policy, when T2 commits
at Step #2, all of its changes must be written to disk. To do this, the DBMS makes a
copy of the memory in disk, applies only the changes from T2, and writes it back to
disk. This is because NO-STEAL prevents the uncommitted changes from T1 to be
written to disk. At Step #3, it is trivial for the DBMS to rollback T1 since no dirty
changes from T1 are on disk.

5 Shadow Paging
The DBMS maintains two separate copies of the database:

• master: Contains only changes from committed txns.
• shadow: Temporary database with changes made from uncommitted transactions.

Updates are only made in the shadow copy. When a transaction commits, the shadow is atomically switched
to become the new master. This is an example of a NO-STEAL + FORCE system. A high-level example of
shadow paging is shown in Figure 2.

Implementation
The DBMS organizes the database pages in a tree structure where the root is a single disk page. There are
two copies of the tree, the master and shadow. The root always points to the current master copy. When a
transaction executes, it only makes changes to the shadow copy.

When a transaction wants to commit, the DBMS must install its updates. To do this, it only has overwrite
the root to make it points to the shadow copy of the database, thereby swapping the master and shadow.
Before overwriting the root, none of the transactions updates are part of the disk-resident database. After
overwriting the root, all of the transactions updates are part of the disk resident database.

Recovery
• Undo: Remove the shadow pages. Leave the master and DB root pointer alone.
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Figure 2: Shadow Paging – The database root points to a master page table which
points to the pages on disk. When an updating transaction occurs, a shadow page table
is created that points to the same pages as the master. Modifications are made to a
temporary space on disk and the shadow table is updated. To commit, the database
root pointer is redirected to the shadow table, which becomes the new master.

• Redo: Not needed at all.

Disadvantages
A disadvantage of shadow paging is that copying the entire page table is expensive. In reality, only paths
in the tree that lead to updated leaf nodes need to be copied, not the entire tree. In addition, the commit
overhead of shadow paging is high. Commits require every updated page, page table, and root to be flushed.
This causes fragmented data and also requires garbage collection. Another issue is that this only supports
one writer transaction at a time or transactions in a batch.

6 Journal File
When a transaction modifies a page, the DBMS copies the original page to a separate journal file before
overwriting the master version. After restarting, if a journal file exists, then the DBMS restores it to undo
changes from uncommited transactions.

7 Write-Ahead Logging
With write-ahead logging, the DBMS records all the changes made to the database in a log file (on stable
storage) before the change is made to a disk page. The log contains sufficient information to perform the
necessary undo and redo actions to restore the database after a crash. The DBMS must write to disk the log
file records that correspond to changes made to a database object before it can flush that object to disk. An
example of WAL is shown in Figure 3. WAL is an example of a STEAL + NO-FORCE system.

In shadow paging, the DBMS was required to perform writes to random non-contiguous pages on disk.
Write-ahead logging allows the DBMS to convert random writes into sequential writes to optimize per-
formance. Thus, almost every DBMS uses write-ahead logging (WAL) because it has the fastest runtime
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performance. But the DBMS’s recovery time with WAL is slower than shadow paging because it has to
replay the log.

Figure 3: Write Ahead Logging – When the transaction begins, all changes are
recorded in the WAL buffer in memory before being made to the buffer pool. When
it comes time to commit, the WAL buffer is flushed out to disk. The transaction result
can be written once the WAL buffer is safely on disk.

Implementation
The DBMS first stages all of a transaction’s log records in volatile storage. All log records pertaining to an
updated page are then written to non-volatile storage before the page itself is allowed to be overwritten in
non-volatile storage. A transaction is not considered committed until all its log records have been written to
stable storage.

When the transaction starts, write a <BEGIN> record to the log for each transaction to mark its starting point.

When a transaction finishes, write a <COMMIT> record to the log and make sure all log records are flushed
before it returns an acknowledgment to the application.

Each log entry contains information about the change to a single object:

• Transaction ID.
• Object ID.
• Before Value (used for UNDO).
• After Value (used for REDO).

The DBMS must flush all of a transaction’s log entries to disk before it can tell the outside world that a
transaction has successfully committed. The system can use the “group commit” optimization to batch
multiple log flushes together to amortize overhead. The DBMS can write dirty pages to disk whenever it
wants as long as it’s after flushing the corresponding log records.
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8 Logging Schemes
The contents of a log record can vary based on the implementation.

Physical Logging:

• Record the byte-level changes made to a specific location in the database.
• Example: Position of a record in a page

Logical Logging:

• Record the high level operations executed by transactions.
• Not necessarily restricted to a single page.
• Requires less data written in each log record than physical logging because each record can update

multiple tuples over multiple pages. However, it is difficult to implement recovery with logical logging
when there are concurrent transactions in a non-deterministic concurrency control scheme. Addition-
ally recovery takes longer because you must re-execute every transaction.

• Example: The UPDATE, DELETE, and INSERT queries invoked by a transaction.

Physiological Logging:

• Hybrid approach where log records target a single page but do not specify data organization of the
page. That is, identify tuples based on a slot number in the page without specifying exactly where in
the page the change is located. Therefore the DBMS can reorganize pages after a log record has been
written to disk.

• Most common approach used in DBMSs.
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1 Crash Recovery
The DBMS relies on its recovery algorithms to ensure database consistency, transaction atomicity, and
durability despite failures. Each recovery algorithm is comprised of two parts:

• Actions during normal transaction processing to ensure ha the DBMS can recover from a failure
• Actions after a failure to recover the database to a state that ensures the atomicity, consistency, and

durability of transactions.

Algorithms for Recovery and Isolation Exploiting Semantics (ARIES) is a recovery algorithm developed at
IBM research in early 1990s for the DB2 system.

There are three key concepts in the ARIES recovery protocol:

• Write Ahead Logging: Any change is recorded in log on stable storage before the database change
is written to disk (STEAL + NO-FORCE).

• Repeating History During Redo: On restart, retrace actions and restore database to exact state before
crash.

• Logging Changes During Undo: Record undo actions to log to ensure action is not repeated in the
event of repeated failures.

2 WAL Records
Write-ahead log records extend the DBMS’s log record format to include a globally unique log sequence
number (LSN). A high level diagram of how log records with LSN’s are written is shown in Figure 1.

All log records have an LSN. The pageLSN is updated every time a transaction modifies a record in the page.
The flushedLSN in memory is updated every time the DBMS writes out the WAL buffer to disk.

Various components in the system keep track of LSNs that pertain to them. A table of these LSNs is shown
in Figure 2.

Each data page contains a pageLSN, which is the LSN of the most recent update to that page. The DBMS
also keeps track of the max LSN flushed so far (flushedLSN). Before the DBMS can write page i to disk, it
must flush log at least to the point where pageLSNi ≤ flushedLSN

3 Normal Execution
Every transaction invokes a sequence of reads and writes, followed by a commit or abort. It is this sequence
of events that recovery algorithms must have.
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WAL (Tail)

Buffer Pool

001:<T1 BEGIN>
002:<T1, A, 1, 2>
003:<T1 COMMIT>
004:<T2 BEGIN>
005:<T2, A, 2, 3>
006:<T3 BEGIN>
007:<CHECKPOINT>
008:<T2 COMMIT>
009:<T3, A, 3, 4>
010:<T4 BEGIN>
011:<T4, X, 5, 6>
012:<T4, Y, 9, 7>
013:<T3, B, 4, 2>
014:<T3 COMMIT>
015:<T4, B, 2, 3>
016:<T4, C, 1, 2>

WAL

Database

017:<T5 BEGIN>
018:<T5, A, 9, 8>
019:<T5, B, 5, 1>
020:<T5 COMMIT>

⋮

MasterRecord
flushedLSN

pageLSN recLSN

A=9 B=5 C=2

pageLSN recLSN

A=9 B=5 C=2

Log Sequence Numbers Log Sequence Numbers

Figure 1: Writing Log Records – Each WAL has a counter of LSNs that is incre-
mented at every step. The page also keeps a pageLSN and a recLSN, which stores the
first log record that made the page dirty. The flushedLSN is a pointer to the last LSN
that was written out to disk. The MasterRecord points to the last successful checkpoint
passed.

Name Where Definition

flushedLSN Memory Last LSN in log on disk

pageLSN pagex Newest update to pagex

recLSN pagex Oldest update to pagex since 
it was last flushed

lastLSN Ti Latest record of txn Ti

MasterRecord Disk LSN of latest checkpoint

Figure 2: LSN Types – Different parts of the system also maintain different types
LSN’s that store relevant information.

Transaction Commit
When a transaction goes to commit, the DBMS first writes COMMIT record to log buffer in memory. Then the
DBMS flushes all log records up to and including the transaction’s COMMIT record to disk. Note that these
log flushes are sequential, synchronous writes to disk. There can be multiple log records per log page. A
diagram of a transaction commit is shown in Figure 3.

Once the COMMIT record is safely stored on disk, the DBMS returns an acknowledgment back to the applica-
tion that the transaction has committed. At some later point, the DBMS will write a special TXN-END record
to log. This indicates that the transaction is completely finished in the system and there will not be anymore
log records for it. These TXN-END records are used for internal bookkeeping and do not need to be flushed
immediately.

Transaction Abort
Aborting a transaction is a special case of the ARIES undo operation applied to only one transaction.

An additional field is added to the log records called the prevLSN. This corresponds to the previous LSN
for the transaction. The DBMS uses these prevLSN values to maintain a linked-list for each transaction that
makes it easier to walk through the log to find its records.

A new type of record called the compensation log record (CLR) is also introduced. A CLR describes the

15-445/645 Database Systems
Page 2 of 6

https://15445.courses.cs.cmu.edu/fall2021/


Fall 2021 – Lecture #21 Database Crash Recovery

WAL (Tail)

Buffer Pool

001:<T1 BEGIN>
002:<T1, A, 1, 2>
003:<T1 COMMIT>
004:<T2 BEGIN>
005:<T2, A, 2, 3>
006:<T3 BEGIN>
007:<CHECKPOINT>
008:<T2 COMMIT>
009:<T3, A, 3, 4>
010:<T3, B, 4, 2>
011:<T3, COMMIT>
012:<T4 BEGIN>
013:<T4, A, 9, 8>
014:<T4, B, 5, 1>
015:<T4 COMMIT>

WAL

Database
MasterRecord

flushedLSN

pageLSN recLSN

A=9 B=5 C=2

pageLSN recLSN

A=9 B=5 C=2

012:<T4 BEGIN>
013:<T4, A, 9, 8>
014:<T4, B, 5, 1>
015:<T4 COMMIT>

⋮
099:<T4 TXN-END>

flushedLSN = 015

Figure 3: Transaction Commit – After the transaction commits (015), the log is
flushed out and the flushedLSN is modified to point to the last log record generated.
At some later point, a transaction end message is written to signify in the log that this
transaction will not appear again.

actions taken to undo the actions of a previous update record. It has all the fields of an update log record
plus the undoNext pointer (i.e., the next-to-be-undone LSN). The DBMS adds CLRs to the log like any other
record but they never need to be undone.

To abort a transaction, the DBMS first appends a ABORT record to the log buffer in memory. It then undoes
the transaction’s updates in reverse order to remove their effects from the database. For each undone update,
the DBMS creates CLR entry in the log and restore old value. After all of the aborted transaction’s updates
are reversed, the DBMS then writes a TXN-END log record. A diagram of this is shown in Figure 4.

WAL (Tail) WAL

Database

Buffer Pool

MasterRecord
flushedLSN

pageLSN recLSN

A=9 B=5 C=2

pageLSN recLSN

A=9 B=5 C=2

012|nil:<T4 BEGIN>
013|012:<T4, A, 9, 8>
014|013:<T4, B, 5, 1>
015|014:<T4 ABORT>

???
099|098:<T4 TXN-END>

LSN | prevLSN

Important: Need to record what 
steps we took to undo the txn.

Figure 4: Transaction Abort – The DBMS maintains an LSN and prevLSN for each
log record that the transaction creates. When the transaction aborts, all of the previous
changes are reversed. After the log entries of the reversed changes make it to disk, the
DBMS appends the TXN-END record to the log for the aborted transaction.

4 Checkpointing
The DBMS periodically takes checkpoints where it writes the dirty pages in its buffer pool out to disk. This
is used to minimize how much of the log it has to replay upon recovery.

The first two blocking checkpoint methods discussed below pause transactions during the checkpoint pro-
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cess. This pausing is necessary to ensure that the DBMS does not miss updates to pages during the check-
point. Then, a better approach that allows transactions to continue to execute during the checkpoint but
requires the DBMS to record additional information to determine what updates it may have missed is pre-
sented.

Blocking Checkpoints
The DBMS halts the execution of transactions and queries when it takes a checkpoint to ensure that it writes
a consistent snapshot of the database to disk. The is the same approach discussed in previous lecture:

• Halt the start of any new transactions.
• Wait until all active transactions finish executing.
• Flush dirty pages to disk.

Slightly Better Blocking Checkpoints
Like previous checkpoint scheme except that you the DBMS does not have to wait for active transactions to
finish executing. The DBMS now records the internal system state as of the beginning of the checkpoint.

• Halt the start of any new transactions.
• Pause transactions while the DBMS takes the checkpoint.

Active Transaction Table (ATT): The ATT represents the state of transactions that are actively running in
the DBMS. A transaction’s entry is removed after the DBMS completes the commit/abort process for that
transaction. For each transaction entry, the ATT contains the following information:

• transactionId: Unique transaction identifier
• status: The current “mode” of the transaction (Running, Committing, Undo Candidate).
• lastLSN: Most recent LSN written by transaction

Note that the ATT contains every transcation without the TXN-END log record. This includes both transactions
that are either committing or aborting.

Dirty Page Table (DPT): The DPT contains information about the pages in the buffer pool that were
modified by uncommitted transactions. There is one entry per dirty page containing the recLSN (i.e., the
LSN of the log record that first caused the page to be dirty).

The DPT contains all pages that are dirty in the buffer pool. It doesn’t matter if the changes were caused by
a transaction that is running, committed, or aborted.

Overall, the ATT and the DPT serve to help the DBMS recover the state of the database before the crash via
the ARIES recovery protocol.

Fuzzy Checkpoints
A fuzzy checkpoint is where the DBMS allows other transactions to continue to run. This is what ARIES
uses in its protocol.

The DBMS uses additional log records to track checkpoint boundaries:

• <CHECKPOINT-BEGIN>: Indicates the start of the checkpoint. At this point, the DBMS takes a snapshot
of the current ATT and DPT, which are referenced in the <CHECKPOINT-END> record.

• <CHECKPOINT-END>: When the checkpoint has completed. It contains the ATT + DPT, captured just
as the <CHECKPOINT-BEGIN> log record is written.
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5 ARIES Recovery
The ARIES protocol is comprised of three phases. Upon start-up after a crash, the DBMS will execute the
following phases as shown in Figure 5:

1. Analysis: Read the WAL to identify dirty pages in the buffer pool and active transactions at the time
of the crash. At the end of the analysis phase the ATT tells the DBMS which transactions were active
at the time of the crash. The DPT tells the DBMS which dirty pages might not have made it to disk.

2. Redo: Repeat all actions starting from an appropriate point in the log.
3. Undo: Reverse the actions of transactions that did not commit before the crash.

CRASH!

Oldest log 
record of txn

active at crash

Smallest 
recLSN in DPT 
after Analysis

TI
M
E

A
1

R
2

U
3

Start of last 
checkpoint

WAL

Figure 5: ARIES Recovery: The DBMS starts the recovery process by examining the
log starting from the last BEGIN-CHECKPOINT found via MasterRecord. It then begins
the Analysis phase by scanning forward through time to build out ATT and DPT. In
the Redo phase, the algorithm jumps to the smallest recLSN, which is the oldest log
record that may have modified a page not written to disk. The DBMS then applies all
changes from the smallest recLSN. The Undo phase starts at the oldest log record of a
transaction active at crash and reverses all changes up to that point.

Analysis Phase
Start from last checkpoint found via the database’s MasterRecord LSN.

1. Scan log forward from the checkpoint.
2. If the DBMS finds a TXN-END record, remove its transaction from ATT.
3. All other records, add transaction to ATT with status UNDO, and on commit, change transaction

status to COMMIT.
4. For UPDATE log records, if page P is not in the DPT, then add P to DPT and set P ’s recLSN to the log

record’s LSN.

Redo Phase
The goal of this phase is for the DBMS to repeat history to reconstruct its state up to the moment of the
crash. It will reapply all updates (even aborted transactions) and redo CLRs.

The DBMS scans forward from log record containing smallest recLSN in the DPT. For each update log
record or CLR with a given LSN, the DBMS re-applies the update unless:

• Affected page is not in the DPT, or
• Affected page is in DPT but that record’s LSN is less than the recLSN of the page in DPT, or
• Affected pageLSN (on disk) ≥ LSN.
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To redo an action, the DBMS re-applies the change in the log record and then sets the affected page’s
pageLSN to that log record’s LSN.

At the end of the redo phase, write TXN-END log records for all transactions with status COMMIT and remove
them from the ATT.

Undo Phase
In the last phase, the DBMS reverses all transactions that were active at the time of crash. These are all
transactions with UNDO status in the ATT after the Analysis phase.

The DBMS processes transactions in reverse LSN order using the lastLSN to speed up traversal. As it
reverses the updates of a transaction, the DBMS writes a CLR entry to the log for each modification.

Once the last transaction has been successfully aborted, the DBMS flushes out the log and then is ready to
start processing new transactions.
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1 Distributed DBMSs
A distributed DBMS divides a single logical database across multiple physical resources. The application
is (usually) unaware that data is split across separated hardware. The system relies on the techniques and
algorithms from single-node DBMSs to support transaction processing and query execution in a distributed
environment. An important goal in designing a distributed DBMS is fault tolerance (i.e., avoiding a single
one node failure taking down the entire system).

Differences between parallel and distributed DBMSs:

Parallel Database:

• Nodes are physically close to each other.
• Nodes are connected via high-speed LAN (fast, reliable communication fabric).
• The communication cost between nodes is assumed to be small. As such, one does not need to worry

about nodes crashing or packets getting dropped when designing internal protocols.

Distributed Database:

• Nodes can be far from each other.
• Nodes are potentially connected via a public network, which can be slow and unreliable.
• The communication cost and connection problems cannot be ignored (i.e., nodes can crash, and pack-

ets can get dropped).

2 System Architectures
A DBMS’s system architecture specifies what shared resources are directly accessible to CPUs. It affects
how CPUs coordinate with each other and where they retrieve and store objects in the database.

A single-node DBMS uses what is called a shared everything architecture. This single node executes work-
ers on a local CPU(s) with its own local memory address space and disk.

Shared Memory
An alternative to shared everything architecture in distributed systems is shared memory. CPUs have access
to common memory address space via a fast interconnect. CPUs also share the same disk.

In practice, most DBMSs do not use this architecture, as it is provided at the OS / kernel level. It also causes
problems, since each process’s scope of memory is the same memory address space, which can be modified
by multiple processes.

Each processor has a global view of all the in-memory data structures. Each DBMS instance on a processor
has to “know” about the other instances.
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Figure 1: Database System Architectures – Four system architecture approaches
ranging from sharing everything (used by non distributed systems) to sharing memory,
disk, or nothing.

Shared Disk
In a shared disk architecture, all CPUs can read and write to a single logical disk directly via an interconnect,
but each have their own private memories. This approach is more common in cloud-based DBMSs.

The DBMS’s execution layer can scale independently from the storage layer. Adding new storage nodes or
execution nodes does not affect the layout or location of data in the other layer.

Nodes must send messages between them to learn about other node’s current state. That is, since memory is
local, if data is modified, changes must be communicated to other CPUs in the case that piece of data is in
main memory for the other CPUs.

Nodes have their own buffer pool and are considered stateless. A node crash does not affect the state of the
database since that is stored separately on the shared disk. The storage layer persists the state in the case of
crashes.

Shared Nothing
In a shared nothing environment, each node has its own CPU, memory, and disk. Nodes only communicate
with each other via network.

It is more difficult to increase capacity in this architecture because the DBMS has to physically move data
to new nodes. It is also difficult to ensure consistency across all nodes in the DBMS, since the nodes must
coordinate with each other on the state of transactions. The advantage, however, is that shared nothing
DBMSs can potentially achieve better performance and are more efficient then other types of distributed
DBMS architectures.

3 Design Issues
Distributed DBMSs aim to maintain data transparency, meaning that users should not be required to know
where data is physically located, or how tables are partitioned or replicated. The details of how data is being
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stored is hidden from the application. In other words, a SQL query that works on a single-node DBMS
should work the same on a distributed DBMS.

The key design questions that distributed database systems must address are the following:

• How does the application find data?
• How should queries be executed on a distributed data? Should the query be pushed to where the data

is located? Or should the data be pooled into a common location to execute the query?
• How does the DBMS ensure correctness?

Another design decision to make involves deciding how the nodes will interact in their clusters. Two options
are homogeneous and heterogeneous nodes, which are both used in modern-day systems.

Homogeneous Nodes: Every node in the cluster can perform the same set of tasks (albeit on potentially
different partitions of data), lending itself well to a shared nothing architecture. This makes provisioning
and failover “easier”. Failed tasks are assigned to available nodes.

Heterogeneous Nodes: Nodes are assigned specific tasks, so communication must happen between nodes
to carry out a given task. Can allow a single physical node to host multiple “virtual” node types for dedicated
tasks. Can independently scale from one node to other.

4 Partitioning Schemes
Distributed system must partition the database across multiple resources, including disks, nodes, processors.
This process is sometimes called sharding in NoSQL systems. When the DBMS receives a query, it first
analyzes the data that the query plan needs to access. The DBMS may potentially send fragments of the
query plan to different nodes, then combines the results to produce a single answer.

The goal of a partitioning scheme is to maximize single-node transactions, or transactions that only access
data contained on one partition. This allows the DBMS to not need to coordinate the behavior of concurrent
transactions running on other nodes. On the other hand, a distributed transaction accesses data at one or
more partitions. This requires expensive, difficult coordination, discussed in the below section.

For logically partitioned nodes, particular nodes are in charge of accessing specific tuples from a shared
disk. For physically partitioned nodes, each shared nothing node reads and updates tuples it contains on its
own local disk.

Implementation
The simplest way to partition tables is naive data partitioning. Each node stores one table, assuming enough
storage space for a given node. This is easy to implement because a query is just routed to a specific
partitioning. This can be bad, since it is not scalable. One partition’s resources can be exhausted if that one
table is queried on often, not using all nodes available. See Figure 2 for an example.

More commonly used is horizontal partitioning, which splits a table’s tuples into disjoint subsets. Choose
column(s) that divides the database equally in terms of size, load, or usage, called the partitioning key(s).
The DBMS can partition a database physically (shared nothing) or logically (shared disk) via hash partition-
ing or range partitioning. See Figure 3 for an example.

Another common approach is Consistent Hashing. Consistent Hashing assigns every node to a location on
some logical ring. Then the hash of every partition key maps to some location on the ring. The node that is
closest to the key in the clockwise direction is responsible for that key. See Figure 4 for an example. When
a node is added or removed, keys are only moved between nodes adjacent to the new/removed node. A
replication factor of n means that each key is replicated at the n closest nodes in the clockwise direction.
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Figure 2: Naive Table Partitioning – Given two tables, place all the tuples in table
one into one partition and the tuples in table two into the other.

Logical Partitioning: A node is responsible for a set of keys, but it doesn’t actually store those keys. This
is commonly used in a shared disk architecture.

Physical Partitioning: A node is responsible for a set of keys, and it physically stores those keys. This is
commonly used in a shared nothing architecture.

5 Distributed Concurrency Control
A distributed transaction accesses data at one or more partitions, which requires expensive coordination.

Centralized coordinator
The centralized coordinator acts as a global “traffic cop” that coordinates all the behavior. See Figure 5 for
a diagram.

Middleware
Centralized coordinators can be used as middleware, which accepts query requests and routes queries to
correct partitions.

Decentralized coordinator
In a decentralized approach, nodes organize themselves. The client directly sends queries to one of the
partitions. This home partition will send results back to the client. The home partition is in charge of
communicating with other partitions and committing accordingly.

Centralized approaches give way to a bottleneck in the case that multiple clients are trying to acquire locks
on the same partitions. It can be better for distributed 2PL as it has a central view of the locks and can handle
deadlocks more quickly. This is non-trivial with decentralized approaches.
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Figure 3: Horizontal Table Partitioning – Use hash partitioning to decide where to
send the data. When the DBMS receives a query, it will use the table’s partitioning
key(s) to find out where the data is.

Figure 4: Consistent Hashing – All nodes are responsible for some portion of hash
ring. Here node P1 is responsible for storing key1 and node P3 is responsible for
storing key2.

15-445/645 Database Systems
Page 5 of 6

https://15445.courses.cs.cmu.edu/fall2021/


Fall 2021 – Lecture #22 Introduction to Distributed Databases

Figure 5: Centralized Coordinator – The client communicates with the coordinator
to acquire locks on the partitions that the client wants to access. Once it receives an
acknowledgement from the coordinator, the client sends its queries to those partitions.
Once all queries for a given transaction are done, the client sends a commit request
to the coordinator. The coordinator then communicates with the partitions involved in
the transaction to determine whether the transaction is allowed to commit.
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1 OLTP VS. OLAP
On-line Transaction Processing (OLTP)

• Short lived read/write transactions.
• Small footprint.
• Repetitive operations.

On-line Analytical Processing OLAP
• Long-running, read-only queries.
• Complex joins.
• Exploratory queries.

2 Distributed Transactions
A transaction is “distributed” if it accesses data on multiple nodes. Executing these transactions is more
challenging than single-node transactions because now when the transaction commits, the DBMS has to
make sure that all the nodes agree to commit the transaction. The DBMS ensure that the database provides
the same ACID guarantees as a single-node DBMS even in the case of node failures or message loss.

One can assume that all nodes in a distributed DBMS are well-behaved and under the same administrative
domain. In other words, given that there is not a node failure, a node which is told to commit a transaction
will commit the transaction. If the other nodes in a distributed DBMS cannot be trusted, then the DBMS
needs to use a byzantine fault tolerant protocol (e.g., blockchain) for transactions.

3 Atomic Commit Protocols
When a multi-node transaction finishes, the DBMS needs to ask all of the nodes involved whether it is safe
to commit. Depending on the protocol, a majority of the nodes or all of the nodes may be needed to commit.
Examples include:

• Two-Phase Commit (Common)
• Three-Phase Commit (Uncommon)
• Paxos (Common)
• Raft (Common)
• ZAB (Apache Zookeeper)
• Viewstamped Replication (first probably correct protocol)

Two-Phase Commit (2PC) blocks if coordinator fails after the prepare message is sent, until the coordinator
recovers. Paxos, on the other hand, is non-blocking if a majority participants are alive, provided there is a
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sufficiently long period without further failures. 2PC is used often if the nodes are in the same data center
because of the number of round trips could be less than for Paxos, assuming that nodes do not fail often and
are not malicious.

Two-Phase Commit
The client sends a Commit Request to the coordinator. In the first phase of this protocol, the coordinator
sends a Prepare message, essentially asking the participant nodes if the current transaction is allowed to
commit. If a given participant verifies that the given transaction is valid, they send an OK to the coordinator.
If the coordinator receives an OK from all the participants, the system can now go into the second phase in
the protocol. If anyone sends an Abort to the coordinator, the coordinator sends an Abort to the client.

The coordinator sends a Commit to all the participants, telling those nodes to commit the transaction, if all
the participants sent an OK. Once the participants respond with an OK, the coordinator can tell the client
that the transaction is committed. If the transaction was aborted in the first phase, the participants receive
an Abort from the coordinator, to which they should respond to with an OK. Either everyone commits or no
one does. The coordinator can also be a participant in the system.

Additionally, in the case of a crash, all nodes keep track of a non-volatile log of the outcome of each phase.
Nodes block until they can figure out the next course of action. If the coordinator crashes, the participants
must decide what to do. A safe option is just to abort. Alternatively, the nodes can communicate with each
other to see if they can commit without the explicit permission of the coordinator. If a participant crashes,
the coordinator assumes that it responded with an abort if it has not sent an acknowledgement yet.

Optimizations:

• Early Prepare Voting – If the DBMS sends a query to a remote node that it knows will be the last one
executed there, then that node will also return their vote for the prepare phase with the query result.

• Early Acknowledgement after Prepare – If all nodes vote to commit a transaction, the coordinator can
send the client an acknowledgement that their transaction was successful before the commit phase
finishes.

Paxos
Paxos (along with Raft) is more prevalent in modern systems than 2PC. It is a less strict version of 2PC.
This is a consensus protocol where a coordinator proposes an outcome (e.g., commit or abort) and then
the participants vote on whether that outcome should succeed. This protocol does not block if a majority
of participants are available and has probably minimal message delays in the best case. For Paxos, the
coordinator is called the proposer and participants are called acceptors.

The client will send a Commit Request to the proposer. The proposer will send a Propose to the other nodes
in the system, or the acceptors. A given acceptor will send an Agree if they have not already sent an Agree
on a higher logical timestamp. Otherwise, they send a Reject.

Once the majority of the acceptors sent an Agree, the proposer will send a Commit. The proposer must wait
to receive an Accept from the majority of acceptors before sending the final message to the client saying that
the transaction is committed, unlike 2PC.

Use exponential back off times for trying to propose again after a failed proposal, to avoid dueling proposers.

Multi-Paxos: If the system elects a single leader that oversees proposing changes for some period, then it
can skip the propose phase. The system periodically renews who the leader is using another Paxos round.
When there is a failure, the DBMS can fall back to full Paxos.
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4 Replication
The DBMS can replicate data across redundant nodes to increase availability. In other words, if a node goes
down, the data is not lost, and the system is still alive and does not need to be rebooted. One can use Paxos
to determine which replica to write data to.

Number of Primary Nodes
In Primary-Replica, all updates go to a designated primary for each object. The primary propagates updates
to its replicas without an atomic commit protocol, coordinating all updates that come to it. Read-only
transactions may be allowed to access replicas if the most up-to-date information is not needed. If the
primary goes down, then hold an election to select a new primary.

In Multi-Primary, transactions can update data objects at any replica. Replicas must synchronize with each
other using an atomic commit protocol like Paxos or 2PC.

K-Safety
K-safety is a threshold for determining the fault tolerance of the replicated database. The value K represents
the number of replicas per data object that must always be available. If the number of replicas goes below
this threshold, then the DBMS halts execution and takes itself offline. A higher value of K reduces risk of
losing data. It is a threshold to determine how available a system can be.

Propagation Scheme
When a transaction commits on a replicated database, the DBMS decides whether it must wait for that
transaction’s changes to propagate to other nodes before it can send the acknowledgement to the application
client. There are two propagation levels: Synchronous (strong consistency) and asynchronous (eventual
consistency).

In a synchronous scheme, the primary sends updates to replicas and then waits for them to acknowledge
that they fully applied (i.e., logged) the changes. Then, the primary can notify the client that the update has
succeeded. It ensures that the DBMS will not lose any data due to strong consistency. This is more common
in a traditional DBMS.

In an asynchronous scheme, the primary immediately returns the acknowledgement to the client without
waiting for replicas to apply the changes. Stale reads can occur in this approach, since updates may not
be fully applied to replicas when read is occurring. If some data loss can be tolerated, this option can be a
viable optimization. This is used commonly in NoSQL systems.

Propagation Timing
For continuous propagation timing, the DBMS sends log messages immediately as it generates them. Note
that a commit or abort message needs to also be sent. Most systems use this approach.

For on commit propagation timing, the DBMS only sends the log messages for a transaction to the replicas
once the transaction is committed. This does not waste time for sending log records for aborted transactions.
It does make the assumption that a transaction’s log records fit entirely in memory.

Active vs Passive
There are multiple approaches to applying changes to replicas. For active-active, a transaction executes at
each replica independently. At the end, the DBMS needs to check whether the transaction ends up with the
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same result at each replica to see if the replicas committed correctly. This is difficult since now the ordering
of the transactions must sync between all the nodes, making it less common.

For active-passive, each transaction executes at a single location and propagates the overall changes to the
replica. The DBMS can either send out the physical bytes that were changed, which is more common, or
the logical SQL queries.

5 CAP Theorem
The CAP Theorem, proposed by Eric Brewer and later proved in 2002 at MIT, explained that it is impossible
for a distributed system to always be Consistent, Available, and Partition Tolerant. Only two of these three
properties can be chosen.

Consistency is synonymous with linearizability for operations on all nodes. Once a write completes, all
future reads should return the value of that write applied or a later write applied. Additionally, once a read
has been returned, future reads should return that value or the value of a later applied write. NoSQL systems
compromise this property in favor of the latter two. Other systems will favor this property and one of the
latter two.

Availability is the concept that all up nodes can satisfy all requests.

Partition tolerance means that the system can still operate correctly despite some message loss between
nodes that are trying to reach consensus on values. If consistency and partition tolerance is chosen for a
system, updates will not be allowed until a majority of nodes are reconnected, typically done in traditional
or NewSQL DBMSs.

6 Federated Databases
These are distributed architectures that connect together multiple DBMSs into a single logical system. This
is more popular in bigger companies. A query can access data at any location. This is hard due to different
data models, query languages, and limitations of each individual DBMS. Additionally, there is no easy way
to optimize queries. Lastly, there is a lot of data copying that is involved.

For example, say there is an application server which makes some queries. These queries then go through a
middleware layer (which will convert the query into a readable format for a given DBMS used in the bigger
system) that via connectors, will go through the multiple back-end DBMSs that are deployed in the system.
The middleware will then handle the results returned from the DBMSs.

PostgreSQL is in the best position to successfully deploy a federated database using its foreign data wrap-
pers. It allows a user to use data from another system within a given Postgres session.
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1 Decision Support Systems
For a read-only OLAP database, it is common to have a bifurcated environment, where there are multiple
instances of OLTP databases that ingest information from the outside world which is then fed into the back-
end OLAP database, sometimes called a data warehouse. There is an intermediate step called ETL, or
Extract, Transform, and Load, which combines the OLTP databases into a universal schema for the data
warehouse.

Decision support systems (DSS) are applications that serve the management, operations, and planning levels
of an organization to help people make decisions about future issues and problems by analyzing historical
data stored in a data warehouse.

The two approaches for modeling an analytical database are star schemas and snowflake schemas.

Star Schema
Star schemas contain two types of tables: fact tables and dimension tables. The fact table contains multiple
“events” that occur in the application. It will contain the minimal unique information per event, and then
the rest of the attributes will be foreign key references to outer dimension tables. The dimension tables
contain redundant information that is reused across multiple events. In a star schema, there can only be one
dimension-level out from the fact table. Since the data can only have one level of dimension tables, it can
have redundant information. Denormalized data models may incur integrity and consistency violations, so
replication must be handled accordingly. Queries on star schemas will (usually) be faster than a snowflake
schema because there are fewer joins. An example of a star schema is shown in Figure 1.

Snowflake Schema
Snowflake schemas are similar to star schemas except that they allow for more than one dimension out from
the fact table. They take up less storage space, but they require more joins to get the data needed for a query.
For this reason, queries on star schemas are usually faster. An example of a snowflake schema is shown in
Figure 2.

2 Execution Models
A distributed DBMS’s execution model specifies how it will communicate between nodes during query
execution. Two approaches to executing a query are pushing and pulling.

Pushing a Query to Data
For the first approach, the DBMS sends the query (or a portion of it) to the node that contains the data.
It then performs as much filtering and processing as possible where data resides before transmitting over
network. The result is then sent back to where the query is being executed, which uses local data and the
data sent to it, to complete the query. This is more common in a shared nothing system.
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Figure 1: Star Schema – The center of the schema is the SALES fact table that con-
tains key references to outer dimension tables. Because star schemas are only one-
dimensional, the outer dimensional tables cannot point to other dimension tables.

Pulling Data to Query
For the second approach, the DBMS brings the data to the node that is executing a query that needs it for
processing. In other words, nodes detect which partitions of the data they can do computation on and pull
from storage accordingly. Then, the local operations are propagated to one node, which does the operation
on all the intermediary results. This is normally what a shared disk system would do. The problem with this
is that the size of the data relative to the size of the query could be very different. A filter can also be sent to
only retrieve the data needed from disk.

Query Fault Tolerance
The data that a node receives from remote sources are cached in the buffer pool. This allows the DBMS
to support intermediate results that are larger than the amount of memory available. Ephemeral pages,
however, are not persisted after a restart. Therefore, a distributed DBMS must consider what happens to a
long-running OLAP query if a node crashes during execution.

Most shared-nothing distributed OLAP DBMSs are designed to assume that nodes do not fail during query
execution. If one node fails during query execution, then the whole query fails, which entails the entire
query executing from the start. This can be expensive, as some OLAP queries can take days to execute.

The DBMS could take a snapshot of the intermediate results for a query during execution to allow it to
recover if nodes fail. This operation is expensive, however, because writing data to disk is slow.

3 Query Planning
All the optimizations that we talked about before are still applicable in a distributed environment, including
predicate pushdown, early projections, and optimal join orderings. Distributed query optimization is even
harder because it must consider the physical location of data in the cluster and data movement costs.

One approach is to generate a single global query plan and then distribute physical operators to nodes,
breaking it up into partition-specific fragments. Most systems implement this approach.

15-445/645 Database Systems
Page 2 of 5

https://15445.courses.cs.cmu.edu/fall2021/


Fall 2021 – Lecture #24 Distributed OLAP Databases

Figure 2: Snowflake Schema – The category information in the product dimension
table can be broken out in the snowflake table.

Another approach is to take the SQL query and rewrite the original query into partition-specific queries.
This allows for local optimization at each node. SingleStore and Vitess are examples of systems that use
this approach.

4 Distributed Join Algorithms
For analytical workloads, the majority of the time is spent doing joins and reading from disk, showing
the importance of this topic. The efficiency of a distributed join depends on the target tables’ partitioning
schemes.

One approach is to put entire tables on a single node and then perform the join. However, the DBMS loses
the parallelism of a distributed DBMS, which defeats the purpose of having a distributed DBMS. This option
also entails costly data transfer over the network.

To join tables R and S, the DBMS needs to get the proper tuples on the same node. Once there, it then
executes the same join algorithms discussed earlier in the semester. One should always send the minimal
amount needed to compute the join, sometimes entailing entire tuples.

There are four scenarios for distributed join algorithms.

Scenario 1
One of the tables is replicated at every node and the other table is partitioned across nodes. Each node joins
its local data in parallel and then sends their results to a coordinating node.

Scenario 2
Both tables are partitioned on the join attribute, with IDs matching on each node. Each node performs the
join on local data and then sends to a node for coalescing.
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Scenario 3
Both tables are partitioned on different keys. If one of the tables is small, then the DBMS broadcasts that
table to all nodes. Local joins are computed and then those joins are sent to a common node to operate the
final join. This is known as a broadcast join.

Scenario 4
This is the worst case scenario. Both tables are not partitioned on the join key. The DBMS copies the tables
by reshuffling them across nodes. Local joins are computed and then the results are sent to a common node
for the final join. If there isn’t enough disk space, a failure is unavoidable. This is called a shuffle join.

Semi-Join
A semi-join is a join operator where the result only contains columns from the left table. Distributed DBMSs
use semi-join to minimize the amount of data sent during joins.

It is like a natural join, except that the attributes on the right table that are not used to compute the join are
restricted.

5 Cloud Systems
Vendors provide database-as-a-service (DBaaS) offerings that are managed DBMS environments.

Newer systems are starting to blur the lines between shared-nothing and shared-disk. For example, Amazon
S3 allows for simple filtering before copying data to compute nodes. There are two types of cloud systems,
managed or cloud-native DBMSs.

Managed DBMSs
In a managed DBMS, no significant modification to the DBMS to be ”aware” that it is running in a cloud
environment. It provides a way to abstract away all the backup and recovery for the client. This approach is
deployed in most vendors.

Cloud-Native DBMS
A cloud-native system is designed explicitly to run in a cloud environment. This is usually based on a
shared-disk architecture. This approach is used in Snowflake, Google BigQuery, Amazon Redshift, and
Microsoft SQL Azure.

Serverless Databases
Rather than always maintaining compute resources for each customer, a serverless DBMS evicts tenants
when they become idle, checkpointing the current progress in the system to disk. Now, a user is only paying
for storage when not actively querying. A diagram of this is shown in Figure 3.

6 Disaggregated Components
Many existing libraries/systems implement a single component of a distributed database. Distributed databases
can then leverage these components instead of re-implementing it themselves. Additionally different dis-
tributed databases can share components with each other.

Notable examples are:
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Figure 3: Serverless Database – When the application server becomes idle, the user
must pay for resources in the node that are not being used. In a serverless database,
when the application server stops, the DBMS takes a snapshot of pages in the buffer
pool and writes it out to shared disk so that the computation can be stopped. When the
application server returns, the buffer pool page table restores the previous state in the
node.

System Catalogs: HCatalog, Google Data Catalog, Amazon Glue Data Catalog,

Node Management: Kubernetes, Apache YARN, Cloud Vendor Tools

Query Optimizers: Greenplum Orca, Apache Calcite

7 Universal Formats
Most DBMSs use a proprietary on-disk binary file format for their databases. The only way to share data
between systems is to convert data into a common text-based format, including CSV, JSON, and XML. There
are new open-source binary file formats, which cloud vendors and distributed database systems support,
that make it easier to access data across systems. Writing a custom file format would give way to better
compression and performance, but this gives way to better interoperability.

Notable examples of universal database file formats:

• Apache Parquet: Compressed columnar storage from Cloudera/Twitter.
• Apache ORC: Compressed columnar storage from Apache Hive.
• Apache CarbonData: Compressed columnar storage with indexes from Huawei.
• Apache Iceberg: Flexible data format that supports schema evolution from Netflix.
• HDF5: Multi-dimensional arrays for scientific workloads.
• Apache Arrow: In-memory compressed columnar storage from Pandas/Dremio.
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