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Lecture 1: Introduction and Complex Numbers

Learning Objectives:

• Introduce the broad goals of the course.

• Introduce the basic notions of mathematical proof, and practice the elements of mathematical
logic and style.

• Discuss the real and complex number fields, and prove basic properties of them.

Welcome to MATH 291! This quarter we will study linear algebra through rigorous proof.

What is Linear Algebra?

The answer to the question “What is linear algebra?” has evolved over time. Initially linear algebra was
the study of systems of linear equations. Later, linear algebra was the study of the algebraic properties
of vectors and matrices. Linear algebra is usually described now as the study of vector spaces (also
called linear spaces) and linear transformations. Each viewpoint generalizes its predecessors, but the
earlier viewpoints (and their relevant ideas) remain as useful today as ever. The modern notion of vector
space is general enough to touch nearly all of modern mathematics, but the old techniques for solving
systems of linear equations remain indispensable even in more general contexts.

In this course we will approach the subject through vectors and matrices, emphasizing geometric
intuition and anticipating the transition to multivariable calculus later in the year. Along the way we
will see how systems of linear equations can be modeled and analyzed using vectors and matrices, and
we will also see the generalization to vector spaces.

What is Proof?

Besides linear algebra, you will also study mathematical proof-writing in MATH 291. This entails
producing logically sound, stylistically appropriate arguments (“proofs”) that establish the validity of
a mathematical statement. These arguments are written as prose, often with mathematical notation
replacing expressions that would be complicated to write out in words. For example, we would write

If x2 = 5, then x =
√

5 or x = −
√

5.

instead of

If the square of an unknown number is five, then that number is either the square root of
five, or the negative square root of five.

or

x2 = 5 ⇒ x =
√

5,−
√

5

The first of these statements is an efficient and correctly formed sentence that expresses a mathematical
idea, and which employs some mathematical notation for shorthand. The second statement is identical
to the first, but without the efficiency created by using some mathematical notation. The third is a bit
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more difficult to read as a sentence. I point this out to emphasize that you should strive to communicate
all of your mathematical reasoning in a style similar to that of the first statement above, rather than
the second and third. Proof is a contextual expression of logic, and we will learn how to wield standard
logical devices and constructions. We will also learn the standard grammar of mathematics and master
the art of communicating with other mathematicians through aesthetically pleasing logical proofs.

Real Numbers

The linear algebra is built on number systems known as fields. We will focus on two such number
systems in this course: the real numbers R and the complex numbers C. When a result, argument, or
an example is valid for both of these, then we will write K to stand for either R or C. In the context of
linear algebra we refer to numbers in the field we are working with as scalars.

Informally, a field is a number system where addition, subtraction, multiplication, and division work
exactly as you are used to. More precisely, we say that the real number system is a field because the
operations of addition + and multiplication · on R satisfy the following properties:

(Associativity) For every x, y, z ∈ R, (x+ y) + z = x+ (y + z) and (xy)z = x(yz).

(Commutativity) For every x, y ∈ R, x+ y = y + x and xy = yx.

(Identities) There exist unique numbers 0, 1 ∈ R such that 0 6= 1 and for each x ∈ R, x+ 0 = x
and x1 = x. The number 0 is called the additive identity, and the number 1 is called the
multiplicative identity.

(Inverses) Every x ∈ R has a unique additive inverse −x ∈ R satisfying x + (−x) = 0. Every
nonzero y ∈ R has a unique multiplicative inverse 1

y
satisfying y 1

y
= 1.

(Distributivity) For every x, y, z ∈ R, x(y + z) = xy + xz and (x+ y)z = xz + yz.

General Notation: ∈

For a set A, the notation “x ∈ A” means that the object x is an element of A, or that x is in A.

∀: The Universal Quantifier

For a set A, the notation “∀x ∈ A” reads “for every x in A” or “for all x in A”. It precedes a
claim involving x that could be either true or false, such as “x is a dog” or “x does not belong to
the collection of rational numbers”). This is a quantifier, which is a condition that indicates to
how many x ∈ A the claim applies.

This quantifier is called universal because it indicates that the statement following it should hold
for every x in the set A, without exception.

Occasionally there are multiple universal quantifiers in a given statement. For example, the
statement that addition is commutative says that “For every x, y ∈ R, x + y = y + x. We can
write this symbolically as

(∀x ∈ R)︸ ︷︷ ︸
For all x in R,

(∀y ∈ R)︸ ︷︷ ︸
for all y in R,︸ ︷︷ ︸

Shortened: For all x,y∈R,

(x+ y = y + x).
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∃: The Existential Quantifier

For a set A, the notation “∃x ∈ A” reads “there exists x in A” or “there is x in A”. This is
another quantifier because it indicates to how many x ∈ A the claim applies.

This quantifier is existential because it indicates that the statement following it should hold for
at least one x in the set A. That is, that there exists at least one x ∈ A to which the claim applies.

Occasionally you will see a mixture of universal and existential quantifiers in a given statement.
For example, the statement about the existence of an additive identity says that “There exists
0 ∈ R such that for every x ∈ R, x+ 0 = x.” We can write this symbolically as

(∃0 ∈ R)︸ ︷︷ ︸
There exists 0 in R,

(∀x ∈ R)︸ ︷︷ ︸
for all x in R,

(x+ 0 = x).

The order here (i.e. that the existential claim comes before the universal claim) is important. As
stated, there should be a number 0 with the property that for every x ∈ R we have x + 0 = x.
In particular, this same 0 should work regardless of what x is, so we are not allowed to choose 0
based on x. On the other hand, if we change the order of the quantifiers to be “For every x ∈ R,
there exists 0 ∈ R with x+ 0 = x.” then we would allow 0 to possibly depend on x, which is not
quite strong enough to be useful.

For another example, consider the statement “For every person x, there exists a height y such that
x is y meters tall.” Note that here the existential quantifier comes after the universal quantifier,
so that the height y associated to x is allowed to depend on x. If we switch the quantifiers, we
obtain the patently false statement “There exists a height y such that for every person x, x is y
meters tall,” which says that every person is exactly the same height (y meters) as every other
person!

These two examples illustrate how subtle differences in wording can drastically change the overall
meaning of a logical expression, and therefore why it is so important to be precise.

The Complex Numbers

The complex numbers are defined in terms of real numbers. Here is one of many ways to do this.

Definition 1. A complex number is an expression of the form a + ib, where a, b ∈ R and the
symbol i is called the imaginary unit. We denote the set of complex numbers by

C def
= {a+ ib : a, b ∈ R}.

Addition and multiplication of complex numbers are defined via the formulas

(a+ ib) + (c+ id)
def
= (a+ c) + i(b+ d) and (a+ ib)(c+ id)

def
= (ac− bd) + i(ac+ bd)

for every a+ ib, c+ id ∈ C.
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Remark 1. Note that if a, b ∈ R then we have

(a+ 0i) + (b+ 0i) = a+ b+ 0i and (a+ 0i)(b+ 0i) = ab+ 0i,

so that we can think of the real numbers as the subset of the complex numbers where the real number a
corresponds to the complex number a+ 0i. To simplify notation with complex numbers, we will simply
write a for a+ 0i and bi for 0 + bi going forward.

Remark 2. With the observation in the last remark, note that for a, b ∈ R we have

a+ bi = (a+ i0) + (b+ i0)(0 + i1) = (a+ i0) + (0 + ib) = a+ ib,

so that the expression a + bi represents the complex number a + ib. (We will use the two expressions
interchangeably going forward.) The upshot here is that you can view the expression a+ ib not only as
a complex number as defined above, but as a complex number built from adding the real number a to
the product of the imaginary unit i = 0 + i1 and the real number b. This is a little pedantic, but again
we are trying to be precise!

Remark 3. Note that
i2 = (0 + 1i)(0 + 1i) = (0− 1) + (0− 0)i = −1.

In this sense, i functions as a square root of −1. There is no real number with this property, and
therefore the presence of a square root of −1 distinguishes C from R. It also implies far deeper (and
more important) differences.

In particular, i is a solution to the polynomial equation x2 + 1 = 0, which has no real solution. One
amazing property of the complex numbers is that every polynomial equation anx

n + an−1x
n−1 + · · · +

a1x+ a0 = 0 (with n ≥ 1 and an 6= 0) has a (complex) solution. This fact, known as the Fundamental
Theorem of Algebra, is neither fundamental nor a theorem of algebra. You will see a proof of
this result in a course in Complex Analysis, or Algebraic Topology, or (perhaps) Abstract Algebra
(although proofs given in Abstract Algebra need something from analysis, usually the Intermediate
Value Theorem). We’ll say more about this result next quarter.

Remark 4. Let z = a + ib be a complex number, where a, b ∈ R. We call a and b (respectively) the

real part and imaginary part of z, denoted by Re (z)
def
= a and Im (z)

def
= b.

Note that if z, w ∈ C, then z = w exactly when Re (z) = Re (w) and Im (z) = Im (w).

The complex numbers are also a field.

Theorem 1. The complex numbers form a field, in the sense that the operations of addition and
multiplication satisfy the following properties.

(Associativity) For every z, w, u ∈ C, (z + w) + u = z + (w + u) and (zw)u = z(wu).

(Commutativity) For every z, w ∈ C, z + w = w + z and zw = wz.

(Identities) There exist unique numbers 0, 1 ∈ C such that 0 6= 1 and for each z ∈ C,
z + 0 = z and z1 = z. The number 0 is called the additive identity, and the number 1 is
called the multiplicative identity.

(Inverses) Every z ∈ C has a unique additive inverse −z ∈ C satisfying z + (−z) = 0.
Every nonzero w ∈ C has a unique multiplicative inverse 1

w
satisfying w 1

w
= 1.

(Distributivity) For every z, w, u ∈ C, z(w + u) = zw + zu and (z + w)u = zu+ wu.
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Proof. We will prove the properties involving multiplication here, and you will prove the properties
involving addition (including distributivity) on your homework.

For associativity of multiplication, let x + iy, r + is, p + iq ∈ C. Then the definition of complex
multiplication combined with associativity and distributivity of real number multiplication and commu-
tativity of real number addition yields

((x+ iy)(r + is))(p+ iq) = ((xr − ys) + i(xs+ yr))(p+ iq)

= ((xr − ys)p− (xs+ yr)q) + i((xr − ys)q + (xs+ yr)p)

= (xrp− ysp− xsq − yrq) + i(xrq − ysq + xsp+ yrp)

= (xrp− xsq − yrq − ysp) + i(xrq + xsp− yrp− ysq)
= (x(rp− sq)− y(rq + sp)) + i(x(rq + sp) + y(rp− sq))
= (x+ iy)((rp− sq) + i(rq + sp))

= (x+ iy)((r + is)(p+ iq)).

Proving Statements Involving Universal Quantifiers

To prove a statement with a universal quantifier, we must show that the claim holds for every
possible case without exception. Therefore our proof should reflect this. For example, to prove
that “Every Northwestern student is wearing purple today.” we must somehow show that every
student at Northwestern is wearing something purple today. Checking only a few students would
not suffice.
When proving a statement involving a universal quantifier, we must start by supposing that we
are dealing with a (generic) instance of the object in question. For example, our proof of the
statement of commutativity of complex number multiplication should begin with “Let z, w ∈ C.”
This indicates that the only thing we are assuming about z and w are that they are complex
numbers. We will then argue that zw = wz, which will show that the product of any two complex
numbers does not depend on the order in which we compute the product. There are several
different standard phrases used to indicate a universal quantifier, but this is the most basic one.
We will point out the variations (and how to deal with them when writing proofs) when we
encounter them.

For commutativity of multiplication, let x+ iy, r+ is ∈ C. Then the definition of complex multipli-
cation and commutativity of real number multiplication yields

(x+ iy)(r + is) = (xr − ys) + i(xs+ yr) = (rx− sy) + i(sx+ yr) = (r + is)(x+ iy).

Proving Statements Involving Existential Quantifiers

To prove a statement with a existential quantifier, we must show that there is at least one object
with the specified properties. Therefore we must somehow produce such an object, and then
argue that the object we produced satisfies the claim. For example, to prove that “There is a
Northwestern student who is wearing purple today.” we must somehow wrangle up at least one
student and demonstrate that they are wearing purple. A single student would do.

When proving a statement involving an existential quantifier, we must somehow produce the
required object, and then argue that it satisfies the claim. For example, in the proof of the
existence of an additive identity in C, we will actually define the object that should be “0”, and
then prove that this object satisfies the “additive identity” property.
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For the multiplicative identity, define 1
def
= 1 + 0i. Let x+ iy ∈ C. Then

(x+ iy)1 = (x1− y0) + i(x0 + y1) = x+ iy.

To show uniqueness of the multiplicative identity, we must show that there cannot be a different multi-
plicative identity. To this end, suppose that 1′ ∈ C is a multiplicative identity. Then 1′ = 1′1 = 11′ = 1.

We now show existence and uniqueness of multiplicative inverses. Let w = r + is ∈ C, and assume
that w 6= 0. Then at least one of r or s is nonzero, so that r2 + s2 > 0. Define

1

w

def
=

r

r2 + s2
+
−s

r2 + s2
i.

Then

w
1

w
= (r + si)

( r

r2 + s2
+
−s

r2 + s2
i
)

=
r2 + s2

r2 + s2
+
−rs+ sr

r2 + s2
i = 1 + 0i = 1.

Therefore 1
w

is a multiplicative inverse of w. For uniqueness, suppose that b ∈ C is another multiplicative
inverse for w. Then

b = b1 = b
(
w

1

w

)
= (bw)

1

w
= 1

1

w
=

1

w
.
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The Real and Complex Numbers

The Real Numbers R

The real number system R (with the usual + and ·) is a field:

(Associativity) For every x, y, z ∈ R, (x+ y) + z = x+ (y + z) and (xy)z = x(yz).

(Commutativity) For every x, y ∈ R, x+ y = y + x and xy = yx.

(Identities) There exist unique numbers 0, 1 ∈ R such that 0 6= 1 and for each x ∈ R,
x + 0 = x and x1 = x. The number 0 is called the additive identity, and the number 1 is
called the multiplicative identity.

(Inverses) Every x ∈ R has a unique additive inverse −x ∈ R satisfying x + (−x) = 0.
Every nonzero y ∈ R has a unique multiplicative inverse 1

y
satisfying y 1

y
= 1.

(Distributivity) For every x, y, z ∈ R, x(y + z) = xy + xz and (x+ y)z = xz + yz.

The Complex Numbers C



Theorem 2. The complex numbers form a field, in the sense that the operations of addition
and multiplication satisfy the following properties.

(Associativity) For every z, w, u ∈ C, (z + w) + u = z + (w + u) and (zw)u = z(wu).

(Commutativity) For every z, w ∈ C, z + w = w + z and zw = wz.

(Identities) There exist unique numbers 0, 1 ∈ C such that 0 6= 1 and for each z ∈ C,
z + 0 = z and z1 = z. The number 0 is called the additive identity, and the number
1 is called the multiplicative identity.

(Inverses) Every z ∈ C has a unique additive inverse −z ∈ C satisfying z+(−z) = 0.
Every nonzero w ∈ C has a unique multiplicative inverse 1

w
satisfying w 1

w
= 1.

(Distributivity) For every z, w, u ∈ C, z(w + u) = zu+ wu and (z + w)u = zu+ wu.



The Complex Plane

Absolute Value and Conjugation

Proposition 1 (Properties of Conjugation). The following hold for every z, w ∈ C.

(a) ¯̄z = z

(b) Re (z) =
z + z̄

2
and Im (z) =

z − z̄
2i

(c) z̄ = z if, and only if, Im (z) = 0 (i.e. if z is real).

(d) zz̄ = |z|2

(e) z + w = z̄ + w̄, zw = z̄w̄, and if z 6= 0, then
(

1
z

)
= 1

z̄
.



Lecture 2: More Complex Numbers

Learning Objectives:

• Discuss the real and complex number fields, and prove basic properties of them.

• Investigate first examples of several proof techniques, including contradiction and contraposi-
tion.

We can derive sophisticated properties of addition, subtraction, multiplication, and division using the
fundamental ones above. We will not prove every possible property, but here are a couple examples to
indicate what the arguments look like.

Remark 5. In class we looked at Example 1 and Example 4 as written, and our discussion led us to
consider the other examples below as a means to illustrate a couple more proof techniques. This was a
little awkward because the order of these extra results weren’t planned, but I’ve written them up below
in a more thoughtful ordering.

Example 1. For every z ∈ K, z0 = 0.

Proof. Let z ∈ K. Then since 0 = 0 + 0 and by the distributivity of multiplication over addition,

z0 = z(0 + 0) = z0 + z0.

Therefore

0 = z0 + (−(z0)) = (z0 + z0) + (−(z0)) = z0 + (z0 + (−(z0))) = z0 + 0 = z0.

Example 2. The additive identity 0 ∈ K does not have a multiplicative inverse.

Proof. We proceed by mean of contradiction. Suppose that 0 has a multiplicative inverse w ∈ K. Then
we have 0w = 1. But the last result implies that 0w = 0, so that 0 = 1. But this contradicts the fact
that 0 6= 1 in K. Therefore 0 does not have a multiplicative inverse.

Proof by Contradiction

One possible way of attempting to prove an implication of the form “If P , then Q.” is to assume
that P holds and that Q does not hold, and then argue that there is a contradiction (i.e. a
statement that we know to be false because we know that its negation is true). Therefore if P
holds, then Q must also hold because it is impossible for “not Q” to hold.
In the previous example, we attempted to prove an implication of the form “If z = 0, then z does
not have a multiplcative inverse.” Here P is the claim “z = 0”, and Q is the claim “z does not
have a multiplicative inverse.” We assumed that z = 0 (P ) and that z does have a multiplcative
inverse (not Q), and showed that 0 = 1, which contradicts the fact that 0 6= 1. Therefore it is
impossible for (not Q) to hold if P holds, so that Q holds whenever P holds.
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Contrapositive of a Logical Statement

Sometimes there are equivalent ways of phrasing the same logical statement. One standard ex-
ample is the contrapositive of a logical implication. The contrapositive of an implication of the
form “If P , then Q.” is the statement “If Q is false, then P is false.” For example, the statements

”If z = 0, then z does not have a multiplicative inverse.”

and

If z has a multiplicative inverse, then z 6= 0.

are contrapositives of each other, and therefore are logically equivalent (i.e. that are each valid,
or they are each invalid).
We can actually prove that an implication and its contrapositive are equivalent using contradiction.
Assume that “If P , then Q.” holds, and suppose that Q does not hold. If P held, then Q would
also hold. Because Q does not hold by assumption, we have a contradiction. Therefore P must
not hold. In other words, “if Q is false then P is also false.” The same argument shows that if the
implication “If Q is false, then P is false.” holds, then “If P , then Q.” must also hold.

Example 3. Let z ∈ K. If z has a multiplicative inverse, then z 6= 0.

Proof. Note that the statement “If z has a multiplicative inverse, then z = 0.” is exactly the contrapos-
itive of the claim “If z = 0, then z does not have a multiplicative inverse,” which we proved in Example
2.

Example 4. Let z, w ∈ K. If zw = 0, then either z = 0 or w = 0.

Proving Implications

Here we are asked to prove an implication of the form “If P, then Q,” where P is the statement
“zw = 0” and Q is the statement “either z = 0 or w = 0.” To prove a statement of the form “If
P, then Q”, we must show that Q holds whenever P holds. We are not proving that P holds, but
rather we are proving that if we find ourselves in a situation where P holds, then we are justified
in concluding that Q must also hold.

Proof. Suppose that zw = 0. If w = 0 then we are done, so suppose that w 6= 0. Then we multiply both
sides of the equation 0 = zw by 1

w
and apply the previous result and associativity of multiplication to

obtain

0 = 0
1

w
= (zw)

1

w
= z
(
w

1

w

)
= z1 = z.

Example 5. We give a second proof of the previous result: Let z, w ∈ K. If zw = 0, then either z = 0
or w = 0.
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Proof by Contraposition

Because the contrapositive “If Q is false, then P is false.” is logically equivalent to “If P , then
Q,” we can establish a claim of the form “If P , then Q.” by proving its contrapositive “If Q is
false, then P is false.” We will illustrate this here.

Proof. We proceed by contraposition, and will show that if neither z = 0 nor w = 0, then zw 6= 0.
Suppose that neither z = 0 nor w = 0, so that z 6= 0 and w 6= 0. Because z, w are nonzero, they have
multiplicative inverses 1

z
and 1

w
. Therefore

zw
(1

z

1

w

)
= z

1

z
· w 1

w
= 1 · 1 = 1,

so that zw has a multiplicative inverse. The result in Example 3 then implies that zw 6= 0.

The Complex Plane

Many of the ideas of complex analysis (including basic ones) can be understood geometrically via the
identification of a complex number z = x+ iy with the point (x, y) in the usual Cartesian plane. In this
way, we think of C as the complex plane (in analogy to your understanding of R as the real line). The
x-axis of the complex plane is called the real axis, while the y-axis is called the imaginary axis.

Absolute Value and Conjugation

The analogy between complex numbers and points in the plane suggests that we should measure the
‘size’ |z| of a complex number z, the absolute value (or sometimes called modulus) of z, as the
distance from z to 0 as points in the plane. That is, we define

|z| = |x+ iy| def=
√
x2 + y2.

The properties of the absolute value for complex numbers mirror those for the absolute value of real
numbers. In particular, we will soon prove that |z1z2| = |z1||z2| for complex numbers z1, z2. (We will
actually prove a generalization of this result.)

For now, recall that

|x|2 = x2 (and therefore |x| =
√
x2) for every x ∈ R. (1)

This cannot possibly hold for complex numbers, though, since |i|2 = 1 6= −1 = i2. To generalize (1) to
complex numbers, we need to introduce the notion of complex conjugation.
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Definition 2. The (complex) conjugate z̄ of a complex number z = x + iy ∈ C is defined to
be

z̄ = x+ iy
def
= x− iy.

When thought of in terms of the complex plane, conjugation z 7→ z̄ sends a number z to its reflection
across the real axis, z̄.

The basic properties of complex conjugation are summarized in the following proposition.

Proposition 2 (Properties of Conjugation). The following hold for every z, w ∈ C.

(a) ¯̄z = z

(b) Re (z) =
z + z̄

2
and Im (z) =

z − z̄
2i

(c) z̄ = z if, and only if, Im (z) = 0 (i.e. if z is real).

(d) zz̄ = |z|2

(e) z + w = z̄ + w̄, zw = z̄w̄, and if z 6= 0, then
(

1
z

)
= 1

z̄
.

Proof. The proof is very short. Let z, w ∈ C and write z = x+ iy and w = r+ is. For (a), we note that

z̄ = x− iy = x+ iy = z.

For (b), we simply compute that

z + z̄

2
=
x+ iy + (x− iy)

2
=

2x

2
= x = Re (z) and

z − z̄
2i

=
x+ iy − (x− iy)

2i
=

2iy

2i
= y = Im (z).

For (c), suppose that z̄ = z. Then by (b) we have Im (z) = z−z̄
2i

= 0. Conversely, suppose that
Im (z) = 0. Then (b) gives 0 = z−z̄

2i
, so that z − z̄ = 0, and therefore z = z̄.
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“If, and only if”

We will regularly see statements of the form “P if, and only if, Q.” (Symbolically: P ⇔ Q.) This
is shorthand for the two separate statements “If Q then P.” (Q⇒ P , or “P if Q”) and “If P then
Q.” (P ⇒ Q, or “P only if Q”). To prove an “if and only if” statement, you need to prove both
implications. Typically you must consider each implication separately. We illustrate this in the
proof of Property (c) of Conjugation.

The statement “P if, and only if, Q” is sometimes stated that Q is “necessary and sufficient” for
P to hold. “Necessary” means that if P holds, then Q necessarily holds; this is the “If P, then
Q.” implication. “Sufficient” means that to conclude that P holds, it is sufficient to know that Q
holds; this is the “If Q, then P.” implication.

We prove (d) by writing

zz̄ = (x+ iy)(x− iy) = (x2 + y2) + i(−xy + yx) = x2 + y2 = |z|2.

Finally, we turn to (e). The first and second formulas follow by writing

z + w = (x+ r) + i(y + s) = (x+ r) + i(−y − s) = (x− iy) + (r − is) = z̄ + w̄

and

zw = (xr − ys) + i(xs+ yr) = (xr−ys)−i(xs+yr) = (xr−(−y)(−s))+i(x(−s)+(−y)r) = (x−iy)(r−is) = z̄w̄.

For the third claim, suppose that z 6= 0. Then z̄ 6= 0 and the second claim implies that

z̄
(1

z

)
= z

1

z
= 1 = 1.

By the uniqueness of multiplicative inverses,
(

1
z

)
= 1

z̄
.

Remark 6. Note that part Property (d) of Conjugation gives us a better way to understand where
the formula for 1

w
comes from. If w = r + is ∈ C with w 6= 0, then at least one of r, s 6= 0 so that

|w|2 = r2 + s2 > 0. Then we have

1

w
=

1

w

w̄

w̄
=

w̄

|w|2
=

1

r2 + s2
(r − si) =

r

r2 + s2
− s

r2 + s2
i,

which is exactly the formula we produced in the proof that complex numbers have multiplicative inverses!

There are many properties of real and complex numbers that we wish to use, but which we do not
yet have the machinery to prove. For example, consider the following statement:

For every n ∈ N with n ≥ 2 and every z1, . . . , zn ∈ C, |z1z2 · · · zn| = |z1||z2| · · · |zn|.

Here we are not proving one single claim involving arbitrary complex numbers, but an infinite number
of claims. The claim when n = 2 is that for every z1, z2 ∈ C we have |z1z2| = |z1||z2|. The claim when
n = 3 is that for every z1, z2, z3 ∈ C we have |z1z2z3| = |z1||z2||z3|, and so on. You might try to tackle
these claims individually, but the core difficulty is immediate: you will never prove an infinite number
of claims one-by-one. We need some logical technique that will allow us to establish all of the claims at
once. The technique is called the Principle of Mathematical Induction.
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Lecture 3: Mathematical Induction

Learning Objectives:

• Apply the Principle of Mathematical Induction to prove families of logical statements.

There are many properties of real and complex numbers that we wish to use, but which we do not yet
have the machinery to prove. For example, consider the following statement:

For every n ∈ N with n ≥ 2 and every z1, . . . , zn ∈ C, |z1z2 · · · zn| = |z1||z2| · · · |zn|.

Here we are not proving one single claim involving arbitrary complex numbers, but an infinite number
of claims. The claim when n = 2 is that for every z1, z2 ∈ C we have |z1z2| = |z1||z2|. The claim when
n = 3 is that for every z1, z2, z3 ∈ C we have |z1z2z3| = |z1||z2||z3|, and so on. You might try to tackle
these claims individually, but the core difficulty is immediate: you will never prove an infinite number
of claims one-by-one. We need some logical technique that will allow us to establish all of the claims at
once. The technique is called the Principle of Mathematical Induction.

The idea behind mathematical induction is as follows. Suppose that m ∈ Z and that we have a
sequence of logical statements P (m), P (m+1), P (m+2), etc. In the example above, m = 2 and P (2) is
“For every z1, z2 ∈ C, |z1z2| = |z1||z2|,” P (3) is “For every z1, z2, z3 ∈ C we have |z1z2z3| = |z1||z2||z3|,”
and so on. Then we can conclude that P (n) holds for every integer n ≥ m if we show that

(i) P (m) (i.e. the base case, or the “first” statement) holds, and

(ii) If k ≥ m and P (k) holds, then P (k + 1) also holds.

Part (ii) is called the induction step, and the hypothesis that P (k) holds is called the induction
hypothesis.

Let’s see how this plays out. Once we establish (i), then we know that P (m) holds. Once we establish
(ii), then we know that because P (m) holds, P (m + 1) also holds. But then (ii) shows that because
P (m+ 1) holds, P (m+ 2) must also hold, and so on. In short, the Principle of Mathematical Induction
then implies that P (n) holds for every integer n ≥ m. If we view P (m), P (m + 1), P (m + 2), etc. as
rungs on a ladder, then the base case shows that we can get onto the bottom rung of the ladder, and
the induction step shows that if we are standing on any given rung of the ladder, then we can climb
onto the next rung. In this analogy, the conclusion is that we will eventually climb past each rung of
the ladder. Here is an example.

Proposition 3. For every n ∈ N with n ≥ 2 and every z1, . . . , zn ∈ C, |z1z2 · · · zn| =
|z1||z2| · · · |zn|.

Proof. We proceed by mathematical induction.
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Base Case: For the case where n = 2, let z1, z2 ∈ C and write z1 = a+ ib and z2 = c+ id. Then

|z1z2| = |(ac− bd) + i(ad+ bc)|
=
√

(ac− bd)2 + (ad+ bc)2

=
√
a2c2 − 2abcd+ b2d2 + a2d2 + 2abcd+ b2c2

=
√
a2c2 + b2d2 + a2d2 + b2c2

=
√

(a2 + b2)(c2 + d2)

=
√

(a2 + b2)
√

(c2 + d2)

= |z1||z2|.

Induction Step: Let n ∈ N with n ≥ 2.
Induction Hypothesis: Assume that for every z1, . . . , zn ∈ C, |z1 · · · zn| = |z1| · · · |zn|.
Proof of the Induction Step: Let z1, . . . , zn, zn+1 ∈ C. Then the base case (applied to (z1 · · · zn) and
zn+1) followed by the induction hypothesis (applied to z1 · · · zn) yield

|z1 · · · znzn+1| = |z1 · · · zn||zn+1| = |z1| · · · |zn||zn+1|.

By the Principle of Mathematical Induction, the proof is complete.

On your homework you will prove other properties of complex numbers similar to that in the previous
example. Examples include:

• For every n ∈ N with n ≥ 2,

Re (z1 + · · ·+ zn) = Re (z1) + · · ·+ Re (zn) and Im (z1 + · · ·+ zn) = Im (z1) + · · ·+ Im (zn)

for every z1, . . . , zn ∈ C.

• For every n ∈ N with n ≥ 2,

z1 + · · ·+ zn = z1 + · · ·+ zn and z1 · · · zn = z1 · · · zn

for every z1, . . . , zn ∈ C.

• For every n ∈ N with n ≥ 2, and every z1, . . . , zn ∈ C, if z1z2 · · · zn = 0 then at least one of
z1, . . . , zn = 0.

Induction is also a great way to prove interesting algebraic formulas.

Proposition 4. For every n ∈ N, 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
.

Proof. We proceed by mathematical induction.
Base Case: For the base case where n = 1, we note that 1 = 1(2)

2
= 1(1+1)

2
.

Induction Step: Let n ∈ N.
Induction Hypothesis: Assume that 1 + 2 + · · ·+ n = n(n+1)

2
.

Proof of the Induction Step: We apply the induction hypothesis to see that

1+· · ·+n+(n+1) =
n(n+ 1)

2
+(n+1) =

n(n+ 1)

2
+

2(n+ 1)

2
=

(n+ 1)(n+ 2)

2
=

(n+ 1)((n+ 1) + 1)

2
.

By the Principle of Mathematical Induction, the proof is complete.
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Induction is a very general logical device, and can be used to prove all sorts of claims. Here are two.

Proposition 5. For every n ∈ N, 22n − 1 is divisible by 3.

Proof. We proceed by mathematical induction.
Base Case: For the case where n = 1, note that 22(1) − 1 = 4− 1 = 3 is divisible by 3.
Induction Step: Let n ∈ N.
Induction Hypothesis: Assume that 22n − 1 is divisible by 3.
Proof of the Induction Step: Because 22n − 1 is divisible by 3, there is an integer m with 22n − 1 = 3m.
But then

22(n+1) − 1 = 4 · 22n − 1 = 4 · (22n − 1) + 3 = 4 · 3m+ 3 = 3(4m+ 1).

Because 4m+ 1 is an integer, 22(n+1) − 1 is divisible by 3.

By the Principle of Mathematical Induction, the proof is complete.

Proposition 6. For every n ∈ N with n ≥ 4, n2 > 3n.

Proof. We proceed by mathematical induction.
Base Case: For the case where n = 4, note that 42 = 16 > 12 = 3(4).
Induction Step: Let n ∈ N with n ≥ 4.
Induction Hypothesis: Assume that n2 > 3n.
Proof of the Induction Step: We compute that

(n+ 1)2 = n2 + 2n+ 1 > 3n+ 2n+ 1 = 3n+ 2 + 1 = 3(n+ 1).

By the Principle of Mathematical Induction, the proof is complete.

Remark 7. Mathematical induction can be taken as a basic principle of logical reasoning, but we can
“prove” that induction holds if we instead adopt other basic principles. One of these, the Well-Ordering
Principle, states that every nonempty subset of the natural numbers contains a least element. That
is, for every S ⊆ N, if S 6= ∅ then there exists m ∈ S such that for every k ∈ S, m ≤ k. As it turns out,
not only can one prove that the Principle of Mathematical Induction is valid using the Well-Ordering
Principle, but one can also prove the converse: if the Principle of Mathematical Induction is valid, then
so is the Well-Ordering Principle. This equivalence is explored in one of your homework problems.

Remark 8. We may need a variant of the principle of mathematical induction this year called strong
induction, where the induction hypothesis is that for each k ∈ N, if P (j) holds for every 1 ≤ j ≤ k,
then P (k+ 1) also holds. In the “ladder” analogy, we are essentially assuming that we have been on the
first k rungs of the ladder in order to show that we can climb onto the k+ 1-st rung. This is more than
we assume for ordinary induction, where only the knowledge that we are on the k-th rung is used to
show that we can climb onto the k+ 1-st rung. We will see an example discuss this more if it is needed.
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Lecture 4: Vectors

Learning Objectives:

• Define vectors as objects representing displacement in space.

• Interpret vector addition and scalar multiplication geometrically.

• Establish the basic algebraic properties of vector addition and scalar multiplication.

• Compute the length of a real vector, and show how scalar multiplication affects length.

Definition 3. A point P in Rn is an ordered n-tuple P
def
= (a1, . . . , an), where a1, . . . , an ∈ R.

The numbers a1, . . . , an are called the standard coordinates of P .

We can visualize this coordinate system as follows. In Rn we fix a point—the origin—and draw
n mutually-perpendicular lines (copies of the real number line called the coordinate axes) passing
through the origin. Here are two such drawings for R3 (with the coordinates of a point labeled (x, y, z)):

Depending on the application, we might sometimes was to change our vantage point when sketching the
coordinate axes. For example, the two pictures above represent the same space from different vantage
point: by rotating our view in the first picture slightly around the z-axis, we get the second view.
Alternatively, we could have rotated the original view around the x-axis origin by ‘pulling’ the positive
z-direction directly towards us to give the following picture:

We will always label these axes so that each picture we draw looks like it has the same coordinate
system, only perhaps viewed from a different vantage point. The convention is the right-hand rule: if
you extend your right hand and position your wrist at the origin in such a way that both

• your fingers point along the positive x-axis, and
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• when you curl your fingers by 90◦ they point along the positive y-axis,

then your thumb will point along the positive z-axis. Here is a picture1:

A coordinate system labeled in this way is called right-handed. To avoid confusion later on in the
course, you should always draw your coordinate systems to be right-handed.

Location vs. Displacement

A point P is a location in Rn, and the standard coordinates of P describe the location of P relative to

the origin O
def
= (0, . . . , 0). Vectors in Rn allow us to capture displacement from one point to another

point. In this way, vectors capture change of location.

Definition 4. A vector ~x in Rn is a column of scalars x1, . . . , xn ∈ R, denoted by

~x
def
=

x1
...
xn

 .
The scalars x1, . . . , xn are called the entries of ~x.

The relationship between points and vectors is captured by the following definition.

Definition 5. Let P
def
= (a1, . . . , an) and Q

def
= (b1, . . . , bn) be points in Rn, and let ~v

def
=

x1
...
xn

 be

a vector in Rn. Define

Q− P = (b1, . . . , bn)− (a1, . . . , an)
def
=

b1 − a1
...

bn − an

 (2)

and

P + ~v = (a1, . . . , an) +

x1
...
xn

 def
= (a1 + x1, . . . , an + xn). (3)

1This was retrieved from https://stackoverflow.com/questions/19747082/how-does-coordinate-system-handedness-
relate-to-rotation-direction-and-vertices.
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Remark 9. Because a vector represents displacement from an initial location to a terminal location,
we visualize it as a directed line segment (arrow) from the initial location to the terminal location.

As a measure of the size of the displacement represented by a vector, we define the length of a vector
in Rn as follows.

Definition 6. Let ~x ∈ Rn, and write ~x =

[ x1
...
xn

]
. Then we define the length (or norm or

magnitude) of ~x to be

‖~x‖ def=
√
x2

1 + x2
2 + · · ·+ x2

n.

Remark 10. Note that for a vector ~x in R1, R2 and R3, the length of ~x is exactly the distance from
the point (x1, . . . , xn) to the origin (0, . . . , 0).

Remark 11. Equations (2) and (3) ensure, for example, that

P + (Q− P ) = (a1, · · · , an) +

b1 − a1
...

bn − an

 = (a1 + (b1 − a1), . . . , an + (bn − an)) = (b1, . . . , bn) = Q

for every pair of points P and Q in Rn. The vector Q−P describes the displacement from P to Q, and
we obtain the point Q by adding the vector Q− P to the point P .

The (seemingly pedantic) distinction between points and vectors will be important in multivariable
calculus. Until then, it will be helpful to conflate the notions of point and vector using position vectors.

Definition 7. If P = (a1, . . . , an) is a point in Rn, then we define the position vector ~p of P as

~p
def
= P −O =

[ a1
...
an

]
.

Going forward, we will simply write ~p ∈ Rn to mean that ~p is a vector in Rn. In certain contexts it
will be helpful to interpret ~p as the position vector for a point in Rn, in which case we should interpret
~p as representing this point.
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Complex Vectors

Although we will exclusively limit our geometric considerations of vectors to vectors in Rn, as algebraic
objects (i.e. arrays of scalars) we are also interested in vectors with complex entries.

Definition 8. A vector ~x in Cn is a column of scalars x1, . . . , xn ∈ C, denoted by

~x
def
=

x1
...
xn

 .
The scalars x1, . . . , xn are called the entries of ~x.

Remark 12. We will discuss the algebraic properties of vectors in the general context of Kn (i.e. either
vectors with real entries or vectors with complex entries). We will still continue to rely on the case of
Rn for geometric intuition, although many of our results and constructions immediately generalize to
the case of Cn even if the geometric interpretation does not. Later on in the course we will learn how to
understand Cn in terms of R2n. We will also see some ways that Rn is algebraically different than Cn,
but these will not arise until later.

Vector Arithmetic

There are two fundamental algebraic operations on vectors: vector addition and scalar multiplication.

Definition 9. Let ~x, ~y ∈ Kn, and let c ∈ K be a scalar2

~x+ ~y =

x1
...
xn

+

y1
...
yn

 def
=

x1 + y1
...

xn + yn


and

c~x = c

x1
...
xn

 def
=

cx1
...
cxn

 .

Remark 13. In the real case, vector addition and scalar multiplication can be understood through our
understanding of how vectors model displacement. For example, if P = (a1, . . . , an) is a point in Rn and
if ~x, ~y ∈ Rn are vectors, then the point (P + ~x) + ~y obtained by displacing P by ~x, and then displacing

2Here and throughout, when K or Kn appear in a definition, result, or example, we mean that all instances of K and
Kn must be interpreted as R or Rn, or that all instances of K and Kn must be interpreted as C and Cn. In the rare
instances where we need to refer to real numbers in some parts and complex in others, we will not use the K notation.
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the result by ~y, can be described as displacing P by the single vector ~x+ ~y, since

(P + ~x) + ~y = (a1 + x1, . . . , an + xn) +

y1
...
yn


= ((a1 + x1) + y1, . . . , (an + xn) + yn)

= (a1 + (x1 + y1), . . . , an + (xn + yn)) = P + (~x+ ~y).

Remark 14. For vectors in Rn, addition and scalar multiplication can be interpreted geometrically3

through our understanding of vectors as representing displacement.
For ~x, ~y ∈ Rn, the vector ~x+~y is the displacement obtained by displacing our location by ~x, and then

displacing our new location by ~y. If we started at (say) the origin, then ~x+~y is the opposite corner of the
parallelogram with one vertex at the origin and the vectors ~x and ~y (both drawn starting at the origin)
forming adjacent edges. With this interpretation it is also clear that we should have ~x+ ~y = ~y + ~x, but
this is something that we will establish algebraically.

For scalar multiplication, note that if c ∈ R then the entries of the vector c~x are exactly the entries of
~x, but where each has been multiplied by c. Therefore displacement by c~x should place us along the
same ‘line’ through our starting point as would displacement by ~x, but we expect that the ‘magnitude’
(or ‘size’) of the displacement would change.

3Here is a perfect instance of where we are relying on Rn (say for n = 2 or n = 3) for intuition because the same
intuition doesn’t easily hold for vectors in Cn.
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Indeed, note that

‖c~x‖ =
√

(cx1)2 + · · ·+ (cxn)2 =
√
c2

√
x2

1 + · · ·+ x2
n = |c|‖~x‖,

so that scaling ~x by c results in a vector whose length is exactly |c| times as long as the length of ~x.
Note also that if c < 0 then the signs of the entries of c~x would be reversed from those of ~x, so that

multiplication by a negative number should flip the direction of ~x.

The algebraic properties of vector addition are as follows.

Proposition 7 (Properties of Vector Addition). Vector addition satisfies the following properties.

(i) (Associativity) For every ~x, ~y, ~z ∈ Kn,

~x+ (~y + ~z) = (~x+ ~y) + ~z.

(ii) (Commutativity) For every ~x, ~y ∈ Kn,

~x+ ~y = ~y + ~x.

(iii) (Additive Identity) There is a unique vector ~0 ∈ Kn such that for every ~x ∈ Kn,

~x+~0 = ~x.

(iv) (Additive Inverses) For every ~x ∈ Kn there exists a unique vector −~x ∈ Kn such that

~x+ (−~x) = ~0.

Proof. We prove (ii) and (iii) here; parts (i) and (iv) are on your homework assignment.
For (ii), let ~x, ~y ∈ Kn. Write

~x =

x1
...
xn

 and ~y =

y1
...
yn

 .
By the commutativity of addition in K,

~x+ ~y =

x1
...
xn

+

y1
...
yn

 =

x1 + y1
...

xn + yn

 =

y1 + x1
...

yn + xn

 =

y1
...
yn

+

x1
...
xn

 = ~y + ~x.

For (iii), define ~0 =

[
0
...
0

]
. Let ~x ∈ Kn, and write

~x =

x1
...
xn

 .
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Then because 0 is the additive identity of K,

~x+~0 =

x1 + 0
...

xn + 0

 =

x1
...
xn

 = ~x.

For uniqueness, suppose that ~0′ ∈ K is an additive identity. Then ~0′ = ~0′ + ~0 = ~0 because ~0′ and ~0 are
additive identities.

There is a similar list of properties for Scalar Multiplication.

Proposition 8 (Properties of Scalar Multiplication). Scalar multiplication satisfies the following
properties.

(i) (Associativity) For every ~x ∈ Kn and a, b ∈ K,

a(b~x) = (ab)~x.

(ii) (Distributivity over Scalar Addition) For every ~x ∈ Kn and a, b ∈ K,

(a+ b)~x = a~x+ b~x.

(iii) (Distributivity over Vector Addition) For every ~x, ~y ∈ K and a ∈ K,

a(~x+ ~y) = a~x+ a~y.

(iv) (Multiplicative Identity) For every ~x ∈ Kn,

1~x = ~x.

Proof. The proofs of these result are all similar in flavor to the proofs of the Properties of Vector
Addition, so we leave them as an exercise.

The above properties of vector addition and scalar multiplication allow us to give algebraic proofs
of geometric claims, as the following examples show.

Example 6. Fix a, b, c ∈ R with at least one of a, b nonzero, and consider the line L in R2 described by
the equation ax+ by = c. Let ~v, ~w ∈ R2 be two nonzero vectors whose endpoints lie on L. That is, the
entries of ~v = [ v1v2 ] and ~w = [ w1

w2 ] each satisfy the equation ax+ by = c. Then the endpoint of ~v + ~w lies
on L if, and only if, c = 0 (i.e. exactly when L passes through the origin).
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To prove this, note that ~v + ~w =
[
v1+w1
v2+w2

]
, and

a(v1 + w1) + b(v2 + w2) = (av1 + bv2) + (aw1 + bw2) = c+ c = 2c.

Therefore, if the endpoint of ~v + ~w lies on L we must have 2c = c, so that c = 0. On the other hand, if
c = 0 then 2c = c, so that the endpoint of ~v + ~w lies on L.

Example 7. Fix a, b ∈ R with at least one of a, b nonzero, and consider the line L in R2 through the
origin described by the equation ax+ by = 0. Let ~v, ~w ∈ R2 be two nonzero vectors whose endpoints lie
on L. That is, the entries of ~v = [ v1v2 ] and ~w = [ w1

w2 ] each satisfy the equation ax+ by = 0. Then each of
~v or ~w is a scalar multiple of the other.

To prove this, suppose that c = 0. Because one of a, b is nonzero, let us assume (without loss of
generality) that a 6= 0. Because av1 + bv2 = 0, v1 = − b

a
v2. If v2 = 0 then v1 = 0 as well, contradicting

the assumption that ~v 6= ~0. Therefore v2 6= 0. Similarly, w1 = − b
a
w2 and w2 6= 0. Because w2 6= 0, we

can define λ
def
= v2

w2
. Then v2 = λw2, and

v1 = − b
a
v2 = − b

a
λw2 = λ

(
− b

a
w2

)
= λw1,

so that ~v = λ~w.
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Properties of Vector Addition and Scalar Multiplication

Proposition (Properties of Vector Addition). Vector addition satisfies the following proper-
ties.

(i) (Associativity) For every ~x, ~y, ~z ∈ Kn,

~x+ (~y + ~z) = (~x+ ~y) + ~z.

(ii) (Commutativity) For every ~x, ~y ∈ Kn,

~x+ ~y = ~y + ~x.

(iii) (Additive Identity) There is a unique vector ~0 ∈ Kn such that for every ~x ∈ Kn,

~x+~0 = ~x.

(iv) (Additive Inverses) For every ~x ∈ Kn there exists a unique vector −~x ∈ Kn such that

~x+ (−~x) = ~0.

Proposition (Properties of Scalar Multiplication). Scalar multiplication satisfies the follow-
ing properties.

(i) (Associativity) For every ~x ∈ Kn and a, b ∈ K, a(b~x) = (ab)~x.

(ii) (Distributivity over Scalar Addition) For every ~x ∈ Kn and a, b ∈ K, (a+b)~x = a~x+b~x.

(iii) (Distributivity over Vector Addition) For every ~x, ~y ∈ K and a ∈ K, a(~x+~y) = a~x+a~y.

(iv) (Multiplicative Identity) For every ~x ∈ Kn, 1~x = ~x.



Lecture 5: Linear Combinations

Learning Objectives:

• Define the notion of linear combination of vectors.

• Express vectors and sets of vectors in terms of linear combinations.

• Determine when a list of vectors contains a redundant vector.

We start by discussing an example that was included in the notes from last time.

Example 8. Fix a, b, c ∈ R with at least one of a, b nonzero, and consider the line L in R2 described by
the equation ax+ by = c. Let ~v, ~w ∈ R2 be two nonzero vectors whose endpoints lie on L. That is, the
entries of ~v = [ v1v2 ] and ~w = [ w1

w2 ] each satisfy the equation ax+ by = c. Then the endpoint of ~v + ~w lies
on L if, and only if, c = 0 (i.e. exactly when L passes through the origin).

To prove this, note that ~v + ~w =
[
v1+w1
v2+w2

]
, and

a(v1 + w1) + b(v2 + w2) = (av1 + bv2) + (aw1 + bw2) = c+ c = 2c.

Therefore, if the endpoint of ~v + ~w lies on L we must have 2c = c, so that c = 0. On the other hand, if
c = 0 then 2c = c, so that the endpoint of ~v + ~w lies on L.

Linear Combinations

Vector addition and scalar multiplication allow us to use a small number of vectors in Kn to efficiently
describe large sets of vectors. Indeed, the goal of understanding subsets of Kn as generated by sums and
scalar multiples of a given set of vectors will dominate our efforts for the entire linear algebra portion
of MATH 291. Let’s give a precise name to the type of construction we have in mind.

Definition 10. Let ~v1, . . . , ~vm ∈ Kn. A linear combination of ~v1, . . . , ~vm is a sum of the form

c1~v1 + c2~v2 + · · ·+ cm~vm,

where c1, c2, . . . , cm ∈ K are scalars (sometimes called the coefficients of the linear combination).

Linear combinations are the foundation of most of the sophisticated ideas we will discuss this quarter,
and the interesting questions in linear algebra often involve them. Let’s see a few examples to help us
understand what they represent and how they will be used.
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Example 9. Fix a, b, c ∈ R with at least one of a, b nonzero, and consider the line L in R2 described by
the equation ax+ by = c. We will describe the set of vectors ~v = [ xy ] whose endpoints lie on L.

Because one of a or b is nonzero, we’ll address the case where a 6= 0 (the case where b 6= 0 is similar).
Suppose that ~v is the position vector of a point on L. If we write ~v = [ xy ], then we have ax+ by = c, or
rather x = c

a
− b

a
y. In particular, we have[

x
y

]
=

[
c
a
− b

a
y

y

]
=

[
c
a

0

]
+

[
− b
a
y

y

]
=

[
c
a

0

]
+ y

[
− b
a

1

]
.

Therefore, we have show that if ~v is the position vector of a point on L, then there exists y ∈ R such
that

~v =

[
c
a

0

]
+ y

[
− b
a

1

]
.

Moreover, if ~v has this form then the first entry of ~v is c
a
− b

a
y, so that a

(
c
a
− b

a
y
)

+ by = c− by+ by = c.

Therefore,

L =

{
~v ∈ R2 : there exists y ∈ R with ~v =

[
c
a

0

]
+ y

[
− b
a

1

]}
.

In other words, we have written the position vector of each point on L as a linear combination of

the two vectors
[ c

a
0

]
and

[
− b

a
1

]
. The first of these is the position vectors of a point on L, and scalar

multiples of the second vector are used to describe the other points on L in terms of their displacement
from ( c

a
, 0).

Remark 15. In the previous example, if c = 0 (i.e. if L passed through the origin), then we actually
could represent L as

L =

{
~v ∈ R2 : there exists y ∈ R with ~v = y

[
− b
a

1

]}
.

Remark 16. Note that the exact same arguments show that if a, b, c ∈ C with at least one of a, b
nonzero, then the entries of ~z ∈ C2 solve the equation ax + by = c exactly when there exists y ∈ C
with ~z =

[ c
a
0

]
+ y

[
− b

a
1

]
. Although the interpretation of this in terms of points and lines is no longer

accessible, the algebraic result is still valid in the complex case!
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Remark 17. Suppose that we are given ~a,~b ∈ R2, and assume that neither of ~a or ~b is a scalar multiple
of the other. For the vector ~c shown, is it possible to express ~c as a linear combination of ~a, ~b?

We expect the answer here to be “yes,” as it appears that for suitable scalars x1, x2 ∈ R, the vector ~c
becomes the opposite corner of a parallelogram with one corner at the origin and with adjacent sides
x1~a and x2

~b. In particular, we expect that ~c = x1~a+ x2
~b.

This example was purely for intuition, but let us note that if ~c = [ c1c2 ] and ~a = [ a1a2 ] and ~b =
[
b1
b2

]
, then

there exist scalars x1, x2 ∈ R such that x1~a+ x2
~b = ~c exactly if

x1

[
a1

a2

]
+ x2

[
b1

b2

]
=

[
c1

c2

]
, or rather

[
a1x1 + b1x2

a2x1 + b2x2

]
=

[
c1

c2

]
.

Because two vectors are equal exactly when their entries are equal, the scalars x1, x2 should be solutions
of the following system of two equations:

a1x1 + b1x2 = c1

a2x1 + b2x2 = c2.

To summarize, ~c is a linear combination of ~a,~b when we can find scalars x1, x2 that solve the system of
equations above. This is our first connection between vector arithmetic and systems of linear equations.
We will develop general techniques for solving systems of linear equations soon, so this is all we will say
about this example for now.
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Remark 18. Note that it is impossible to write
[

0
0
1

]
as a linear combination of vectors of the form[

a
b
0

]
,
[
c
d
0

]
. To see why, note that if there were scalars m,n ∈ K with0

0
1

 = m

ab
0

+ n

cd
0

 =

am+ cn
bm+ dn
0m+ 0n

 =

am+ cn
bm+ dn

0

 ,
then it would be true that 0 = 1. Because 0 6= 1, there are no such scalars m,n ∈ K.

These examples illustrate one of the fundamental questions of this quarter.

Fundamental Question: Representing a Vector as a Linear Combination of Other Vectors

Given vectors ~v1, . . . , ~vm,~b ∈ Kn, how can we determine whether ~b can be expressed as a linear
combination of ~v1, . . . , ~vm?

We will spend a long time studying the linear combinations of a given a list of vectors ~v1, . . . , ~vm.
One might predict that including more vectors in this list will allow us to represent more vectors as
linear combinations of the list, but that isn’t always the case.

Proposition 9. Let ~v1, . . . , ~vm, ~u ∈ Kn. Suppose that ~b ∈ Kn is a linear combination of
~v1, . . . , ~vm, ~u. If ~u is a linear combination of ~v1, . . . , ~vm, then ~b is also a linear combination of
~v1, . . . , ~vm.

Proof. Suppose that ~u is a linear combination of ~v1, . . . , ~vm. Choose scalars a1, . . . , am ∈ K such that
~u = a1~v1+· · ·+am~vm. Because~b is a linear combination of ~v1, . . . , ~vm, ~u, there are scalars c1, . . . , cm, d ∈ K
such that ~b = c1~v1 + · · ·+ cm~vm + d~u. Then we have

~b = c1~v1 + · · ·+ cm~vm + d~u

= c1~v1 + · · ·+ cm~vk + d(a1~v1 + · · ·+ am~vm)

= (c1 + da1)~v1 + · · ·+ (cm + dam)~vm.

One interpretation of the previous proposition is that because we can represent exactly the same
vectors whether we use linear combinations of ~v1, . . . , ~vm, ~u and or ~v1, . . . , ~vm, including the vector ~u
would not allow the list ~v1, . . . , ~vm to represent any additional vectors as linear combinations beyond
those it could already represent. For this reason, we think of ~u as redundant4. If none of the vectors in a
list can be written as a linear combination of the other vectors in a list, then we think of each vector in
the list as “adding something meaningful” to the list that can’t be accounted for by the other vectors.
This leads us to another fundamental question.

Fundamental Question

Given ~v1, . . . , ~vm ∈ Kn, how can we verify that none of ~v1, . . . , ~vm can be written as a linear
combination of the others?

The answer to this question involves a full investigation of linear independence, which we introduce
next time.

4Your book gives a rigorous definition for this term, but we will not do so.
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Lecture 6: Span and Linear Independence

Learning Objectives:

• Define the span of a set of vectors, and develop intuition for simple cases.

• Characterize geometrically meaningful sets as the span of a set of vectors.

• Define the notion of linear independence, and prove its basic properties.

• Develop intuition for linear independence.

Last time we introduced the term linear combination to describe vectors that can be obtained as sums
of scalar multiples of other vectors. Because we wish to characterize which vectors can be obtained in
this way from a given (small) list of vectors, we make the following definition.

Definition 11. Let ~v1, . . . , ~vm ∈ Kn. The span of ~v1, . . . , ~vm, denoted span(~v1, . . . , ~vm), by

span(~v1, . . . , ~vm)
def
= {c1~v1 + · · ·+ cm~vm : c1, . . . , cm ∈ K}.

Example 10. Suppose that we are given ~a,~b ∈ R2, and assume that neither of ~a or ~b is a scalar multiple
of the other. Last time we argued that we expect that every vector ~c ∈ R2 can be written as a linear
combination of ~a,~b. In other words, we expect that span(~a,~b) = R2. We have not proved this yet, but
we will be able to do so soon.

The picture here illustrates why we use the word span here, as we picture the linear combinations of
~a,~b as “filling out” or “extending over” the entire plane R2.

Remark 19. The span of a set of vectors always includes the zero vector5. To see this, note that if
~v1, . . . , ~vm ∈ Km, then ~0 = 0~v1 + · · ·+ 0~vm. Therefore ~0 ∈ span(~v1, . . . , ~vm).

5As a matter of convention, we will define the span of the empty list of vectors as span()
def
= {~0}. This is only notation,

but it is notation that will make certain arguments and statements of results easier.
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Example 11. Last time we saw that the vectors ~v = [ xy ] whose entries solve the equation ax + by = 0

(where a is nonzero) all have the form ~v = λ
[
− b

a
1

]
for some scalar λ ∈ R. In other words, we saw that

the set of vectors whose entries solve ax+ by = 0 is exactly span
( [
− b

a
1

] )
.

Example 12. Consider the equation 6x − 2y + 3z = 0. The vectors ~v =
[
x
y
z

]
whose entries solve this

equation all have the form (using the fact that, say, y = 3x+ 3
2
z)

~v =
[
x
y
z

]
=
[ x

3x+ 3
2
z

z

]
= x

[
1
3
0

]
+ z

[ 0
3
2
1

]
for any choice of scalars x, z ∈ R. In other words, the vectors whose entries solve the equation 6x−2y+
3z = 0 are exactly

span

(1
3
0

 ,
0

3
2

1

).
Because neither of these vectors is a scalar multiple of the other, we expect that their span (which is
also the set of solutions of 6x− 2y + 3z = 0) is a flat surface in R3 that is parallel to both vectors:

In the picture, the surface passes through the origin at a slant and the positive x-axis, the positive
z-axis, and the negative y-axis are all in front of the plane. We will call such a surface a plane. On
your homework, you will explore why the collection of points (x, y, z) in R3 that solve an equation of
the form ax+ by + cz = d (where at least one of a, b, c is nonzero) deserves to be called a plane.

Linear Independence

Last time we also discussed the problem of determining, for given vectors ~v1, . . . , ~vm ∈ Kn, whether
it is impossible to express one of the vectors ~v1, . . . , ~vm as a linear combination of the others. To
facilitate study, we want a characterization of this property that avoids the need to inspect every vector
individually. Here is a step in the right direction.
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Theorem 3. Let m ≥ 2 and ~v1, . . . , ~vm ∈ Kn. Then one of ~v1, . . . , ~vm can be written as a linear
combination of the others if, and only if, there are scalars c1, . . . , cm ∈ K, at least one of which is
nonzero, such that

c1~v1 + · · ·+ cm~vm = ~0.

Proof. (⇒) Suppose that for some j the vector ~vj can be written as a linear combination of

~v1, . . . , ~vj−1, ~vj+1, . . . , ~vm.

Then there exist scalars c1, . . . , cj−1, cj+1, . . . , cm such that

~vj = c1~v1 + · · ·+ cj−1~vj−1 + cj+1~vj+1 + · · ·+ cm~vm,

or rather (by subtracting ~vj from both sides) we have

~0 = c1~v1 + · · ·+ (−1)~vj + · · ·+ cm~vm.

Because −1 6= 0, we have therefore written ~0 as a linear combination of ~v1, . . . , ~vm with at least one
nonzero coefficient.

(⇐) Suppose that there are scalars c1, . . . , cm ∈ K, at least one of which is nonzero, such that

c1~v1 + · · ·+ cm~vm = ~0.

Choose j such that cj 6= 0. Then we can solve for ~vj by writing

~vj = −c1

cj
~v1 − · · · −

cj−1

cj
~vj−1 −

cj+1

cj
~vj+1 − · · · −

cm
cj
~vm.

Therefore ~vj can be written as a linear combination of the other vectors, and the proof is complete.

Theorem 3 gives a condition under which a list of vectors contains at least one vector that can
be written as a linear combination of the other vectors in the list. By restating this theorem using
contraposition, we obtain a first answer to our question of how to tell whether no vector in a given list
can be written as a linear combination of the others.

Theorem 4. Let m ≥ 2 and ~v1, . . . , ~vm ∈ Kn. Then none of ~v1, . . . , ~vm can be written as a linear
combination of the others if, and only if, for every c1, . . . , cm ∈ K, if

c1~v1 + · · ·+ cm~vm = ~0

then c1 = · · · = cn = 0.

This motivates one of the most important definitions in the course.

Definition 12. Let ~v1, . . . , ~vm ∈ Kn. We call the set ~v1, . . . , ~vm linearly independent6 if for
every c1, . . . , cm ∈ K, if

c1~v1 + · · ·+ cm~vm = ~0

then c1 = c2 = · · · = cm = 0.
A set of vectors that is not linearly independent is called linearly dependent.
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In other words, theorems 3 and 4 can be restated as follows.

Theorem 5 (Linear Independence and Linear Dependence). Let m ≥ 2 and ~v1, . . . , ~vm ∈ Kn.

(a) ~v1, . . . , ~vm is a linearly independent set if, and only if, none of ~v1, . . . , ~vm can be written as
a linear combination of the others.

(b) ~v1, . . . , ~vm is a linearly dependent set if, and only if, at least one of ~v1, . . . , ~vm can be written
as a linear combination of the others.

Note that the definition of linear independence and dependence does not require that our set of
vectors consists of two or more vectors.

Example 13. Let ~v ∈ Kn. Then ~v is a linearly independent set if, and only if, ~v 6= ~0.

Proof. (⇒) We proceed by contraposition. Suppose that ~v = ~0. Then 1~v = 1~0 = ~0, so that ~v is a
linearly dependent list of vectors.

(⇒) Suppose that ~v 6= ~0. Let c ∈ K and suppose that c~v = ~0. As you showed on your quiz, either
c = 0 or ~v = ~0. Because ~v 6= ~0, it must be that c = 0. Therefore ~v is a linearly independent set.

Remark 20. As a matter of convention, we will say that the empty set {} of vectors is linearly indepen-
dent. This may seem a little strange, but there are two good reasons for taking this convention. First, it
is convenient for some arguments in proofs. Second, the empty set does vacuously satisfy the definition
of linear independence, in the sense that because there are no ways to even take linear combinations of
vectors in the empty set, it is technically true that if we had a linear combination of vectors in the empty
set that equaled ~0, then the coefficients in the linear combination would need to each be 0. Because
there is no linear combination of vectors in the empty set to test this statement, the statement is valid.

For intuition, you should think of each vector ~v1, . . . , ~vm in a linearly independent set as adding a
“dimension” to the span that wasn’t present before. There are many results that one can state and
prove that get at this, but here are a couple.

Proposition 10. Let ~v1, . . . , ~vm, ~u ∈ Kn. Assume that ~v1, . . . , ~vm is linearly independent set, and
that ~u cannot be written as a linear combination of ~v1, . . . , ~vm. Then ~v1, . . . , ~vm, ~u is a linearly
independent set.

Proof. Suppose that c1, . . . , cm, c ∈ K satisfy

c1~v1 + · · ·+ cm~vm + c~u = ~0.

If c 6= 0, then we can subtract c~u from both sides and divide by −c to obtain

~u = −c1

c
~v1 − · · · −

cm
c
~vm,

6The definitions of linear independence and linear dependence here are the ones that are commonly used through
mathematics. Your book does not define linear independence and linear dependence in this way, but instead chooses to
define it in terms of the equivalent conditions listed in theorems 3 and 4. There are other instances where we will adopt
standard definitions when the author of the textbook adopts non-standard definitions.
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contradicting the assumption that ~u cannot be written as a linear combination of ~v1, . . . , ~vm. Therefore
c = 0, and we have

c1~v1 + · · ·+ cm~vm = ~0.

Because ~v1, . . . , ~vm is a linearly independent set, c1 = · · · = cm = 0.
This shows that ~v1, . . . , ~vm, ~u is a linearly independent set, and the proof is complete.

Besides the geometric intuition described above (i.e. that ~v1, . . . , ~vm is a linearly independent set
exactly when none of the vectors in the set can be written as a linear combination of the other vectors),
the notion of linear independence can also be understood as a statement that ~v1, . . . , ~vm represent vectors
in their span efficiently in the following sense.

Theorem 6. Let ~v1, . . . , ~vm ∈ Kn. Then the following are equivalent7:

(a) ~v1, . . . , ~vm is a linearly independent set.

(b) There is a unique choice of scalars c1, . . . , cm ∈ K such that ~0 = c1~v1 + · · ·+ cm~vm.

(c) For every ~b ∈ span(~v1, . . . , ~vm), there is a unique choice of scalars c1, . . . , cm ∈ K such that
~b = c1~v1 + · · ·+ cm~vm.

Proof. You will prove this result on your homework.

7The phrase “The following are equivalent” (sometimes abbreviated TFAE) is similar to “if, and only if,” but can be
used to indicate that any number of statements are equivalent to each other. To prove a result of this type, one needs to
show that every statements in the list implies every other statement in the list. For example, to say that three statements
P,Q,R are equivalent, one would ultimately need to prove six implications: P ⇒ Q, P ⇒ R, Q ⇒ P , Q ⇒ R, R ⇒ P ,
and R⇒ Q. Usually the proof can be done more efficiently, though. For example, in this theorem we prove that P ⇒ R,
that R ⇒ Q, and that Q ⇒ P . These three implications are enough, because the other implications immediately follow
from these. For example, the implication Q⇒ R follows from Q⇒ P and P ⇒ R.
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Lecture 7: Linear Systems

Learning Objectives:

• Define linear systems and investigate elementary operations that preserve their solution sets.

Given ~v1, . . . , ~vn ∈ Km and ~b ∈ Km, the question of whether (and how) ~b can be written as a linear
combination of ~v1, . . . , ~vn boils down to determining whether there are scalars x1, . . . , xn ∈ K such that

x1~v1 + · · ·+ xn~vn = ~b.

If we write ~b =

[ b1
...
bm

]
and, for each k = 1, . . . , n, ~vk =

[
a1,k

...
am,k

]
, then we can condense this equation by

computing the left-hand-side as
a1,1x1 + a1,2x2 + · · ·+ a1,nxn
a2,1x1 + a2,2x2 + · · ·+ a2,nxn

...
am,1x1 + am,2x2 + · · ·+ am,nxn

 =


b1

b2
...
bm

 .
Because two vectors are equal exactly when their entries are equal, this gives us a system of m equations
in n unknowns x1, . . . , xn:

a1,1x1 + a1,2x2 + · · · + a1,nxn = b1

a2,1x1 + a2,2x2 + · · · + a2,nxn = b2
...

am,1x1 + am,2x2 + · · · + am,nxn = bm

We will therefore make the following definition.

Definition 13. Let m,n ∈ N. An m × n (read “m by n”) linear system is a system of m
equations in n unknowns x1, . . . , xn of the form

,


a1,1x1 + · · · + a1,nxn = b1

...
am,1x1 + · · · + am,nxn = bm

Here the scalars aj,k ∈ K are called the coefficients of ,. A vector ~x =

[ x1
...
xn

]
∈ Kn whose entries

satisfy , is called a solution of ,. The collection

Sol(,)
def
= {~x ∈ Kn : ~x solves ,}

is called the solution set of ,.
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Remark 21. The questions that motivated our discussion of span and linear independence over the
last few days can be easily captured in terms of solutions to linear systems. In particular, the following
results are immediate:

(a) ~b ∈ span(~v1, . . . , ~vn) if, and only if, Sol(,) 6= ∅ (i.e. , has at least one solution8).

(b) ~v1, . . . , ~vn is a linearly independent set if, and only if, Sol(,) = {~0} when ~b = ~0 (i.e. ~x = ~0 is the

only solution of , when ~b = ~0.).

Elementary System Operations

In high school you may have solved simple systems of linear equations (say 2× 2 systems) by assuming
that a solution exists and then attempting to findthe solutions using a substitution technique. This is
insufficient for a general study of linear systems, as it is messy and also depends too strongly on the
specifics of the system under consideration. Here, our approach will be to use a small collection of rules,
called elementary operations, to transform one m × n system into another (hopefully simpler) m × n
system with the same solution set. Through repeated applications of these elementary operations, we
will be able to simplify our original system to the point where we can easily determine its solution set.

Remark 22. Before stating the elementary system operations we have in mind, we illustrate each with
an example. Consider the system

,


3x − 2z = 2

6y − z = −2
−x + 2y + 1

3
z = 1

Each of the following systems / (obtained as described) will result in a system that has the same
solution set as ,:

(i) / is obtained by multiplying one of the equations in , by a nonzero scalar (here we multiplied
the second equation of , by −3):

/


3x − 2z = 2
− 18y + 3z = 6

−x + 2y + 1
3
z = 1

(ii) / is obtained by adding a scalar multiple of one of the equations in , to another. Here we have
added 2·(the second equation) to the first equation of ,:

/


3x + 12y − 4z = −2

6y − z = −2
−x + 2y + 1

3
z = 1

(iii) / is obtained by swapping two of the equations in ,. Here we have swapped the first and third
equations of ,:

/


−x + 2y + 1

3
z = 1

6y − z = −2
3x − 2z = 2

8The notation ∅ denotes the empty set {}, which is the set containing no elements.
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The following result formally states (in their full generality) the elementary operations and establishes
that they do not affect the solution set of a linear system.

Theorem 7 (Elementary System Operations). Let m,n ∈ N and consider the linear system

,


a1,1x1 + · · · + a1,nxn = b1

...
am,1x1 + · · · + am,nxn = bm

where aj,k, bj ∈ K for j = 1, . . . ,m and k = 1, . . . , n.

(i) (Multiplying An Equation By A Nonzero Scalar) Let j ∈ {1, . . . ,m} and let c ∈ K
with c 6= 0. Consider the system

/



a1,1x1 + · · · + a1,nxn = b1
...

caj,1x1 + · · · + caj,nxn = cbj
...

am,1x1 + · · · + am,nxn = bm

obtained by multiplying the j-th equation of , by c. Then Sol(,) = Sol(/).

(ii) (Adding A Scalar Multiple Of One Equation To Another) Suppose j, p ∈ {1, . . . ,m}
with j 6= p, and let c ∈ K. Consider the system

/



a1,1x1 + · · · + a1,nxn = b1
...

(aj,1 + cap,1)x1 + · · · + (aj,n + cap,n)xn = bj + cbp
...

am,1x1 + · · · + am,nxn = bm

obtained by adding the p-th equation (multiplied by c) to the j-th equation of ,. Then
Sol(,) = Sol(/).

(iii) (Swapping Two Equations) Suppose j, p ∈ {1, . . . ,m} with j 6= p, and suppose (without
loss of generality) that j < p. Consider the system

/



a1,1x1 + · · · + a1,nxn = b1
...

ap,1x1 + · · · + ap,nxn = bp
...

aj,1x1 + · · · + aj,nxn = bj
...

am,1x1 + · · · + am,nxn = bm

obtained by swapping the j-th and p-th equations of ,. Then Sol(,) = Sol(/).
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Proof. We will prove part (i): multiplying an equation by a nonzero scalar does not change the solution
set of the system. You will prove (ii) and (iii) on your homework. The heart of the argument is showing
that, in each case, Sol(,) = Sol(/). Because we are showing that two sets are equal, we must show
that each is a subset of the other. To do this, we show that if ~x ∈ Sol(,) then ~x ∈ Sol(/), and that if
~x ∈ Sol(/) then ~x ∈ Sol(,).

We proceed with the proof of (i). Let j ∈ {1, . . . ,m} and let c ∈ K with c 6= 0. Let / be the system
obtained by multiplying the j-th equation in , by c.

Suppose9 that ~x ∈ Sol(,). Note that because ~x solves every equation in ,, ~x solves every equation
in / except possibly the j-th equation, and therefore we need only verify that ~x solves the j-th equation
of /. But because ~x satisfies the j-th equation of ,, we have

caj,1x1 + · · ·+ caj,nxn = c(aj,1x1 + · · ·+ aj,nxn) = cbj.

Therefore ~x ∈ Sol(/).
Now suppose that ~x ∈ Sol(/). As in the first case, we are done when we verify that ~x satisfies the

j-th equation of ,. To this end, note that because c 6= 0 we have

aj,1x1 + · · ·+ aj,nxn =
1

c
(caj,1x1 + · · ·+ caj,nxn) =

1

c
cbj = bj.

Therefore ~x ∈ Sol(,), and (i) is proved.

Remark 23. Note that in the proof of (i) above, we could have handled the proof that if ~x ∈ Sol(/)
then ~x ∈ Sol(,) by simply noting that since , is obtained from / by multiplying the j-th equation of
/ by the nonzero scalar 1

c
, if ~x ∈ Sol(/) then the first half of the argument (interchanging the roles of

, and /, and replacing c with 1
c
) implies that ~x ∈ Sol(,).

Now that we have elementary operations for manipulating linear systems, we must determine how to
use these operations to characterize the solution set of a given system. Our plan of attack is as follows:

(i) Develop an algorithm for simplifying a linear system into a particularly “nice” form.

(ii) Describe how to read off the solution set of a linear system from this “nice” form.

(iii) Establish some rather surprising (and useful) results about the relationship between a linear system
and its solution set.

This program will be made easier by introducing matrices, a generalization of vectors, as a way to
condense the information contained in a system of linear equations. Our understanding of matrices will
evolve quite a bit over the course of the year, but we first encounter them as a useful notational device.
Don’t be fooled, though: they are one of the central objects of study in linear algebra.

9Here, as a point of style, we use the word “Suppose” instead of “Let” because it may be the case that Sol(,) is empty.
The phrase “Suppose ~x ∈ Sol(,)” reflects this, but the word “let” could (incorrectly) be interpreted as suggesting that
the set under consideration is nonempty.
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Elementary System Operations

Theorem (Elementary System Operations). Let m,n ∈ N and consider the linear system

,


a1,1x1 + · · · + a1,nxn = b1

...
am,1x1 + · · · + am,nxn = bm

where aj,k, bj ∈ K for j = 1, . . . ,m and k = 1, . . . , n.

(i) (Multiplying An Equation By A Nonzero Scalar) Let j ∈ {1, . . . ,m} and let
c ∈ K with c 6= 0. Consider the system

/



a1,1x1 + · · · + a1,nxn = b1
...

caj,1x1 + · · · + caj,nxn = cbj
...

am,1x1 + · · · + am,nxn = bm

obtained by multiplying the j-th equation of , by c. Then Sol(,) = Sol(/).

(ii) (Adding A Scalar Multiple Of One Equation To Another) Suppose j, p ∈
{1, . . . ,m} with j 6= p, and let c ∈ K. Consider the system

/



a1,1x1 + · · · + a1,nxn = b1
...

(aj,1 + cap,1)x1 + · · · + (aj,n + cap,n)xn = bj + cbp
...

am,1x1 + · · · + am,nxn = bm

obtained by adding the p-th equation (multiplied by c) to the j-th equation of ,. Then
Sol(,) = Sol(/).

(iii) (Swapping Two Equations) Suppose j, p ∈ {1, . . . ,m} with j 6= p, and suppose
(without loss of generality) that j < p. Consider the system

/



a1,1x1 + · · · + a1,nxn = b1
...

ap,1x1 + · · · + ap,nxn = bp
...

aj,1x1 + · · · + aj,nxn = bj
...

am,1x1 + · · · + am,nxn = bm

obtained by swapping the j-th and p-th equations of ,. Then Sol(,) = Sol(/).



Lecture 8: Matrices and Elementary Row Operations

Learning Objectives:

• Represent a linear system using an augmented matrix.

• Interpret elementary operations on systems as elementary row operations on matrices.

• Determine when a matrix is in reduced row-echelon form.

• Apply Gaussian elimination to transform a matrix into reduced row-echelon form.

• Determine the solution sets of a given linear system.

Systems of equations can be written more easily (and therefore studied more easily) if we represent them
in terms of matrices.

Definition 14. Let m,n ∈ N. An m× n matrix10 A with entries in K is an array

A
def
=


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...
am,1 am,2 · · · am,n


of scalars aj,k ∈ K, called the entries of A. We will sometimes write A = [aj,k] for short. The
collection of all m×n matrices with entries in K is denoted Mm×n(K). Note that aj,k denotes the
entry of A in row j and column k.

Example 14. Consider the system

,


3x − 2z = 6

6y − z = 6
−x + 2y + 1

3
z = 0

There are two interesting matrices associated to this system. The first is the coefficient matrix of ,,
which is the matrix whose entries are exactly the coefficients of the variables on the left-hand side. In
particular, the coefficient matrix of , is  3 0 −2

0 6 −1
−1 2 1

3

 .
In this case, the coefficient matrix of , is 3× 3 because , was a 3× 3 system of equations. Note that
we have entered 0 into the matrix when the coefficient of the variable representing that spot is 0.

10Here m× n is read “m by n”, and indicates that the matrix has m rows and n columns.
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We will study coefficient matrices of systems later on in the quarter, but for now they are insufficient
for our purposes because they omit crucial information about the system, namely the scalars on the
right-hand sides of the equations in the system. If we wish to capture everything we will need to work
with the augmented matrix of ,, which in this case is the 3×4 matrix that we obtain by “augmenting”
the coefficient matrix of , with another column containing the scalars on the right-hand sides of the
equations. The augmented matrix for , is 3 0 −2 6

0 6 −1 6
−1 2 1

3
0

 .
Here we have inserted a vertical line between the first 3 columns of the matrix (which represents the
coefficients of ,) and the last column (which represents the “right-hand sides” of the equations in ,.

When we represent a linear system in terms of its augmented matrix, each elementary system oper-
ations that we used to transform the linear system can be interpreted as an elementary row operation
that transforms the augmented matrix. The elementary row operations are as follows. We will skimp
on the notation here for ease of reading, as these were stated very carefully for systems of equations.

Definition 15. Let A be a matrix. The elementary row operations on A are

(i) Multiplying a row of A by a nonzero scalar.

(ii) Adding a scalar multiple of one row of A to another.

(iii) Swapping two rows of A.

Remark 24. Note that the elementary row operations (i), (ii), (iii), when performed on the augmented
matrix of a linear system, correspond exactly to the associated elementary system operations.

Let’s see an example.

Example 15. For this example, let’s assume that we’re just working with real numbers. Consider the
linear system

,


3x − 2z = 6

6y − z = 6
−x + 2y + 1

3
z = 0

I claim that , can be transformed into the system

/


x − 2

3
z = 2

y − 1
6
z = 1
0 = 0

via elementary operations. To do this, we transform the augmented matrix of , using elementary row
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operations (which is equivalent to transforming , itself with elementary operations): 3 0 −2 6
0 6 −1 6
−1 2 1

3
0

 −→
 1 0 −2

3
2

0 6 −1 6
−1 2 1

3
0

 (Multiply row 1 by
1

3
)

−→

1 0 −2
3

2
0 6 −1 6
0 2 −1

3
2

 (Add 1(row 1) to row 3)

−→

1 0 −2
3

2
0 1 −1

6
1

0 2 −1
3

2

 (Multiply row 2 by
1

6
)

−→

1 0 −2
3

2
0 1 −1

6
1

0 0 0 0

 (Add (−2)(row 2) to row 3).

This last matrix is exactly the augmented matrix of /, as claimed.
The form of / is particularly nice for reading off the solutions of ,, as we can solve the first equation

for x in terms of z as x = 2 + 2
3
z, and solve the second equation for y in terms of z as y = 1 + 1

6
z.

There is nothing that forces us to choose any particular value for z, and once we pick z then x and y

are determined. Because , and / have the same solutions, and ~x =
[
x
y
z

]
solves / exactly when

~x =

xy
z

 =

2 + 2
3
z

1 + 1
6
z

z

 =

2
1
0

+ z

2
3
1
6

1

 ,
We conclude that

Sol(,) = Sol(/) =


2

1
0

+ s

2
3
1
6

1

 : s ∈ R

 .

According to one of your homework problems this week, Sol(,) is a line in R3! For another geometric
interpretation of this result, note that the three equations in , describe planes in R3, and therefore
every solution of , is (the position vector of) a point that lies on all three of these planes. Therefore
we have shown that the intersection of the three planes whose equations make up , is exactly a line.
Neat!

To generalize the previous example, we need to answer two question:

(1) What is it about the system / that made it possible to quickly read off the solutions of /?

(2) How can we (in a systematic way) transform a linear system into a system as simple to analyze
at / was?

The answer to (1) can be stated in terms of the augmented matrix of a system. Recall that the
augmented matrix of / was: 1 0 −2

3
2

0 1 −1
6

1
0 0 0 0

 .
System / is easy to solve because its augmented matrix is in reduced row-echelon form.
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Definition 16. Let B ∈ Mn×m(K). Say B is in reduced row-echelon form if each of the
following conditions are satisfied:

(i) The leading11 nonzero entry (if there is one) in each row of B is 1.

(ii) If a column of B contains the leading 1 of some row, then all other entries in that column
are 0.

(iii) If a row contains a leading 1, then every row above that row has a leading 1 that is further
to the left.

Each leading 1 is called the pivot of its row.

Example 16. The augmented matrix for /1 0 −2
3

2
0 1 −1

6
1

0 0 0 0

 .
is in reduced row-echelon form. Note that only the first two rows have nonzero entries, and the leading
nonzero entry in each of these rows is 1 (so that (i) is satisfied). Moreover, these leading entries are
located in the first and second columns of the matrix, and all other entries in these columns are 0 (so
that (ii) is satisfied). Finally, note that the first row (which has a leading 1) has no rows above it (so
satisfies (iii), and that the leading 1 in the second row is to the right of the leading 1 in the first row (so
satisfies (iii)), and that the third row does not have a leading 1 (and therefore satisfies (iii) in a rather
uninteresting way).

The word “reduced row-echelon form” refers not only to the fact that the matrix has been reduced
(simplified) via elementary row operations, and also that the rows are arranged so that the leading
entries form “levels” (or echelons).

The answer to question (2) (i.e. a process for transforming a matrix into reduced row-echelon form
with elementary row operations) is actually provided by an algorithm called Gaussian Elimination. This
algorithm is used to prove part of the following theorem.

Theorem 8. Let A ∈ Mm×n(K). We can use elementary row operations to transform A into a
matrix in reduced row-echelon form, called the reduced row-echelon form of A and denote
rref(A).

Remark 25. The word ‘the’ in the theorem suggests that, given A, there is only one way to transform
A into reduced row-echelon form. This is true, and when we prove (a more precise statement of) the
theorem in a couple days, we will establish that there is indeed only one possibility for rref(A).

One process of Gaussian Elimination, which transforms A into a matrix in reduced row-echelon
form, is quite mechanical. Given an m× n matrix A, proceed as follows. Let j = 1.

1. If every entry of Row j is 0, then proceed to Step 4. Otherwise, locate the leading nonzero entry
c in Row j.

11Here ‘leading’ means ‘first, starting from the left’.
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2. Multiply Row j by 1
c

so that the leading entry of Row j is 1.

3. Eliminate all other nonzero entries that lie in the same column as the leading entry of Row j.

4. If j = m (i.e. if we were looking at the bottom row), then proceed to Step 5. Otherwise, replace
j with j + 1 and return to Step 1 (i.e. repeat with above steps with the next row).

5. Swap rows until all rows with leading entries are above all rows with all zeros, and such that each
leading entry is either below and to the right or above and to the left of all other leading entries.

Example 17. Go back and review the computation we performed to transform the augmented matrix
for the system , into the augmented matrix for the system /. We used Gaussian elimination to perform
this computation.

Example 18. Is

[
3
16
5
3

]
∈ span

([ 0
2
1
3

]
,

[ −1
−4
−1
−1

]
,

[
1/2
3
1
1

])
?

Note that the answer here is “yes” exactly if there exist x, y, z ∈ K such that
3
16
5
3

 = x


0
2
1
3

+ y


−1
−4
−1
−1

+ z


1/2
3
1
1

 =


0x− y + 1

2
z

2x− 4y + 3z
x− y + z
3x− y + z

 .
Means that we are trying to determine whether there is a solution of the system

,


− y + 1

2
z = 3

2x − 4y + 3z = 16
x − y + z = 5

3x − y + z = 3

We use elementary operations to transform this system into one whose augmented matrix is in
reduced row-echelon form. Note that Gaussian elimination is one way to perform this computation,
but making some changes early on in the process can result in a simpler computation. The augmented
matrix of the system we are given is 

0 −1 1
2

3
2 −4 3 16
1 −1 1 5
3 −1 1 3

 .
We start by multiplying Row 1 by 2 to remove the fractions, and then we swap the first and third rows
to have a row where the leading entry is in the first column, and then proceed with Gaussian elimination
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as usual:
0 −1 1

2
3

2 −4 3 16
1 −1 1 5
3 −1 1 3

 −→


1 −1 1 5
2 −4 3 16
0 −2 1 6
3 −1 1 3

 (Multiply row 1 by 2, then swap row 1 and row 3)

−→


1 −1 1 5
0 −2 1 6
0 −2 1 6
0 2 −2 −12

 (Add -2(row 1) to row 2, and -3(row 1) to row 4)

−→


1 0 1

2
2

0 1 −1
2
−3

0 0 0 0
0 0 −1 −6

 (Add (-1/2)(row 2) to row 1, -1(row 2) to row 3,
and 1(row 2) to row 4. Then multiply row 2 by (-1/2))

−→


1 0 0 −1
0 1 0 0
0 0 0 0
0 0 1 6

 (Multiply row 4 by -1, then add (-1/2)(row 4) to row 1
and (1/2)(row 4) to row 2.)

−→


1 0 0 −1
0 1 0 0
0 0 1 6
0 0 0 0

 (Swap row 3 and row 4.).

Therefore , has the same solution set as the system
x = −1

y = 0
z = 6

0z = 0

and therefore

Sol(,) =


−1

0
6

 .

In terms of the question that was asked we can therefore conclude that
3
16
5
3

 = −1


0
2
1
3

+ 0


−1
−4
−1
−1

+ 6


1/2
3
1
1

 ,

so that

[
3
16
5
3

]
∈ span

([ 0
2
1
3

]
,

[ −1
−4
−1
−1

]
,

[
1/2
3
1
1

])
.

Example 19. Is

[
0
2
1
3

]
,

[ −1
−4
−1
−1

]
,

[
1/2
3
1
1

]
a linearly independent set?
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Note that the answer here is “yes” exactly if whenever we have x, y, z ∈ K such that
0x− y + 1

2
z

2x− 4y + 3z
x− y + z
3x− y + z

 = x


0
2
1
3

+ y


−1
−4
−1
−1

+ z


1/2
3
1
1

 =


0
0
0
0

 ,
then it must be that x = y = z = 0. Therefore we need to verify that the solution set of the system

,


− y + 1

2
z = 3

2x − 4y + 3z = 16
x − y + z = 5

3x − y + z = 3

is exactly
{[

0
0
0

]}
.

We will solve this system using exactly the same steps as above.
0 −1 1

2
0

2 −4 3 0
1 −1 1 0
3 −1 1 0

 .
We start by multiplying Row 1 by 2 to remove the fractions, and then we swap the first and third rows
to have a row where the leading entry is in the first column, and then proceed with Gaussian elimination
as usual:

0 −1 1
2

0
2 −4 3 0
1 −1 1 0
3 −1 1 0

 −→


1 −1 1 0
2 −4 3 0
0 −2 1 0
3 −1 1 0

 (Multiply row 1 by 2, then swap row 1 and row 3)

−→


1 −1 1 0
0 −2 1 0
0 −2 1 0
0 2 −2 0

 (Add -2(row 1) to row 2, and -3(row 1) to row 4)

−→


1 0 1

2
0

0 1 −1
2

0
0 0 0 0
0 0 −1 0

 (Add (-1/2)(row 2) to row 1, -1(row 2) to row 3,
and 1(row 2) to row 4. Then multiply row 2 by (-1/2))

−→


1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0

 (Multiply row 4 by -1, then add (-1/2)(row 4) to row 1
and (1/2)(row 4) to row 2.)

.

−→


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 (Swap row 3 and row 4.).
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Therefore , has the same solution set as the system
x = 0

y = 0
z = 0

0z = 0

and therefore

Sol(,) =


0

0
0

 .

In terms of the question that was asked we can therefore conclude that
0
2
1
3

 ,

−1
−4
−1
−1

 ,


1/2
3
1
1


is a linearly independent set.

Example 20. Is

[
4
16
5
3

]
∈ span

([ 0
2
1
3

]
,

[ −1
−4
−1
−1

]
,

[
1/2
3
1
1

])
?

Note that the only difference between this example and the last is that we have changed the vector
we are considering. By the same logic, we are led to consider solutions of the system

,


− y + 1

2
z = 4

2x − 4y + 3z = 16
x − y + z = 5

3x − y + z = 3
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We repeat out computations from the last example to see that
0 −1 1

2
4

2 −4 3 16
1 −1 1 5
3 −1 1 3

 −→


1 −1 1 5
2 −4 3 16
0 −2 1 8
3 −1 1 3

 (Multiply row 1 by 2, then swap row 1 and row 3)

−→


1 −1 1 5
0 −2 1 6
0 −2 1 8
0 2 −2 −12

 (Add -2(row 1) to row 2, and -3(row 1) to row 4)

−→


1 0 1

2
2

0 1 −1
2
−3

0 0 0 2
0 0 −1 −6

 (Add (-1/2)(row 2) to row 1, -1(row 2) to row 3,
and 1(row 2) to row 4. Then multiply row 2 by (-1/2).)

−→


1 0 0 −1
0 1 0 0
0 0 0 2
0 0 1 6

 (Multiply row 4 by -1, then add (-1/2)(row 4) to row 1
and (1/2)(row 4) to row 2.)

−→


1 0 0 −1
0 1 0 0
0 0 1 6
0 0 0 2

 (Swap row 3 and row 4.).

−→


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (Multiply row 4 by (1/2), then add (-6)(row 4) to row 3,
and add 1(row 4) to row 1.)

Therefore , has the same solution set as the system
x = 0

y = 0
z = 0

0z = 1

But there are no vectors
[
x
y
z

]
whose entries satisfy the equation 0 = 0z = 1, so that , does not have

any solutions. That is,
Sol(,) = ∅.

Note that we could have seen this immediately after the third step above, where we inferred that the
solution set of , was the same as that of a system that included the equation 0z = 2.

To answer the original question,

[
4
16
5
3

]
6∈ span

([ 0
2
1
3

]
,

[ −1
−4
−1
−1

]
,

[
1/2
3
1
1

])

Definition 17. Let , be an m × n linear system. If , has no solutions, then , is called
inconsistent.
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Lecture 9: Reduced Row-Echelon Form

Learning Objectives:

• Use matrices to represent linear combinations.

• Determine when two matrices are row equivalent.

• Show that every matrix has a unique reduced row-echelon form.

We start by introducing a bit more notation involving matrices.

Definition 18. Let A ∈Mm×n(K), A = [aj,k]. Then we call

~a1
def
=

[ a1,1
a2,1

...
am,1

]
, ~a2

def
=

[ a1,2
a2,2

...
am,2

]
, · · · , ~an

def
=

[ a1,n
a2,n

...
am,n

]

the columns (or column vectors) of A, and write A =
[
~a1 ~a2 · · · ~an

]
.

Remark 26. Note that if A ∈Mm×n(K), then the columns of A are vectors in Km.

Matrices can be used to represent linear combinations of vectors in the following sense.

Definition 19. Let ~a1, . . . ,~an ∈ Km, and consider A
def
=
[
~a1 · · · ~an

]
∈ Mm×n(K). For ~x ∈ Kn,

define

A~x =
[
~a1 ~a2 · · · ~an

]

x1

x2
...
xn

 def
= x1~a1 + x2~a2 + · · ·+ xn~an.

Remark 27. Note that A~x is only defined with the number of columns of A agrees with the number of
entries of ~x.

Remark 28. As with scalar multiplication, the order here is very important.

Example 21. Recall that a linear system

,


a1,1x1 + · · · + a1,nxn = b1

...
am,1x1 + · · · + am,nxn = bm

is equivalent to the matrix equation

x1

a1,1
...

am,1

+ · · ·+ xn

a1,n
...

am,n

 =

[ b1
...
bm

]
.
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Using the notation above, we can condense this further asa1,1 · · · a1,n
...

. . .
...

am,1 · · · am,n

[ x1...
xn

]
=

[ b1
...
bm

]
,

or more concisely as A~x = ~b, where A is the coefficient matrix of ,. This last expression is called the
matrix form of the system ,.

Example 22. Is
[

1
2
3

]
,
[

4
5
6

]
,
[

2
1
0

]
,
[

7
8
10

]
a linearly independent set?

Note that the answer here is “yes” exactly if the only vector ~c =

[
c1
c2
c3
c4

]
∈ K4 that solves

1 4 2 7
2 5 1 8
3 6 0 10



c1

c2

c3

c4

 = c1

1
2
3

+ c2

4
5
6

+ c3

2
1
0

+ c4

 7
8
10

 =

0
0
0

 ,
is ~c = ~0. We will solve this system by row-reducing its augmented matrix:1 4 2 7 0

2 5 1 8 0
3 6 0 10 0

 −→
1 4 2 7 0

0 −3 −3 −6 0
0 −6 −6 −11 0

 (Add (-2)(row 1) to row 2 and add (-3)(row 1) to row 3)

−→

1 4 2 7 0
0 1 1 2 0
0 −6 −6 −11 0

 (Multiply row 2 by (-1/3))

−→

1 0 −2 −1 0
0 1 1 2 0
0 0 0 1 0

 (Add (-4)(row 2) to row 1 and 6(row 2) to row 3)

−→

1 0 −2 0 0
0 1 1 0 0
0 0 0 1 0

 (Add (1)(row 3) to row 1 and (-2)(row 3) to row 3).

Therefore , has the same solution set as the system
c1 − 2c3 = 0

c2 + c3 = 0
c4 = 0

It follows that ~c solves , exactly when there is s ∈ K such that (setting c3 = s and solving for c1 and
c2 in terms of c3)

~c =

[
2s
−s
s
0

]
= s

[
2
−1
1
0

]
.

In other words,

Sol(,) = span




2
−1
1
0


 .
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In particular, note that this shows (among other things) that

2

1
2
3

−
4

5
6

+

2
1
0

+ 0

 7
8
10

 =

0
0
0

 ,
so that

[
1
2
3

]
,
[

4
5
6

]
,
[

2
1
0

]
,
[

7
8
10

]
is a linearly dependent set. The answer to the question is “no”.

So far we have seen examples of systems where the solution set is infinite, where the system has a
unique solution, and where the system is inconsistent (i.e. it has no solution). We will say a bit more
about solution sets soon, but first we pause to prove our theorem about the existence and uniqueness
of the reduced row-echelon form of a matrix.

Row Equivalence and Uniqueness of Reduced Row-Echelon Form

We start by making a definition.

Definition 20. Let A,B ∈ Mm×n(K). We say that A is row equivalent to B if A can be
transformed into B via a finite sequence of elementary row operations.

Remark 29. Note that if A and B are matrices of different sizes, then A cannot be row equivalent to
B because elementary row operations do not change the number of rows or columns in a matrix.

Row equivalence is not equality, but does behave like equality in the following very general sense.

Theorem 9. Let A,B,C ∈Mm×n(K). Then the following hold.

• (Reflexivity) A is row equivalent to A.

• (Symmetry) If A is row equivalent to B, then B is row equivalent to A.

• (Transitivity) If A is row equivalent to B and if B is row equivalent to C, then A is row
equivalent to C.

Proof. Because A can be transformed into itself by multiplying the first row of A by 1, A is row equivalent
to A.

Suppose that A is row equivalent to B. Then A can be transformed into B via a finite sequence of
elementary row operations. But each of the elementary row operations is invertible, in the sense that if
P,Q ∈Mm×n(K), then

(i) If we transform P into Q by multiplying row j (of P ) by a nonzero scalar c, then we can transform
Q into P by multiplying row j (of Q) by 1

c
.

(ii) If we transform P into Q by adding c(row j) to row k (of P ), then we can transform Q into P by
adding -c(row j) to row k (of Q).

(iii) If we transform P into Q by swapping row j and row k (of P ), then we can transform Q into P
by swapping row j and row k (of Q).
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Therefore, performing on B the inverse of each elementary row operation used to transform A into B
(in the reverse order, of course) transforms B into A. Therefore B is row equivalent to A.

Finally, suppose that A is row equivalent to B and that B is row equivalent to C. By first performing
the elementary operations on A necessary to transform it into B, and then performing the elementary
operations on B necessary to transform it into C, we will have performed a finite number of elementary
operations on A to transform it into C. Therefore A is row equivalent to C.

Remark 30. We can restate the relationship between linear systems and augmented matrices in terms
of row equivalent as follows:

Theorem 10. Let , and / be m × n linear systems. Then , can be transformed into / by a
finite sequence of elementary operations if, and only if, the augmented matrices of , and / are
row equivalent.

Remark 31. Note that row equivalence is not limited to matrices that represent linear systems, as row
operations and the definition of row equivalence apply even to matrices with a single column.

As mentioned last time, it is crucial for our ability to analyze linear systems that every matrix is
row equivalent to a unique matrix in reduced row-echelon form. The existence of such a matrix follows
from Gaussian elimination, but the uniqueness is far from obvious. The proof of uniqueness is typically
more challenging than expected, but we will give a (relatively) simple proof due to W.H. Holtzmann.
We start with a lemma12 that says, roughly, that deleting a column from row equivalent matrices results
in row equivalent matrices.

Lemma 1. Suppose n ≥ 2, let A,B ∈ Mm×n(K), and fix k = 1, . . . , n. Let A′, B′ ∈ Mm×n−1(K)
be the matrices obtained from A and B by deleting the k-th column from each. If A is row
equivalent to B, then A′ is row equivalent to B′.

Proof. We proceed by induction on the number of elementary row operations necessary to transform A
into B.

For the base case, we consider the three types of elementary row operations separately and show
that if A is transformed into B via a single elementary row operation, then A′ is transformed into B′ by
that same elementary row operation. This is quick (but notationally painful) to check by writing out
the matrices A, B, A′, and B′, so we leave this step to the reader.

Now let k ∈ N and assume that A can be transformed into B via k + 1 elementary operations, that
D is the matrix obtained from A by applying the first k of these operations, and that D′ ∈Mm×(n−1)(K)
be the matrix obtained from D by deleting the k-th column. For the induction hypothesis, we suppose
that A′ and D′ are row equivalent. Because B is obtained from D by applying a single elementary row
operation, the base case implies that D′ is row equivalent to B′. By transitivity of row equivalence, A′

is row equivalent to B′. By the Principle of Mathematical Induction, the result is proved.

12A lemma is a result that is mostly important as a stepping stone to proving a more major result. We could include
the proofs of lemmas in the proofs of major results, but we might choose to state and prove a lemma independently if
either the lemma will be applicable to other results, if the lemma is interesting in its own right, or just to break up the
proof of the larger result for ease of reading.
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Lecture 10: More Reduced Row-Echelon Form

Learning Objectives:

• Show that every matrix has a unique reduced row-echelon form.

We can now prove (a more precise version of) the theorem13 we stated last time.

Theorem 11. Let A ∈ Mm×n(K). Then there exists a unique B ∈ Mm×n(K) such that B is in
reduced row-echelon form and A is row equivalent to B.

Proof. The existence of B is guaranteed by Gaussian elimination, so we need only show uniqueness.
Suppose C ∈ Mm×n(K) is a matrix in reduced row-echelon form that is row equivalent to A. By

transitivity of row equivalence, C and B are row equivalent. We wish to show that C = B.
Suppose, to the contrary, that C 6= B. Let k denote the left-most column in which C and B differ.

Because the first nonzero column of a matrix in reduced row-echelon form must be

[
1
0
...
0

]
, and (because

C and B differ in their k-th column) the k-th column of at least one of C and B is nonzero, there are
two cases:

(a) All columns before the k-th column of C and B are zero, and the k-th column of one of these

matrices is

[
1
0
...
0

]
and the k-th column of the other is

[
0
0
...
0

]
.

(b) k > 1 and among the first k− 1 columns of C and B (which are equal) there is at least one pivot.

For case (a), note that none of the three elementary row operations transform a column with at least
one nonzero entry into a column with all zero entries, and therefore the same is true for a finite sequence
of elementary row operations. It follows that C and B are not row equivalent, a contradiction.

Now we consider case (b). Let p denote the number of columns before the k-th column of C and
B that contain pivots. By assumption, p ≥ 1. Apply the lemma repeatedly to delete each column of
C and B beyond the k-th column, and also delete the columns before the k-th column which do not
contain pivots. Let C ′ and B′ denote the resulting matrices. Note that C ′ 6= B′ because C ′ and B′ differ
in their final columns. For example if

C =

1 2 0 3 5
0 0 1 4 6
0 0 0 0 0

 and B =

1 2 0 7 9
0 0 1 8 9
0 0 0 0 0

 ,
then

C ′ =

1 0 3
0 1 4
0 0 0

 and B′ =

1 0 7
0 1 8
0 0 0

 .
13This proof is based on a proof due to W.H. Holtzmann, but fills in a few logical gaps present in the original.
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But then we have either

C ′ =



1 0 · · · 0 c1

0 1 · · · 0 c2
...

...
. . .

...
...

0 0 · · · 1 cp
0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0


or C ′ =



1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0


and either

B′ =



1 0 · · · 0 b1

0 1 · · · 0 b2
...

...
. . .

...
...

0 0 · · · 1 bp
0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0


or B′ =



1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0


Note that because k > 1 and there was at least one column of B and C before the kth column containing
a pivot, C ′ and B′ have at least two columns. Interpret C ′ as the augmented matrix of a linear system
, and B′ as the augmented matrix of a linear system /, both in the unknowns x1, . . . , xp. Because the
augmented matrices of , and / are row equivalent, , and / have the same solution sets.

Note that in the first case for C ′ we would have Sol(,) =

{[ c1
...
cp

]}
, and in the second case for C ′ the

system , would be inconsistent (since , would contain the equation 0xp = 1). Similarly, the first case

for B′ we would have Sol(/) =

{[
b1
...
bp

]}
and the second case for B′ would yield that / is inconsistent.

Because Sol(,) = Sol(/), either both systems are inconsistent (and therefore C ′ = B′, contradicting

the fact that C ′ 6= B′) or both sets are nonempty (in which case

[ c1
...
cp

]
=

[
b1
...
bp

]
, again contradicting the

fact that C ′ 6= B′). In either case we have a contradiction, and the result is proved.

Remark 32. Believe it or not, this was indeed a simpler proof of this result than the one that you will
commonly find in textbooks.

In light of the last theorem, we make the following definition.

Definition 21. Let A ∈ Mm×n(K). The unique m × n matrix B in reduced row-echelon form
that is row equivalent to A is called the reduced row-echelon form of A, and denoted rref(A).

Because the reduced row-echelon form of a matrix is unique, we can make the following definition
(which will be useful going forward).

Definition 22. Let A ∈Mm×n(K). The rank of A is the number of pivots in rref(A). We denote
this number by rank(A).
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Remark 33. Note that because each matrix has a unique reduced row-echelon form, there is no ambi-
guity in the definition of rank(A) for A ∈Mm×n(K).

Remark 34. Because A ∈Mm×n(K) can have at most one pivot in each row, we have 0 ≤ rank(A) ≤ m.
But each column of A can also contain at most one pivot, so that 0 ≤ rank(A) ≤ n as well. Therefore
0 ≤ rank(A) ≤ min(m,n).

Example 23. Note that for

A
def
=

1 4 2 7
2 5 1 8
3 6 0 10

 ,
we have rank(A) = 3 because

rref(A) =

1 0 −2 0
0 1 1 0
0 0 0 1


has three pivots.
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Lecture 11: Solutions of Linear Systems

Learning Objectives:

• Investigate the relationship between span, linear independence, solutions of systems, reduced
row-echelon form, and rank.

The idea that every matrix is row equivalent to exactly one matrix in reduced row-echelon form is
extremely important, and allows us to determine sophisticated properties of linear systems by simply
manipulating matrices. Let us summarize what we have learned about reduced row echelon form, rank,
solutions of linear systems, span, and linear independence. Before we begin, we introduce some useful
notation.

Definition 23. Let n ∈ N and k a natural number between 1 and n. Then ~ek ∈ Kn is defined to
be the vector with 1 in the k-th entry, and 0 for all other entries.

Remark 35. Note that the notation for ~ek only captures which entry is 1, and does not capture n. To
avoid cluttering up the notation, in practice we will rely on context to tell us what is n. If there is any
chance for ambiguity, then we will be more precise at the time.

The following lemma will also be useful.

Lemma 2. Let A ∈ Mm×n(K) and ~b ∈ Km. Then there exists a unique ~c ∈ Km such that

rref
( [
A ~b

] )
=
[
rref(A) ~c

]
. Moreover, ~c = ~0 if, and only if, ~b = ~0.

(Here
[
B ~v

]
denotes the m × (n + 1) matrix whose first n columns are the columns of B, and

whose final column is ~v.)

Proof. We start with existence. By Gaussian elimination, there is a finite sequence of elementary row

operations that transforms A into rref(A). Performing this same sequence of operations on
[
A ~b

]
transforms this matrix into

[
rref(A) ~c ′

]
for some ~c ′ ∈ Km.

If the final column of
[
rref(A) ~c ′

]
does not contain the leading nonzero entry of a row, then[

rref(A) ~c ′
]

is in reduced row-echelon form and, setting ~c = ~c ′, we have rref
( [
A ~b

] )
=
[
rref(A) ~c

]
.

If the final column of
[
rref(A) ~c ′

]
does contain the leading nonzero entry of a row (say row j), then

because rref(A) is in reduced row-echelon form, it must be that all pivots in rref(A) lie above row j. By
using Gaussian elimination to turn this pivot in the final column into a 1, eliminate all other nonzero
entries in the final column, and then swap rows in order to place the pivot in the row immediately below
the last pivot of rref(A), we have reduced

[
rref(A) ~c′

]
into reduced row-echelon form without changing

any of the entries in the first n columns. Letting ~c denote the new final column (which will have a 1 for

one entry, and 0 for all other entries), we conclude that rref
( [
A ~b

] )
=
[
rref(A) ~c

]
.

Uniqueness of ~c follows immediately by uniqueness of the reduced row-echelon form of a matrix. The
claim that ~c = ~0 if, and only if, ~b = ~0 follows from our earlier observation that elementary row operation
turn columns with all zero entries into columns with all zero entries, and that ~c and ~b are corresponding
columns in row equivalent matrices.
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We start with span.

Theorem 12 (Span and Linear Systems). Let ~v1, . . . , ~vn,~b ∈ Km, and let A ∈ Mm×n(K) be
A =

[
~v1 · · · ~vn

]
.

The following are equivalent:

(a) ~b ∈ span(~v1, . . . , ~vn).

(b) The linear system A~x = ~b has at least one solution ~x ∈ Kn.

(c) rref
( [
A ~b

] )
does not have a pivot in its final column.

(d) rank(A) = rank
( [
A ~b

] )
.

Proof. We will prove that (a)⇒(b)⇒(c)⇒(a), and that (c)⇔(d).

((a)⇒(b)) Suppose (a) holds. Then there are scalars x1, . . . , xn ∈ K with

~b = x1~v1 + · · ·+ xn~vn =
[
~v1 · · · ~vn

] x1
...
xn

 .
Therefore ~x =

[ x1
...
xn

]
is a solution of A~x = ~b, and (b) holds.

((b)⇒(c)) We proceed by contraposition. Suppose rref
( [
A ~b

] )
has a pivot in its final column. Then

the linear system A~x = ~b can be transformed (by a finite sequence of elementary operations) into a
system containing the equation 0 = 1, and therefore is inconsistent.

((c)⇒(a)) Suppose (c) holds. By the lemma, there is a unique ~c ∈ Km with rref
( [
A ~b

] )
=
[
rref(A) ~c

]
.

By (c), ~c does not contain the leading nonzero entry of any row. If ~c = ~0, then ~b = ~0 as well (by the
lemma). Because ~0 ∈ span(~v1, . . . , ~vn), (a) is proved. On the other hand, if ~c 6= ~0 (and the nonzero
entries of ~c cannot be the leading nonzero entries in their rows) then rref(A) has at least one pivot. Let
~vk1 , . . . , ~vkp denote the columns of rref(A) that contain pivots. Note that for each j = 1, . . . , p, ~vkj = ~ej,
which is the vector in Km with 1 in the j-th entry and 0 for all other entries. Because the final column

of
[
rref(A) ~c

]
does not contain a pivot, ~c =


c1
...
cp
0
...
0

. Let ~x ∈ Kn be the vector with entry cj in the kj-th

row (for j = 1, . . . , p), and 0 for every other entry. Then rref(A)~x = c1~vk1 + · · · + cp~vkp = ~c. Therefore

the linear system rref(A)~x = ~c has a solution. Because
[
A ~b

]
and

[
rref(A) ~c

]
are row equivalent, ~x

also solves A~x = ~b. This proves (a).

((c)⇒(d)) Suppose (c) holds. By the lemma, there is ~c ∈ Km such that rref(
[
A ~b

]
) =

[
rref(A) ~c

]
. By

(c), the final column of this matrix does not have a pivot. Therefore all of the pivots of this matrix lie
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in the first n columns, and so are exactly the pivots of rref(A). Therefore rank(
[
A ~v

]
) = rank(A), so

(d) holds.

((d)⇒(c)) Suppose (d) holds. By the lemma, there is ~c ∈ Km with rref(
[
A ~b

]
) =

[
rref(A) ~c

]
. By

assumption, the number of pivots in the first n columns of this matrix (rank(A)) is the same as the

number of pivots in the entire matrix (rank
( [

rref(A) ~c
] )

). Therefore the final column ~c does not

contain the pivot of some row, and (c) holds.

As a corollary, we have the following result.

Theorem 13 (Spanning Sets in Km). Let ~v1, . . . , ~vn ∈ Km, and let A ∈ Mm×n(K) be the matrix
A =

[
~v1 · · · ~vn

]
.

The following are equivalent:

(a) span(~v1, . . . , ~vn) = Km.

(b) For every ~b ∈ Km, the system A~x = ~b has at least one solution ~x ∈ Kn.

(c) rref(A) has a pivot in every row.

(d) rank(A) = m.

Proof. This is on your homework.

Let’s revisit some of our old examples in light of these theorems.

Example 24. Is

[
3
16
5
3

]
∈ span

([ 0
2
1
3

]
,

[ −1
−4
−1
−1

]
,

[
1/2
3
1
1

])
?

Because14

rref


0 −1 1

2
3

2 −4 3 16
1 −1 1 5
3 −1 1 3

 =


1 0 0 −1
0 1 0 0
0 0 1 6
0 0 0 0

 ,
and this last matrix has no pivot in the final column, the Span and Linear Systems Theorem implies
that [

3
16
5
3

]
∈ span

([ 0
2
1
3

]
,

[ −1
−4
−1
−1

]
,

[
1/2
3
1
1

])
.

Example 25. Is

[
4
16
5
3

]
∈ span

([ 0
2
1
3

]
,

[ −1
−4
−1
−1

]
,

[
1/2
3
1
1

])
?

Because

rref


0 −1 1

2
3

2 −4 3 16
1 −1 1 5
3 −1 1 3

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,
14Here and in the subsequent examples we are omitting the steps we used to compute the reduced row-echelon form

because they are included in earlier examples, but you should make sure to show your work on quizzes, exams, and
homework!
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has a pivot in its final column, the Span and Linear Systems Theorem implies that[
4
16
5
3

]
6∈ span

([ 0
2
1
3

]
,

[ −1
−4
−1
−1

]
,

[
1/2
3
1
1

])
.

We can also unpack the relationship between linear independence, linear systems, reduced row-
echelon form, and rank.

Theorem 14 (Linear Independence and Linear Systems). Let ~v1, . . . , ~vn ∈ Km, and let A ∈
Mm×n(K) be A =

[
~v1 · · · ~vn

]
.

The following are equivalent:

(a) ~v1, . . . , ~vn is a linearly independent set.

(b) For every ~b ∈ Km, the linear system A~x = ~b has at most one solution ~x ∈ Kn.

(c) rref(A) has a pivot in every column.

(d) rank(A) = n.

Proof. We show that (a)⇒(b)⇒(c)⇒(a), and that (c)⇔(d).

((a)⇒(b)) Suppose (a) holds. Let ~b ∈ Km. If ~b /∈ span(~v1, . . . , ~vn) then A~x = ~b has no solution. If
~b ∈ span(~v1, . . . , ~vn), then Exercise 4 on Homework 2 implies that there is a unique choice of scalars
x1, . . . , xn ∈ K with

~b = x1~v1 + · · ·+ xn~vn = A~x.

Therefore A~x = ~b has a unique solution, and (b) is proved.

((b)⇒(c)) We proceed by contraposition. Suppose that rref(A) has at least one column without a pivot.
Note that A~0 = ~0. We produce ~v 6= ~0 such that A~v = ~0. Let column k be the left-most column of A not
containing a pivot. If k = 1, then the k-th column of rref(A) is ~0 and ~e1 6= ~0 satisfies rref(A)~e1 = ~0, so
that A~e1 = ~0. If k > 1, then rref(A) has pivots in the first k − 1 columns (and the first k − 1 columns

of rref(A) are ~e1, . . . , ~ek−1), and the k-th column of rref(A) has the form ~c =


c1
...

ck−1

0
...
0

. Let ~v =


−c1
−c2
...

−ck−1

1
0
...
0

.

Then ~v 6= ~0 (because the k-th entry of ~v is nonzero), and

rref(A)~v = −c1~e1 − · · · − ck−1~ek−1 + 1~c = ~0.

Because elementary operations preserve solution sets, A~v = ~0 even though ~v 6= ~0, and (b) does not hold.

((c)⇒(a)) Suppose (c) holds. Suppose x1, . . . , xn ∈ K satisfy x1~v1 + · · · + xn~vn = ~0. Then ~x =

[ x1
...
xn

]
solves the system A~x = ~0. The lemma implies that rref

( [
A ~0

] )
=
[
rref(A) ~0

]
. Because rref(A) has

a pivot in each column, this is the augmented matrix of the system x1 = 0, . . . , xn = 0. Therefore (a)
holds.
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((c)⇒(d)) Suppose (c) holds. Because rref(A) has a pivot in each of its n columns, and there is at most
one pivot in every column, rank(A) = n.

((d)⇒(c)) Suppose (d) holds. Then rref(A) has n pivots. Because there cannot be more than one pivot
in each column, and because rref(A) has n columns, rref(A) has a pivot in every column.

Example 26. Is


0
2
1
3

 ,

−1
−4
−1
−1

 ,


1/2
3
1
1

 a linearly independent set?

Because

rref


0 −1 1

2

2 −4 3
1 −1 1
3 −1 1

 =


1 0 0
0 1 0
0 0 1
0 0 0


has a pivot in every column, the Linear Independence and Linear Systems Theorem implies that

0
2
1
3

 ,

−1
−4
−1
−1

 ,


1/2
3
1
1


a linearly independent set.

Example 27. Is

1
2
3

 ,
4

5
6

 ,
2

1
0

 ,
 7

8
10

 a linearly independent set?

Because

rref

1 4 2 7
2 5 1 8
3 6 0 10

 =

1 0 −2 0
0 1 1 0
0 0 0 1


does not have a pivot in its third column, the Linear Independence and Linear Systems Theorem implies
that 1

2
3

 ,
4

5
6

 ,
2

1
0

 ,
 7

8
10


is a linearly dependent set.
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Solutions of Linear Systems

Theorem (Span and Linear Systems). Let ~v1, . . . , ~vn,~b ∈ Km, and let A ∈ Mm×n(K) be
A =

[
~v1 · · · ~vn

]
.

The following are equivalent:

(a) ~b ∈ span(~v1, . . . , ~vn).

(b) The linear system A~x = ~b has at least one solution ~x ∈ Kn.

(c) rref
( [
A ~b

] )
does not have a pivot in its final column.

(d) rank(A) = rank
( [
A ~b

] )
.



Theorem (Linear Independence and Linear Systems). Let ~v1, . . . , ~vn ∈ Km, and let A ∈
Mm×n(K) be A =

[
~v1 · · · ~vn

]
.

The following are equivalent:

(a) ~v1, . . . , ~vn is a linearly independent set.

(b) For every ~b ∈ Km, the linear system A~x = ~b has at most one solution ~x ∈ Kn.

(c) rref(A) has a pivot in every column.

(d) rank(A) = n.



Lecture 12: More Solutions of Linear Systems

Learning Objectives:

• Summarize insights for solving linear systems.

Today we finished up our discussion of the results by last time by discussing the difficult step in the
proof of the Linear Independence and Linear Systems Theorem. Last time we saw many theoretical
results that link solution sets of equations to span, linear independence, reduced row-echelon form, and
rank. You’ll use those results on your homework, but before we move on from linear systems it is worth
revisiting (and summarizing) the basic problem of determining the solution set of a linear system in
light of our new results.

To determine the solution set of linear system A~x = ~b:

1. Form the augmented matrix
[
A ~b

]
.

2. Compute rref
( [
A ~b

] )
=
[
rref(A) ~c

]
. Because elementary operations preserve solution

sets of systems of equations, the solution set of rref(A)~x = ~c is the same as the solution set

of A~x = ~b.

3. Write down the solution set of rref(A)~x = ~c either by

3a. noting that the solution set is empty because the system is inconsistent (see Example
20, or Exercise 9 on Homework 3), or

3b. solve for the leading variable in each equation of the system rref(A)~x = ~c in terms
of the non-leading variables and entries of ~c, and express each solution ~x in the form
~x = ~xp + c1~v1 + · · · + cq~vq for appropriate vectors ~xp, ~v1, . . . , ~vq (see Examples 15, 18,
19, 22, Exercises 1 and 2 on Homework 2, Exercises 2 and 3 and 5 on Homework 3), or

3c. (in light of Exercise 9 on Homework 2) if you have a particular solution ~xp of A~xp = ~b,
then follow the steps in (3b.) to write down all solutions ~xh of the homogeneous system
rref(A)~xh = ~0 in the form c1~v1 + · · · + cq~vk for appropriate vectors ~v1, . . . , ~vk. Then
each solution ~x of the original system has the form ~x = ~xp + c1~v1 + · · ·+ cq~vk.

Transition to Linear Transformations

So far in the course we have interpreted the equation A~x = ~b from two different viewpoints:

(i) (Geometrically) Expressing ~b as a linear combination of the column vectors of A.

(ii) (Algebraically) Encoding a system of m linear equations in m unknowns, where
[
A ~b

]
is the

augmented matrix of the system.
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We have studied each of these interpretations independently (e.g. our first problems on span and
linear independence, and also our investigations of how to solve linear systems), and also used each
interpretation to study the other (e.g. solution sets of linear systems can be represented in terms of
linear combinations, and questions about linear combinations (e.g. involving linear independence, or
whether a given vector is in the span of a given set of vectors) can be analyzed using linear systems).

There is a third interpretation that will be equally helpful to consider: viewing ~x as transformed by
A to obtain ~b, or rather as the operation that sends the vector ~x (in Kn) to the vector ~b = A~x (in Km).
This point of view involves functions.

Remark 36. From this point forward we will be doing many more computations where we compute a
product A~x of a matrix and a vector. Until now it was convenient to compute this product as a linear
combination of the columns of A, but we will want a quicker way to compute these products going
forward. As a computational device, note that we can think of the entry in the j-th row of A~x as the
sum of the products of the entries in the j-th row of A with the corresponding entries of ~x:

a1,1 a1,2 · · · a1,n
...

...
. . .

...
aj,1 aj,2 · · · aj,n

...
...

. . .
...

am,1 am,2 · · · am,n



x1

x2
...
xn

 =


a1,1x1 + a1,2x2 + · · ·+ a1,nxn

...
aj,1x1 + aj,2x2 + · · ·+ aj,nxn

...
am,1x1 + am,2x2 + · · ·+ am,nxn

 .

As practice, show that  1 2 3 4
5 4 3 2
−3 −2 −1 0




1
−1
2
0

 =

 5
7
−3

 .
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Lecture 13: Linear Transformations

Learning Objectives:

• Define what it means for a transformation to be linear.

• Characterize linear transformations as exactly the matrix transformations.

Definition 24. Let A,B be sets. A function from A to B is a rule f that assigns to each element
x of Aa unique element f(x) of B. We typically denote that f is a function from A to B by writing
f : A→ B.
The set A is called the domain of f , the set B is called the codomain of f . Each x ∈ A is called
an input of f . The element f(x) ∈ B is called the image of x under f , or sometime the output
of f associated to the input x.

Remark 37. We’ll need more function terminology going forward, but we will introduce this terminology
as-needed.

Example 28. The function f : R→ R given by f(x)
def
= x2 + 1 sends an input x ∈ R to f(x) = x2 + 1.

Note that because −1 is not an output of f (i.e. there is no real number x so that −1 = f(x) = x2 + 1).

Example 29. Let A ∈ Mm×n(K). Then A induces a function T : Kn → Km, where T (~x) = A~x for
each ~x ∈ Kn. Such a function T (that is given by multiplying the input by a matrix) is called a matrix
transformation.

Example 30. The function I : Kn → Kn given by I(~x) = ~x is called the identity function.

The identity function is a matrix transformation. To see why, note that for each ~x =

[ x1
...
xn

]
∈ Kn,

I(~x) = ~x = x1~e1 + · · ·+ xn~en =
[
~e1 · · · ~en

] [ x1...
xn

]
=


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 ~x.
The n× n matrix In

def
=
[
~e1 · · · ~en

]
is called the n× n identity matrix.

Although we will be interested in all sorts of functions this year (especially once we get to multi-
variable calculus), our earlier investigations should make it clear that functions of the type identified
in the previous example will play a central role in the course. The most important properties of these
functions boil down to an algebraic fact that we haven’t yet needed: matrix multiplication distributes
over vector addition and scalar multiplication in the following sense, as you proved in your discussion.

Proposition 11. Let A ∈Mm×n(K). Then for every ~x, ~y ∈ Kn and every c ∈ K,

A(~x+ ~y) = A~x+ A~y and A(c~x) = c(A~x).
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Proof. Let ~a1, . . . ,~an ∈ Km be the columns of A. Then by the distributive and commutative properties
of vector addition and scalar multiplication we have

A(~x+ ~y) =
[
~a1 · · · ~an

] [ x1+y1
...

xn+yn

]
= (x1 + y1)~a1 + · · ·+ (xn + yn)~an

= (x1~a1 + · · ·+ xn~an) + (y1~a1 + · · ·+ yn~an)

= A~x+ A~y

and

A(c~x) =
[
~a1 · · · ~an

] cx1
...
cxn

 = (cx1)~a1 + · · ·+ (cxn)~an = c(x1~a1 + · · ·+ xn~an) = c(A~x).

Remark 38. Let A ∈ Mm×n(K), and let T : Kn → Km be defined by T (~x) = A~x. Then the last
proposition implies that for every ~x, ~y ∈ Kn and c ∈ K,

T (~x+ ~y) = A(~x+ ~y) = A~x+ A~y = T (~x) + T (~y) and T (c~x) = A(c~x) = c(A~x) = cT (~x).

The fact that matrix transformations preserve vector addition and scalar multiplication makes them
enormously important in the context of linear algebra. Indeed, we make a definition that captures all
functions which preserve our two basic vector operations.

Definition 25. Let T : Kn → Km. We call T linear (or a linear transformation) if the
following two conditions are satisfied:

(i) For every ~x, ~y ∈ Kn, T (~x+ ~y) = T (~x) + T (~y).

(ii) For every c ∈ K and every ~x ∈ Km, T (c~x) = cT (~x).

Remark 39. Mathematicians are generally interested in studying functions that preserve whatever
interesting structure they are studying. For example, once one introduces the notion of limit in single-
variable calculus one immediately starts to study continuous functions. To see how continuous functions
“preserve limits”, consider the following theorem (which we will not prove, but which you’ll see in an
analysis course):

Let f : R → R and L ∈ R. Then f is continuous at L if, and only if, for every g : R → R with
lim
x→a

g(x) = L, we have lim
x→a

f(g(x)) = f(L) = f(lim
x→a

g(x)).

Compare this idea with the definition of linear transformations, which are functions that preserve
the basic vector operations of addition and scalar multiplication.

Because linear transformations preserve vector addition and scalar multiplication, they also preserve
linear combinations.

Proposition 12. Let T : Kn → Km. Then T is linear if, and only if, for every k ∈ N, and every
c1, . . . , ck ∈ K and ~v1, . . . , ~vk ∈ Km,

T (c1~v1 + · · ·+ ck~vk) = c1T (~v1) + · · ·+ ckT (~vk).
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Proof. First suppose that T preserves linear combinations. Let ~x, ~y ∈ Kn and c ∈ K. Then

T (~x+ ~y) = T (1~x+ 1~y) = 1T (~x) + 1T (~y) = T (~x) + T (~y) and T (c~x) = cT (~x).

Therefore T is linear.
To prove the converse, suppose that T is linear. We proceed by induction. Let ~v ∈ Km and c ∈ K.

Then T (c~v) = cT (~v) by property (ii) of linearity.
Now let k ∈ N and assume that the result holds for linear combinations of k vectors. Let c1, . . . , ck+1 ∈

K and ~v1, . . . , ~vk+1 ∈ Kn. Then we have

T (c1~v1 + · · ·+ ck~vk + ck+1~vk+1) = T ((c1~v1 + · · ·+ ck~vk) + ck+1~vk+1)

= T (c1~v1 + · · ·+ ck~vk) + T (ck+1~vk+1)

= c1T (~v1) + · · ·+ ckT (~vk) + ck+1T (~vk+1),

where in the second step we used property (i) of linear transformations, and in the third step we used
the induction hypothesis and the base case. By the Principle of Mathematical Induction, the proof is
complete.

As another example, linear transformations send the additive identity of Kn to the additive identity
of Km.

Proposition 13. Let T : Kn → Km be linear. Then T (~0) = ~0.

Proof. The proof is almost a triviality, since T (~0) = T (0~0) = 0T (~0) = ~0.

Example 31. The function S : K2 → K3 given by S([ x1x2 ]) =

[
2x1−3x2
5x1+x21
x2x1+2

]
is not linear. There are many

ways to verify this. The simplest one is to note that T (~0) =
[

0
0
2

]
6= ~0. Alternatively, note that

T (2 [ 1
0 ]) = T ([ 2

0 ]) =
[

4
14
2

]
6=
[

4
12
4

]
= 2

[
2
6
2

]
= 2T ([ 1

0 ]).

We can spend time determining exactly why the function S in the last example fails to be linear
(e.g. the x2

1 in the second entry is a problem, as is the x2x1 in the third entry, as is the +2 in the third
entry), but it would be quicker to simply prove the remarkable fact that every linear transformation
from Kn to Km is a matrix transformation.

Theorem 15. Let T : Kn → Km. Then T is linear if, and only if, T is a matrix transformation.
Moreover, the matrix A ∈ Mm×n(K) satisfying T (~x) = A~x for every ~x ∈ Kn is unique, and it is
given by

A =
[
T (~e1) T (~e2) · · · T (~en)

]
.

Proof. Suppose there is a matrix A ∈ Mm×n(K) such that T (~x) = A~x for every ~x ∈ Kn. The argument
in Remark 38 shows that T is linear.

Now suppose that T is linear. Let ~x ∈ Kn. Then ~x = x1~e1 + · · · + xn~en, so because T is linear we
apply Remark 12 to see that

T (~x) = T (x1~e1+· · ·+xn~en) = x1T (~e1)+· · ·+xnT (~en) =
[
T (~e1) · · · T (~en)

] x1
...
xn

 =
[
T (~e1) · · · T (~en)

]
~x.
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Therefore T (~x) = A~x for every ~x ∈ Kn, where A =
[
T (~e1) · · · T (~en)

]
∈Mm×n(K).

For uniqueness, suppose that B ∈Mm×n(K) satisfies T (~x) = B~x for every ~x ∈ Kn. Let ~b1, . . . ,~bn be

the columns of B. Then for each 1 ≤ j ≤ n, T (~ej) = B~ej = ~bj, so that B =
[
T (~e1) · · · T (~en)

]
. This

completes the proof.
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Lecture 14: More Linear Transformations

Learning Objectives:

• Show that various transformations are linear, and produce the standard matrix of the trans-
formation.

• Establish several standard examples of linear transformations.

We start today with another helpful characterization of linearity, and an observation about the relation-
ship between linearity and linear independence.

Proposition 14. Let T : Kn → Km. The T is linear if, and only if, for every ~x, ~y ∈ Kn and every
λ ∈ K, T (λ~x+ ~y) = λT (~x) + T (~y).

Proof. Suppose that T is linear. Let ~x, ~y ∈ Kn and λ ∈ K. Then by Remark 12, T (λ~x+~y) = T (λ~x+1~y) =
λT (~x) + 1T (~y) = λT (~x) + T (~y).

Now suppose that the second condition holds. Let ~x, ~y ∈ K and λ ∈ K. Then

T (~x+ ~y) = T (1~x+ ~y) = 1T (~x) + T (~y) = T (~x) + T (~y)

and, since T (~0) = T (1~0 +~0) = 1T (~0) + T (~0) = T (~0) + T (~0) (and therefore T (~0) = ~0),

T (λ~x) = T (λ~x+~0) = λT (~x) + T (~0) = λT (~x) +~0 = λT (~x).

Therefore T is linear.

Example 32 (Warm-Up). Let T : Kn → Km be linear, and let ~v1, . . . , ~vk ∈ Kn. Show that if
T (~v1), . . . , T (~vk) is linearly independent, then ~v1, . . . , ~vk is linearly independent. Is the converse nec-
essarily true?

Suppose that T (~v1), . . . , T (~vk) is linearly independent. Suppose c1, . . . , ck ∈ K such that c1~v1 + · · ·+
ck~vk = ~0. Then

~0 = T (~0) = T (c1~v1 + · · ·+ ck~vk) = c1T (~v1) + · · ·+ ckT (~vk).

Because T (~v1), . . . , T (~vk) is linearly independent, c1 = · · · = ck = 0. Therefore ~v1, . . . , ~vk is linearly
independent.

The converse is not necessarily true. There are many counterexamples. For a counterexample,
consider T : Kn → Km given by T (~x) = ~0 = Om×n~x for each ~x ∈ Kn. (Here Om×n is the m × n
zero matrix, which has each entry equal to 0.) Then ~e1 is a linearly independent set in Kn, but since
T (~e1) = ~0, T (~e1) is a linearly dependent set in Km.

In light of the theorem from last time, we make the following definition.

Definition 26. Let T : Kn → Km be a linear transformation. The unique matrix A ∈ Mm×n(K)
satisfying T (~x) = A~x for every ~x ∈ Kn is called the (standard) matrix of T .

The previous theorem is quite useful in practice. As a first observation, the theorem gives us a way
to show that a given transformation is linear (i.e. show that it is a matrix transformation).
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Example 33. Let a ∈ K, and consider the transformation T : Kn → Kn defined by T (~x)
def
= a~x.

Then T is linear (by Proposition 14), because for each ~x, ~y ∈ Kn and c ∈ K,

T (c~x+ ~y) = a(c~x+ ~y) = ac~x+ a~y = cT (~x) + T (~y).

The standard matrix of T is n × n, and for each 1 ≤ k ≤ n the k-th column of T is T (~ek) = a~ek.
Therefore

T (~x) =


a 0 · · · 0
0 a · · · 0
...

...
. . .

...
0 0 · · · a

 ~x for each ~x ∈ Kn.

Example 34. There is a natural way to think about a vector ~x ∈ Kn as a matrix in Mn×1(K). Suppose

that ~x ∈ Kn, ~x =

[ x1
...
xn

]
. Define T : K1 → Kn by T ([a]) = a~x. Then note that since, for every [a], [b] ∈ K

and λ ∈ K we have

T (λ[a] + [b]) = (λa+ b)~x = λ(a~x) + b~x = λT ([a]) + T ([b]),

T is linear. Note that in K1, ~e1 = [1], so that the matrix of T is
[
T (~e1)

]
=
[
~x
]
. Then we can consider

~x as corresponding to the matrix X ∈ Mn×1(K) given by X =

[ x1
...
xn

]
. In particular, note that we have,

for each a ∈ K,
X[a] = T ([a]) = a~x.

Example 35. Let α ∈ R. Let Rα : R2 → R2 be the transformation that rotates R2 by α radians about
the origin.

On your homework this week, you will rigorously define Rα in terms of polar coordinates on R2, and
you will show that Rα is a linear transformation by explicitly producing a matrix Aα ∈ M2×2(R) such
that Rα(~x) = Aα~x.

Example 36. Let ~u ∈ R2 with ~u 6= ~0. Let L = span(~u). Then L is the line through (0, 0) that
is parallel to ~u. On your homework you will explore two linear transformations related to L: the
orthogonal projection onto L and the orthogonal reflection across L:
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We will explore the concept of orthogonality in MATH 291-2, but for now it suffices to say that “or-
thogonal” is a generalization of “perpendicular”.

Example 37. There is no linear transformation T : K3 → K3 such that

T

(1
1
0

) =

8
0
0

 , T

( 2
−2
1

) =

8
0
2

 , T

( 3
−1
1

) =

4
0
2

 .
To see why, note that

[
3
−1
1

]
=
[

1
1
0

]
+
[

2
−2
1

]
, so if T

( [
1
1
0

] )
=
[

8
0
0

]
and T

( [
2
−2
1

] )
=
[

8
0
2

]
then we must

have

T

( 3
−1
1

) = T

(1
1
0

)+ T

( 2
−2
1

) =

8
0
0

+

8
0
2

 =

16
0
2

 6=
4

0
2

 .
Example 38. Let’s determine whether there exists a linear transformation T : K3 → K3 such that

T

(1
1
0

) =

8
0
0

 , T

( 2
−2
1

) =

8
0
2

 , T

( 3
−1
−1

) =

4
0
2


Let’s first suppose that such a transformation T exists. We will either derive a contradiction (and

conclude that such a T cannot exist), or determine what T must be (and then verify that the transfor-
mation we produce does the trick).

To this end, let A ∈ M3×3(K), A =
[
~a1 ~a2 ~a3

]
be the matrix of T , so that T (~x) = A~x for every

~x ∈ K3. Then ~ak = T (~ek) for k = 1, 2, 3. The problem, of course, is that we only know the images of
[

1
1
0

]
,[

2
−2
1

]
, and

[
3
−1
−1

]
under T . However, if we can write ~e1, ~e2, ~e3 as linear combinations of

[
1
1
0

]
,
[

2
−2
1

]
,
[

3
−1
−1

]
,

then we should be able to use linearity to compute T .
To write ~e1 as a linear combination of the three given vectors, we need to find a solution of1 2 3

1 −2 −1
0 1 −1

 ~x =

1
0
0

 .
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To this end, we reduce the augmented matrix of the system to find1 2 3 1
1 −2 −1 0
0 1 −1 0

 −→
1 2 3 1

0 −4 −4 −1
0 1 −1 0

 −→
1 0 5 1

0 0 −8 −1
0 1 −1 0

 −→
1 0 0 3/8

0 0 1 1/8
0 1 0 1/8

 −→
1 0 0 3/8

0 1 0 1/8
0 0 1 1/8

 ,
or rather that

~e1 =
3

8

1
1
0

+
1

8

 2
−2
1

+
1

8

 3
−1
−1

 .
Similar computations yield that

~e2 =
5

8

1
1
0

− 1

8

 2
−2
1

− 1

8

 3
−1
−1


and

~e3 =
1

2

1
1
0

+
1

2

 2
−2
1

− 1

2

 3
−1
−1

 .
Therefore we must have

~a1 = T (~e1) =
3

8

8
0
0

+
1

8

8
0
2

+
1

8

4
0
2

 =

9/2
0

1/2


and

~a2 = T (~e2) =
5

8

8
0
0

− 1

8

8
0
2

− 1

8

4
0
2

 =

 7/2
0
−1/2


and

~a3 = T (~e1) =
1

2

8
0
0

+
1

2

8
0
2

− 1

2

4
0
2

 =

6
0
0

 .
Therefore the only possibility is that A =

9/2 7/2 6
0 0 0

1/2 −1/2 0

 . We then verify that T (~x) = A~x satisfies

T

(1
1
0

) =

9/2 7/2 6
0 0 0

1/2 −1/2 0

1
1
0

 =

8
0
0


and

T

( 2
−2
1

) =

9/2 7/2 6
0 0 0

1/2 −1/2 0

 2
−2
1

 =

8
0
2


and

T

( 3
−1
−1

) =

9/2 7/2 6
0 0 0

1/2 −1/2 0

 3
−1
−1

 =

4
0
2

 ,
as desired.
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Lecture 15: Matrix Algebra

Learning Objectives:

• Define the basic matrix operations of addition, multiplication, and scalar multiplication and
explore their basic properties and limitations.

The connection between linear transformations and matrices allow us to define matrix addition, scalar
multiplication, and matrix multiplication that correspond with natural ways of combining linear trans-
formations. Before defining these algebraic operations on matrices, we will first prove a result about
linear transformations that shows that there is really only one reasonable way to define them.

Theorem 16. Let T, S : Kn → Km and R : Km → Kp be linear transformations, and let
A,B ∈ Mm×n(K) and C ∈ Mp×m(K) be the standard matrices of T , S, and R (respectively).

Write A =
[
~a1 · · · ~an

]
and B =

[
~b1 · · · ~bn

]
.

(i) The function (T +S) : Kn → Km, (T +S)(~x)
def
= T (~x) +S(~x) is a linear transformation, and

its (m× n) standard matrix is
[
~a1 +~b1 · · · ~an +~bn

]
.

(ii) For each α ∈ K, the function αT : Kn → Km, (αT )(~x)
def
= αT (~x) is a linear transformation,

and its (m× n) standard matrix is
[
α~a1 · · · α~an

]
.

(iii) The composition R ◦ T : Kn → Kp, (R ◦ T )(~x)
def
= R(T (~x)) is a linear transformation, and

its (p× n) standard matrix is
[
C~a1 · · · C~an

]
.

Proof. Let α ∈ K. To be efficient, we will prove the linearity of T + S, αT , and R ◦ T simultaneously.
Let ~x, ~y ∈ Kn and λ ∈ K. Then

(T + S)(λ~x+ ~y) = T (λ~x+ ~y) + S(λ~x+ ~y)

= λT (~x) + T (~y) + λS(~x) + S(~y)

= λ(T (~x) + S(~x)) + T (~y) + S(~y)

= λ(T + S)(~x) + (T + S)(~y)

and

(αT )(λ~x+ ~y) = αT (λ~x+ ~y) = α(λT (~x) + T (~y)) = (αλ)T (~x) + αT (~y) = λ(αT )(~x) + (αT )(~y)

and

(R ◦T )(λ~x+ ~y) = R(T (λ~x+ ~y)) = R(λT (~x) +T (~y)) = λR(T (~x)) +R(T (~y)) = λ(R ◦T )(~x) + (R ◦T )(~y).

Therefore Proposition 14 implies that T + S, αT , and R ◦ T are linear.
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For the matrix formulas, we simply note that for each integer k from 1 to n, then k-th column of the
standard matrices of T + S, αT , and R ◦ T are (respectively)

(T + S)(~ek) = T (~ek) + S(~ek) = ~ak +~bk

and
(αT )(~ek) = αT (~ek) = α~ak

and
(R ◦ T )(~ek) = R(T (~ek) = R(~ak) = C~ak.

This completes the proof.

In light of the previous theorem, we make the following definitions.

Definition 27. Let A,B ∈ Mm×n(K), C ∈ Mp×m(K), and α ∈ K. Write A =
[
aj,k
]

=[
~a1 · · · ~an

]
and B =

[
bj,k
]
. Definea1,1 · · · a1,n

...
. . .

...
am,1 · · · am,n

+

 b1,1 · · · b1,n
...

. . .
...

bm,1 · · · bm,n

 def
=

 a1,1 + b1,1 · · · a1,n + b1,n
...

. . .
...

am,1 + bm,1 · · · am,n + bm,n

 ,

αA = α

a1,1 · · · a1,n
...

. . .
...

am,1 · · · am,n

 def
=

αa1,1 · · · αa1,n
...

. . .
...

αam,1 · · · αam,n

 ,
and

CA = C
[
~a1 · · · ~an

] def
=
[
C~a1 · · · C~an

]
.

Remark 40. Suppose that A ∈ Mm×n(K) and B ∈ Mk×p(K). Then note that AB is only defined
when n = k (and in this case, it is a m × p matrix). This is, of course, tied to the fact that matrix
multiplication comes from composition of linear transformations, and therefore the outputs of the first
linear transformation (S(~x) = B~x) must be suitable inputs for the second linear transformation (T (~y) =
A~y). As an additional wrinkle, note that BA may be undefined (i.e. p 6= m)) even if AB is defined
(n = k).

Remark 41. Because the columns of the product

CA = C
[
~a1 · · · ~an

]
=
[
C~a1 · C~an

]
are exactly the matrix C applied to the columns of A, our computational device for computing the
product of a matrix and a vector can be used to compute the product of two matrices. In particular,
the entry in the j-th row and k-th column of CA is exactly the entry in the j-th row of C~ak, so that

c1,1 c1,2 · · · c1,m
...

...
. . .

...
cj,1 cj,2 · · · cj,m
...

...
. . .

...
cp,1 cp,2 · · · cp,m



a1,1 · · · a1,k · · · a1,n

a2,1 · · · a2,k · · · a2,n
...

. . .
...

. . .
...

am,1 · · · am,k · · · am,n

 =


. . .

...
...

· · · cj,1a1,k + cj,2a2,k · · ·+ cj,mam,k · · ·
...

...
. . .

 .
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Remark 42. It is immediate to check (either by associativity and commutativity of real number addition
or of vector addition) that A+ (B +C) = (A+B) +C and A+B = B +A when A,B,C are matrices
of the same size.

Remark 43. The sum of matrices is straightforward to compute: we simply add the corresponding
entries of the two matrices. For example,1 2

3 4
5 6

+

0 −1
2 2
1 6

 =

1 1
5 6
6 12

 .
Note that because addition of linear transformations is only defined when the transformations have the
same domain and the same codomain, the notion of matrix addition only makes sense for matrices with
the same number of rows and columns. Moreover, if A,B ∈ Mm×n(K), then in light of part (i) in
Theorem 16 the definition of matrix addition can be interpreted as

(A+B)~x = A~x+B~x for every ~x ∈ Kn.

Therefore, the definition of matrix addition ensures that matrix addition distributes over multiplication
by a vector. We can even strengthen this by noting that if C =

[
~c1 · · · ~cp

]
∈Mn×p(K), then we have

(A+B)C =
[
(A+B)~c1 · · · (A+B)~cp

]
=
[
A~c1 +B~c1 · · · A~cp +B~cp

]
=
[
A~c1 · · · A~cp

]
+
[
B~c1 · · · B~cp

]
= AC +BC,

so that matrix addition distributes over matrix multiplication. (The case A(B + C) = AB + AC for
appropriately sized A,B,C follows by a similar argument.)

Remark 44. The scalar multiple of a matrix is also easy to compute: we simply scale the entries of the
matrix. For example,

−3

0 −1
2 2
1 6

 =

 0 3
−6 −6
−3 −18

 .
If A ∈ Mm×n(K) and α ∈ K, then in light of part (ii) in Theorem 16 and the linearity of T (~x) = A~x,
scalar multiplication of a matrix satisfies

(αA)~x = α(A~x) = A(α~x) for every ~x ∈ Kn.

Therefore, the scalar multiplication for matrices is “associative” in this sense. Of as in the last remark,
if C =

[
~c1 · · · ~cp

]
∈Mn×p(K) then

(αA)C =
[
(αA)~c1 · · · (αA)~cp

]
=
[
α(A~c1) · · · α(A~cp)

]
= α(AC)

and
(αA)C =

[
(αA)~c1 · · · (αA)~cp

]
=
[
A(α~c1) · · · A(α~cp)

]
= A(αC),

so that (αA)C = α(AC) = A(αC) as expected. Similarly, once can verify that α(A + B) = αA + αB,
(α + β)A = αA + βA, 1A = A, and α(βA) = (αβ)A for each α, β ∈ K, and each pair of matrices A,B
of the same size.
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Example 39. Note that the linear transformation T : Kn → Kn explored in Example 33 is exactly
T (~x) = α~x = αI(~x) = (αI)(~x), where α ∈ K is a fixed scalar. Therefore Theorem 16 necessitates that
the matrix of this transformation is

aIn = a


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 =


a 0 · · · 0
0 a · · · 0
...

...
. . .

...
0 0 · · · a

 ,
which (of course) is exactly what we obtained in that example by computing directly.

Matrix addition and scalar multiplication have many standard properties. We showed above that
matrix multiplication distributes over matrix multiplication.

Example 40. Note that the definition of matrix product ensures that for all A ∈ Mm×n(K) and B ∈
Mn×p(K) and ~x ∈ Kp, we have

(AB)~x = A(B~x),

so that matrix multiplication is “associative” in this sense. Indeed, we can extend this by noting that if
C =

[
~c1 · · · ~cq

]
∈Mp×q(K), then

(AB)C =
[
(AB)~c1 · · · (AB)~cq

]
=
[
A(B~c1) · · · A(B~cq)

]
= A

[
B~c1 · · · B~cq

]
= A(BC),

so that matrix multiplication is associative in the expected sense.
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Lecture 16: Invertibility

Learning Objectives:

• Explore the basic notions of invertibility for matrices and linear transformations.

• Characterize invertibility of matrices in terms of solutions of linear systems.

Remark 45. Even when the products AB and BA are defined, they may not be equal to one another.
That is, matrix multiplication fails to be commutative in general. For a counterexample, consider

A =

[
1 0
1 1

]
and B =

[
1 2
1 1

]
. Then AB =

[
1 0
1 1

] [
1 2
1 1

]
=

[
1 2
2 3

]
while BA =

[
1 2
1 1

] [
1 0
1 1

]
=

[
3 2
2 1

]
.

Because matrix multiplication is not commutative, the idea of “multiplicative identity” is more
complicated as well.

Example 41. Let A ∈ Mm×n(K), A =
[
~a1 · · · ~an

]
. Then note that ImA and AIn are defined (since

Im has the same number of columns as A has rows, and In has the same number of rows at A has
columns). Moreover, we have

ImA = Im
[
~a1 · · · ~an

]
=
[
Im~a1 · · · Im~an

]
=
[
~a1 · · · ~an

]
= A

and
AIn = A

[
~e1 · · · ~en

]
=
[
A~e1 · · · A~en

]
=
[
~a1 · · · ~an

]
= A.

Therefore the identity matrices act as “multiplicative identities” for matrices. What is complicated here
is that there are infinitely many identity matrices (one Ik for each k = 1, 2, 3, . . .), and IkA = A if A has
k rows, while AIj = A when A has j columns.

The next natural question, of course, is to ask in what sense a matrix may have a multiplicative
inverse.

Definition 28. Let A ∈Mn×n(K). Then we say that A is invertible if there exists B ∈Mn×n(K)
such that AB = In and BA = In.

Note that here we need both of the equations AB = In and BA = In because matrix multiplication
is not commutative. Even with this complication, just as for the other algebraic objects we have seen
there is only one possible inverse of an invertible matrix.

Proposition 15. Let A ∈ Mn×n(K). If A is invertible, then the matrix B ∈ Mn×n(K) satisfying
AB = In and BA = In is unique.

Proof. Suppose that C ∈Mn×n(K) is another such matrix. Then

C = CIn = C(AB) = (CA)B = InB = B.
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We are therefore justified in making the following definition.

Notation 1. Let A ∈Mn×n(K). If A is invertible, then we denote by A−1 the unique n×n matrix
such that AA−1 = In and A−1A = In. A−1 is called the inverse of A.

Remark 46. It might seem that this definition of invertability is a little too restrictive. Arguably
we should have considered matrices that were not square, and we should have said that a matrix
A ∈Mm×n(K) is invertible if there are matrices B,C ∈Mn×m(K) such that BA = In and AC = Im.

As it turns out, though, this generalization does not give us a more general notion of invertibility. On
your homework, you will show that if A ∈Mm×n(K) is invertible in this more general sense, then m = n
(so that A must be square) and that B = C (so that there is no need to consider distinct “left inverse”
and “right inverse”). In other words, any matrix that satisfies this more general notion of invertibility
must satisfy the more restrictive notion that we have defined above.

Example 42. Recall the question asked in Example 38: Does there exists a linear transformation
T : K3 → K3 such that

T

(1
1
0

) =

8
0
0

 , T

( 2
−2
1

) =

8
0
2

 , T

( 3
−1
−1

) =

4
0
2

?

Because linear transformations are matrix transformations, this is equivalent to asking whether there
exists a matrix A ∈M3×3(K) such that

A

1
1
0

 =

8
0
0

 , A

 2
−2
1

 =

8
0
2

 , A

 3
−1
−1

 =

4
0
2

 .
In terms of matrix products, this is equivalent to asking whether there exists A ∈M3×3(K) such that

A

1 2 3
1 −2 −1
0 1 −1

 =

8 8 4
0 0 0
0 2 2

 . (4)

To solve this problem, we first noted that1 2 3
1 −2 −1
0 1 −1

3/8
1/8
1/8

 = ~e1,

1 2 3
1 −2 −1
0 1 −1

 5/8
−1/8
−1/8

 = ~e2, and

1 2 3
1 −2 −1
0 1 −1

 1/2
1/2
−1/2

 = ~e3.

In terms of matrices, we showed that1 2 3
1 −2 −1
0 1 −1

3/8 5/8 1/2
1/8 −1/8 1/2
1/8 −1/8 −1/2

 = I3.

One can check that 3/8 5/8 1/2
1/8 −1/8 1/2
1/8 −1/8 −1/2

1 2 3
1 −2 −1
0 1 −1

 = I3
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as well, so that
[

1 2 3
1 −2 −1
0 1 −1

]
is invertible and

3/8 5/8 1/2
1/8 −1/8 1/2
1/8 −1/8 −1/2

 =

1 2 3
1 −2 −1
0 1 −1

−1

.

Because
[

1 2 3
1 −2 −1
0 1 −1

]
is invertible, the only matrix A that can satisfy equation (4) is

A =

8 8 4
0 0 0
0 2 2

1 2 3
1 −2 −1
0 1 −1

−1

=

8 8 4
0 0 0
0 2 2

3/8 5/8 1/2
1/8 −1/8 1/2
1/8 −1/8 −1/2

 =

9/2 7/2 6
0 0 0

1/2 −1/2 0

 ,
which is what we found in Example 38!

Remark 47. Soon we will prove a result that will allows us to conclude that if A,B ∈Mn×n(K) satisfy
AB = In, then A is invertible and B = A−1.

Invertibility of a matrix (and our ability to compute the inverse of a matrix) is, like everything else
we have studied this quarter, intimately tied to systems of linear equations. We will soon explore this
in full detail next time, but here is a first result.

Proposition 16. Let A ∈ Mn×n(K). Then A is invertible if, and only if, for each ~y ∈ Kn the
system A~x = ~y has exactly one solution.

Proof. Suppose that A is invertible. Let ~y ∈ Kn. Since ~y = A(A−1~y), ~x = A−1~y is a solution of A~x = ~y.
If ~z also satisfies A~z = ~y, then ~z = A−1(A~z) = A−1~y, so that A−1~y is the only solution of A~x = ~y.

Now assume that for each ~y ∈ Kn the linear system A~x = ~y has a unique solution. For each

1 ≤ j ≤ n, let ~bj be the unique solution of A~x = ~ej. Then B =
[
~b1 · · · ~bn

]
satisfies

AB =
[
A~b1 · · · A~bn

]
=
[
~e1 · · · ~en

]
= In.

Now now that A = InA = (AB)A = A(BA), so that A(In−BA) = On×n. Let In−BA =
[
~c1 · · · ~cn

]
.

Then for each 1 ≤ j ≤ n, A~cj = ~0, so that ~cj = ~0 because A~cj = ~0 has a unique solution (and ~0 is one
solution, so must be the only one). Therefore In − BA = On×n, so that BA = In as well. Therefore A
is invertible, and the proof is complete.

Remark 48. Proposition 16 is the doorway to one of the most famous and widely used results in linear
algebra, which we will discuss next time!
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Lecture 17: More Invertibility

Learning Objectives:

• Determine various conditions under which a matrix or linear transformation are invertible.

• Compute the inverse of a matrix.

We can also define a notion of invertibility for linear transformations as well.

Definition 29. Let T : Kn → Kn be linear. We say that T is invertible if there is a linear
transformation S : Kn → Kn such that T (S(~y)) = ~y for every ~y ∈ Kn and S(T (~x)) = ~x for every
~x ∈ Kn.

Remark 49. Note that the conditions on S above can be more efficiently restated as T ◦ S = I and
S ◦ T = I, where I : Kn → Kn is the identity map.

Just as for the inverse of a matrix, the inverse of a linear transformation (when it exists) is unique.

Proposition 17. Let T : Kn → Kn be linear. If T is invertible, then the linear transformation
S : Kn → Kn satisfying T (S(~y)) = ~y for every ~y ∈ Kn and S(T (~x)) = ~x for every ~x ∈ Kn is
unique.

Proof. Suppose that R : Kn → Kn is another such transformation. Let ~y ∈ Kn. Then R(~y) =
R(T (S(~y))) = S(~y), so R = S as functions.

Definition 30. Let T : Kn → Kn be linear. If T is invertible, then we denote by T−1 : Kn → Kn

the unique linear transformation such that T (T−1(~y)) = ~y for every ~y ∈ Kn and T−1(T (~x)) = ~x
for every ~x ∈ Kn. T−1 is called the inverse of T .

Remark 50. The existence of an inverse for a linear transformation implies that the transformation
has certain special properties as a function. To be able to state this properly, we make a definition.

Definition 31. Let A,B be sets and let f : A→ B be a function. We say that f is injective if
whenever f(a) = f(c) then a = c. We say that f is surjective if for every b ∈ B there is at least
one a ∈ A such that f(a) = b. We say that f is bijective if f is both injective and surjective.

Remark 51. The definition of surjectivity has a clear interpretation: f : A → B is surjective every
element of B is the image under f of at least one element of A. For injectivity, it may be easier to
understand the (logically equivalent) contrapositive of the definition: f : A→ B is injective if any two
distinct inputs a 6= c in A yield distinct outputs f(a) 6= f(c) in B.

Remark 52. On your homework, you prove that every bijective linear map is invertible.

Remark 53. We will shortly prove that invertible linear transformations have invertible standard ma-
trices, and that invertible matrices give rise to invertible transformations.
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The Invertibility Theorem

We now come to one of the most celebrated theorems in linear algebra: the Invertibility Theorem. This
theorem usually goes by the name “Invertible Matrix Theorem”, but because some of the statements in
our version involve linear transformations rather than matrices, we will give it the more general name.
The statement of the theorem is quite long, but because we have done so much work over the last few
weeks, but proof is shockingly short.

Theorem 17 (Invertibility Theorem). Let A =
[
~a1 · · · ~an

]
∈ Mn×n(K) and let T : Kn → Kn

be the linear transformation T (~x) = A~x. The following statements are equivalent.

(a-1) A is invertible.

(a-2) For every ~y ∈ Kn, the linear system A~x = ~y has a unique solution.

(a-3) rank(A) = n

(a-4) rref(A) = In

(a-5) T is invertible.

(a-6) T is bijective.

(b-1) span(~a1, . . . ,~an) = Kn

(b-2) For every ~y ∈ Kn, the linear system A~x = ~y has at least one solution.

(b-3) rref(A) has a pivot in every row.

(b-4) There is B ∈Mn×n(K) with AB = In.

(b-5) T is surjective.

(b-6) There is a linear transformation S : Kn → Kn such that T (S(~y)) = ~y for every ~y ∈ Kn.

(c-1) ~a1, . . . ,~an is a linearly independent set.

(c-2) The solution set of the linear system A~x = ~0 is {~0}.

(c-3) For every ~y ∈ Kn, the linear system A~x = ~y has at most one solution.

(c-4) rref(A) has a pivot in every column.

(c-5) There is B ∈Mn×n(K) with BA = In.

(c-6) T is injective.

(c-7) There is a linear transformation S : Kn → Kn with S(T (~x)) = ~x for every ~x ∈ Kn.

Proof. We will prove the equivalence of the statements in the following way:
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Proposition 16 implies that (a− 1)⇔ (a− 2).
By the Spanning Set in Km Theorem:

(b− 1)⇔ (b− 2)⇔ (b− 3)⇔ (a− 3)

By the Linear Independence and Linear Systems Theorem:

(c− 1)⇔ (c− 3)⇔ (c− 4)↔ (a− 3)

(a− 3)⇔ (a− 4) is immediate because In has rank n and is the only n× n matrix with n pivots.

(b− 2)⇔ (b− 5) is immediate from the definition of surjectivity.

(c − 3) ⇒ (c − 6): Assume (c − 3). Suppose that T (~x) = T (~z). Let ~y be this common value. Then
A~x = ~y = A~z, so that ~x = ~z.

(c − 6) ⇒ (c − 2): Assume (c − 6). If ~0 = A~x = T (~x), then since ~0 = A~0 = T (~0), (c − 6) implies that
~x = ~0.

(c − 2) ⇒ (c − 1): Assume (c − 2). Let c1, . . . , cn ∈ K, and suppose c1~a1 + · · · + cn~an = ~0. Then

A

[ c1
...
cn

]
= ~0. By (c− 2),

[ c1
...
cn

]
= ~0, so that c1 = · · · = cn = 0.

(a− 3)⇒ (a− 2): We have (a− 3)⇒ [(b− 2) and (c− 3)]⇒ (a− 2).

(a− 2)⇒ (a− 6): We have (a− 2)⇒ [(b− 2) and (c− 3)]⇒ [(b− 5) and (c− 6)]⇒ (a− 6).

(a− 6)⇒ (a− 5): This is Exercise 5(a,b,c) in Homework 5.
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(a− 5)⇒ (c− 7) and (a− 5)⇒ (b− 6) are immediate with S = T−1.

(c− 7)⇒ (c− 5) and (b− 6)⇒ (b− 4) follow by letting B be the standard matrix of S.

(c−5)⇒ (c−3)15: Assume (c−5). Let ~y ∈ Kn. Suppose ~x solves A~x = ~y. Then ~x = In~x = B(A~x) = B~y,
so this is the only possible solution of A~x = ~y.
(b− 4)⇒ (b− 2): Assume (b− 4). Let ~y ∈ Kn. Then ~y = In~y = A(B~y), so that ~x = B~y is a solution of
A~x = ~y.

This completes the proof.

Remark 54. As a consequence of this theorem, note that a linear transformation T : Kn → Kn is
invertible if, and only if, its standard matrix A is invertible. Moreover, it is immediate to check that if
S : Kn → Kn is the inverse of T if, and only if, the standard matrix of S is A−1.

Remark 55. As a consequence of the Invertibility Theorem, we have an excellent computational tech-
nique for determining when a square matrix is invertible, with the bonus that by the time we know that
the matrix is invertible, we’ve already computed its inverse!

Theorem 18 (Computing Inverses). Let A ∈Mn×n(K). Let
[
A In

]
be the n×(2n) matrix whose

first n columns are the columns of A, and whose last n columns are the columns of In. Then A
is invertible if, and only if, rref(

[
A In

]
) =

[
In B

]
for some matrix B ∈Mn×n(K). Moreover, in

this case we have B = A−1.

Proof. Suppose that A is invertible. By the Invertibility Theorem, A is row equivalent to In. Performing
a sequence of elementary row operations on

[
A In

]
that transforms A into In, we transform

[
A In

]
into

[
In B

]
for some B ∈Mn×n(K). Because

[
In B

]
is in reduced row-echelon form, rref(

[
A In

]
) =[

In B
]
.

Conversely, suppose that there is B ∈Mn×n(K) such that rref(
[
A In

]
) =

[
In B

]
. Then

[
A In

]
is

row equivalent to
[
In B

]
. By Lemma 1 (applied n times, each time to the right-most column), we see

that A is row equivalent to In, and therefore rref(A) = In. By the Invertibility Theorem, A is invertible.
Now suppose that A is invertible, and let B ∈ Mn×n(K) be the matrix such that rref(

[
A In

]
) =[

In B
]
. Then

[
A In

]
~, = ~0 if, and only if,

[
In B

]
~, = ~0. Let ~x ∈ Kn, define ~y = A~x, and let

~, =
[
~x
−~y
]
∈ K2n be the vector whose first n entries are those of ~x, and whose final n entries are those

of −~y. Then [
A In

]
~, = x1~a1 + · · ·+ xn~an − y1~e1 − · · · − yn~en = A~x− ~y = ~0,

so that
~0 =

[
In B

]
~, = x1~e1 + · · ·+ xn~en − y1

~b1 − · · · − yn~bn = ~x−B~y = ~x− (BA)~x,

and therefore BA~x = ~x. Taking ~x = ~ej for each j = 1, . . . , n, we see that BA = In. By the Invertibility
Theorem, there is C ∈Mn×n(K) with AC = In. But then C = InC = (BA)C = B(AC) = BIn = B, so
that AB = In. Therefore A is invertible with A−1 = B.

15The argument here shows that for every ~x that solves A~x = ~y, ~x = B~y. Therefore B~y is the only possible solution
of A~x = ~y. In particular if ~x1 and ~x2 are two solutions of A~x = ~y, then ~x1 = B~y = ~x2. This argument generated some
confusion in class, so here is an equivalent (but hopefully more clear) alternate argument: Let ~y ∈ Kn. Suppose that
~x1, ~x2 ∈ Kn are solutions of A~z = ~y. Then A(~x1−~x2) = A~x1−A~x2 = ~y−~y = ~0. Therefore ~0 = B~0 = BA(~x1−~x2) = ~x1−~x2,
so that ~x1 = ~x2.
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Remark 56. The previous theorem says that in order to tell whether A ∈ Mn×n(K) is invertible, we
simply find the reduced row-echelon form of the augmented matrix

[
A In

]
. If the first n columns reduce

to In, then A is invertible and the last n columns are A−1. If the first n columns do not reduce to In,
then A is not invertible!

Example 43. Let’s revisit the example of whether A =

1 2 3
1 −2 −1
0 1 −1

 is invertible. Then since

1 2 3 1 0 0
1 −2 −1 0 1 0
0 1 −1 0 0 1

 −→
1 2 3 1 0 0

0 −4 −4 −1 1 0
0 1 −1 0 0 1


−→

1 0 5 1 0 −2
0 0 −8 −1 1 4
0 1 −1 0 0 1


−→

1 0 5 1 0 −2
0 0 1 1/8 −1/8 −1/2
0 1 −1 0 0 1


−→

1 0 0 3/8 5/8 1/2
0 0 1 1/8 −1/8 −1/2
0 1 0 1/8 −1/8 1/2


−→

1 0 0 3/8 5/8 1/2
0 1 0 1/8 −1/8 1/2
0 0 1 1/8 −1/8 −1/2

 .
Because the first three columns of this matrix are I3, we conclude that A is invertible and

A−1 =

3/8 5/8 1/2
1/8 −1/8 1/2
1/8 −1/8 −1/2

 .
Very slick!
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Invertibility Theorem

Theorem (Invertibility Theorem). Let A =
[
~a1 · · · ~an

]
∈ Mn×n(K) and let T : Kn → Kn

be the linear transformation T (~x) = A~x. The following statements are equivalent.

(a-1) A is invertible.

(a-2) For every ~y ∈ Kn, the linear system A~x = ~y has a unique solution.

(a-3) rank(A) = n

(a-4) rref(A) = In

(a-5) T is invertible.

(a-6) T is bijective.

(b-1) span(~a1, . . . ,~an) = Kn

(b-2) For every ~y ∈ Kn, the linear system A~x = ~y has at least one solution.

(b-3) rref(A) has a pivot in every row.

(b-4) There is B ∈Mn×n(K) with AB = In.

(b-5) T is surjective.

(b-6) There is a linear transformation S : Kn → Kn such that T (S(~y)) = ~y for every ~y ∈ Kn.

(c-1) ~a1, . . . ,~an is a linearly independent set.

(c-2) The solution set of the linear system A~x = ~0 is {~0}.

(c-3) For every ~y ∈ Kn, the linear system A~x = ~y has at most one solution.

(c-4) rref(A) has a pivot in every column.

(c-5) There is B ∈Mn×n(K) with BA = In.

(c-6) T is injective.

(c-7) There is a linear transformation S : Kn → Kn with S(T (~x)) = ~x for every ~x ∈ Kn.





Lecture 18: Vector Spaces

Learning Objectives:

• Generalize the properties of Kn to formulate a definition for a vector space over K.

• Determine when a set with notions of addition and scalar multiplication is a vector space.

• Establish several standard examples of vector spaces.

At the beginning of the course we discussed how linear algebra began with the study of linear systems,
and then generalized to encompass the study of vectors in Rn and Cn. The first of these topics is
algebraic, and the latter is geometric. However, we have now seen that each of these two aspects of
linear algebra heavily inform the other, and we have built up an impressive base of results about vectors,
linear systems, and linear transformations.

The time has come to address the more modern formulation of linear algebra as the study of vector
spaces16 which are sets of objects with notions of addition and scalar multiplication that mimics those
those of Kn. Here is the definition.

16Some mathematicians (including the author of your book) prefer the term linear space to vector space, as there is a
feeling that vector space heavily connotes the very specific example of Kn. I am not one of those mathematicians, though,
and so we will use the vector space exclusively here.
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Definition 32. Let K be a field. A set V is called a vector space over K if V is equipped with
notions of addition and scalar multiplication that satisfy the following properties.

(1) For every u, v ∈ V and a ∈ K, u+ v ∈ V and av ∈ V .

(2) (Associativity of Vector Addition) For every u, v, w ∈ V ,

(u+ v) + w = u+ (v + w).

(3) (Commutativity of Vector Addition) For every u, v ∈ V , u+ v = v + u.

(4) (Additive Identity) There exists an element 0 ∈ V such that for every v ∈ V , v + 0 = v.

(5) (Additive Inverses) For every v ∈ V there is −v ∈ V such that v + (−v) = 0.

(6) (Associativity of Scalar Multiplication) For every v ∈ V and a, b ∈ K, a(bv) = (ab)v.

(7) (Distributivity of Scalar Multiplication over Scalar Addition) For every v ∈ V and a, b ∈ K,

(a+ b)v = av + bv.

(8) (Distributivity of Scalar Multiplication over Vector Addition) For every u, v ∈ V and a ∈ K,

a(u+ v) = au+ av.

(9) (Scalar Multiplicative Identity) For every v ∈ V , 1v = v.

If K = R, then call V a real vector space. If K = C, then call V a complex vector space.

Remark 57. Note that property (1) simply says that the notion of addition combine two vectors in V
and return another vector in V , and that the notion of scalar multiplcation combines a scalar in K and
a vector in V to give another vector in V .

Remark 58. Note that (2)-(3)-(4)-(5) exactly generalize the Properties of Vector Addition for Kn, and
that (6)-(7)-(8)-(9) exactly generalize the Properties of Scalar Multiplication for Kn.

Example 44. Kn, equipped with its usual notion of vector addition and scalar multiplcation, is a vector
space over K.

As a vector space over R, Rn is a real vector space. Similarly, as a vector space over C, Cn is a
complex vector space.

Example 45. Let n,m ∈ N. Then Mm×n(K), with the usual notions of matrix addition and scalar
multiplcation, is a vector space over K.

(1) The definition of matrix multiplcation and scalar multiplcation ensures that for every A,B ∈
Mm×n(K) and a ∈ K, A+B ∈Mm×n(K) and aA ∈Mm×n(K).

(2)-(3) For every A,B,C ∈Mm×n(K), Remark 42 shows that A+(B+C) = (A+B)+C and A+B = B+A.

(4) The first problem on Quiz 4 shows that for every A ∈Mm×n(K), A+Om×n = A.
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(5) The second quiz problem on Quiz 4 shows that for every A ∈Mm×n(K) there exists−A ∈Mm×n(K)
such that A+ (−A) = Om×n.

(6)-(9) The method for verifying the properties of scalar multiplcation of matrices was addressed in Re-
mark 44.

As a vector space over R, Mm×n(R) is a real vector space. As a vector space over C, Mm×n(C) is a
complex vector space.

Several important examples of vector spaces can be viewed as special cases of the following (extremely
general) examples.

Example 46. Let X be a nonempty set. Define F (X,K) to be the space of functions from X into K.
That is,

F (X,K)
def
= {f : f : X → K}.

For f, g ∈ F (X,K) and a ∈ K, define

(f + g) : X → K, (f + g)(x)
def
= f(x) + g(x) and af : X → K, (af)(x)

def
= af(x).

We verify17 that F (X,K) is a vector space over K.

(1) Let f, g ∈ F (X,K) and a ∈ K. The definition of f + g and af implies that f + g, af ∈ F (X,K).

(2) Let f, g, h ∈ F (X,K). Then for every x ∈ X,

((f + g) + h)(x) = (f(x) + g(x)) + h(x) = f(x) + (g(x) + h(x)) = (f + (g + h))(x),

so that (f + g) + h = f + (g + h) as functions from X to K.

(3) Let f, g ∈ F (X,K). Then for every x ∈ X,

(f + g)(x) = f(x) + g(x) = g(x) + f(x) = (g + f)(x),

so that f + g = g + f .

(4) Define 0 : X → K by 0(x)
def
= 0. Let f ∈ F (X,K). Then for every x ∈ X,

(f + 0)(x) = f(x) + 0(x) = f(x) + 0 = f(x),

so that f + 0 = f .

(5) Let f ∈ F (X,K). Define −f : X → K by (−f)(x)
def
= −f(x) for each x ∈ X. Then for each

x ∈ X,
(f + (−f))(x) = f(x)− f(x) = 0 = 0(x),

so that f + (−f) = 0.

17Throughout this proof, we use that fact that for two functions ,,/ : X → K, , = / exactly exactly when ,(x) = /(x)
for every x ∈ X.
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(6) Let f ∈ F (X,K) and a, b ∈ K. Then for every x ∈ X,

(a(bf))(x) = a(bf)(x) = a(bf(x)) = (ab)f(x) = ((ab)f)(x),

so that a(bf) = (ab)f .

(7) Let f ∈ F (X,K) and a, b ∈ K. Then for every x ∈ X,

((a+ b)f)(x) = (a+ b)f(x) = af(x) + bf(x) = (af)(x) + (bf)(x) = (af + bf)(x),

so that (a+ b)f = af + bf .

(8) Let f, g ∈ F (X,K) and a ∈ K. Then for every x ∈ X,

(a(f + g))(x) = a(f + g)(x) = a(f(x) + g(x)) = af(x) +ag(x) = (af)(x) + (ag)(x) = (af +ag)(x),

so that a(f + g) = af + ag.

(9) Let f ∈ F (X,K). Then for every x ∈ X,

(1f)(x) = 1f(x) = f(x),

so that 1f = f .

Therefore F (X,K) is a vector space over K.

Example 47. The argument above remains unchanged if we replace F (X,K) with F (X, V ) = {f : f :
X → V } where V is a vector space over K. Therefore if X is a nonempty set and V is a vector space
over K, then F (X, V ) is a vector space over K.
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Vector Spaces

Definition. Let K be a field. A set V is called a vector space over K if V is equipped with
notions of addition and scalar multiplication that satisfy the following properties.

(1) For every u, v ∈ V and a ∈ K, u+ v ∈ V and av ∈ V .

(2) (Associativity of Vector Addition) For every u, v, w ∈ V ,

(u+ v) + w = u+ (v + w).

(3) (Commutativity of Vector Addition) For every u, v ∈ V , u+ v = v + u.

(4) (Additive Identity) There exists an element 0 ∈ V such that for every v ∈ V , v+ 0 = v.

(5) (Additive Inverses) For every v ∈ V there is −v ∈ V such that v + (−v) = 0.

(6) (Associativity of Scalar Multiplication) For every v ∈ V and a, b ∈ K, a(bv) = (ab)v.

(7) (Distributivity of Scalar Multiplication over Scalar Addition) For every v ∈ V and
a, b ∈ K,

(a+ b)v = av + bv.

(8) (Distributivity of Scalar Multiplication over Vector Addition) For every u, v ∈ V and
a ∈ K,

a(u+ v) = au+ av.

(9) (Scalar Multiplicative Identity) For every v ∈ V , 1v = v.

If K = R, then call V a real vector space. If K = C, then call V a complex vector space.



Lecture 19: More Vector Spaces

Learning Objectives:

• Generalize various definition from Kn to general vector spaces.

• Review the elementary properties of Kn that remain true for general vector spaces (with the
same proofs).

Remark 59. As one concrete instance of Example 46, note that in your single-variable calculus course
you spent most of your time studying F (R,R) = {f : f : R→ R}, the real vector space of real-valued
functions on R.

Remark 60. When you take a course in Complex Analysis, you will spend a lot of time studying
F (R,C) and F (C,C), both of which are complex vector spaces.

Example 48. One important example that will provide counterexamples of many upcoming questions
is K∞, the space of sequences of scalars in K. That is,

K∞ = {(a1, a2, a3, a4, . . .) : aj ∈ K for every j ∈ N}.

Here, we define

(a1, a2, a3, . . .) + (b1, b2, b3, . . .)
def
= (a1 + b1, a2 + b2, a3 + b3, . . .)

and
c(a1, a2, a3, . . .)

def
= (ca1, ca2, ca3, . . .)

for every (a1, a2, a3, . . .), (b1, b2, b3, . . .) ∈ K∞ and every c ∈ K. You will show on your homework that
K∞ is a vector space over K.

It is sometimes (perhaps surprisingly) helpful to take what is usually a complex vector space, but
view it as a real vector space. You’ll explore this more deeply on a future homework assignment, but
here is an example.

Example 49. Cn is a vector space over R with the usual notion of vector addition, and where we define

a~v
def
= (a+ i0)~v for every a ∈ R, ~v ∈ Cn.

One can immediately verify that this satisfies the definition of vector space over R. This viewpoint is
useful when we wish to analyze complex vector spaces using results that are only valid for real vector
spaces. (We will see several results of this form in MATH 291-2 and MATH 291-3.)
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Properties of Vector Spaces

Vector spaces over K share many basic algebraic properties with Kn. Indeed, everything that we proved
about Kn using only the Properties of Vector Addition and Properties of Scalar Multiplcation (and,
of course, the properties of the field K) remain true for vector spaces over K with exactly the same
proofs. (This is exactly why we spent so much time focusing on proving results without using the
specific definitions of vector additon and scalar multiplication!) In particular, if V is a vector space over
K, then the following results hold (with exactly the same proofs that we gave earlier in the course):

• The additive identity 0 ∈ V is unique.

• For every v ∈ V , the additive inverse −v of v is unique.

• (−1)v = −v and −(−v) = v for every v ∈ V .

• 0v = 0 and a0 = 0 for every v ∈ V and a ∈ K.

• If a ∈ K and v ∈ V satisfy av = 0, then a = 0 or v = 0.

• The distributive properties apply to finite sums. In particular, for every k ∈ N,

(a1 + a2 + · · ·+ ak)v = a1v + a2v + · · ·+ akv for every a1, a2, . . . , ak ∈ K and v ∈ V

and

a(v1 + v2 + · · ·+ vk) = av1 + av2 + · · ·+ avk for every a ∈ K and v1, v2, . . . , vk ∈ V.

The elementary notions of linear combination, span, and linear independence remain exactly the
same as in the case of Kn.

Definition 33. Let V be a vector space over K, and let v1, . . . , vn ∈ V .

• A linear combination of v1, . . . , vn is a sum of the form

c1v1 + c2v2 + · · ·+ cnvn,

where c1, c2, . . . , cn ∈ K are scalars (sometimes called the coefficients of the linear combi-
nation).

• Define the span of v1, . . . , vn, denoted span(v1, . . . , vn), by

span(v1, . . . , vn)
def
= {c1v1 + · · ·+ cnvn : c1, . . . , cn ∈ K}.

• We call the set v1, . . . , vn linearly independent if for every c1, . . . , cn ∈ K, if

c1v1 + · · ·+ cnvn = 0

then c1 = c2 = · · · = cn = 0. A set of vectors that is not linearly independent is called
linearly dependent.

Many of the fundamental results about span and linear independence remain true (with the same
proofs!) in the more general setting. Here are a couple such results. The proofs (in Kn) can be found
earlier in the notes (and, for the last result, in one of our quizzes).
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Proposition 18 (Proposition 9). Let V be a vector space over K. Let v1, . . . , vn, u ∈ V . If
u ∈ span(v1, . . . , vn), then span(v1, . . . , vn, u) = span(v1, . . . , vn).

Theorem 19 (Linear Independence and Linear Dependence). Let V be a vector space over K,
let m ≥ 2, and let v1, . . . , vm ∈ V .

(a) v1, . . . , vm is a linearly independent set if, and only if, none of v1, . . . , vm can be written as
a linear combination of the others.

(b) v1, . . . , vm is a linearly dependent set if, and only if, at least one of v1, . . . , vm can be written
as a linear combination of the others.

Proposition 19 (Proposition 10). Let V be a vector space over K. Let v1, . . . , vm, u ∈ V . Assume
that v1, . . . , vm is linearly independent set, and that u /∈ span(v1, . . . , vm). Then v1, . . . , vm, u is a
linearly independent set.

Theorem 20 (Theorem 6). Let V be a vector space over K. Let v1, . . . , vm ∈ V . Then the
following are equivalent:

(a) v1, . . . , vm is a linearly independent set.

(b) There is a unique choice of scalars c1, . . . , cm ∈ K such that 0 = c1v1 + · · ·+ cmvm.

(c) For every u ∈ span(v1, . . . , vm), there is a unique choice of scalars c1, . . . , cm ∈ K such that
u = c1v1 + · · ·+ cmvm.

Proposition 20 (Problem 2, Quiz 2). Let V be a vector space over K. Let v1, . . . , vm, u1, . . . , un ∈
V . If v1, . . . , vm, u1, . . . , un is a linearly independent set, then v1, . . . , vm is a linearly independent
set.

Example 50. Consider C2 as a vector space over R. Then note that if ~x =

[
w
z

]
∈ C2, then writing

w = a+ ib and z = c+ id for a, b, c, d ∈ R, we have

~x =

[
a+ ib
c+ id

]
=

[
a
0

]
+

[
ib
0

]
+

[
0
c

]
+

[
0
id

]
= a

[
1
0

]
+ b

[
i
0

]
+ c

[
0
1

]
+ d

[
0
i

]
.

Therefore (as a vector space over R) we have C2 = span([ 1
0 ] , [ i0 ] , [ 0

1 ] , [ 0
i ]). We also have that [ 1

0 ] , [ i0 ] , [ 0
1 ] , [ 0

i ]
is a linearly independent set, for if c1, c2, c3, c4 ∈ R satisfy[

0
0

]
= c1

[
1
0

]
+ c2

[
i
0

]
+ c3

[
0
1

]
+ c4

[
0
i

]
=

[
c1 + ic2

c3 + ic4

]
,

then 0 = c1 + ic2 and 0 = c3 + ic4, so that c1 = c2 = c3 = c4 = 0.
This might seem strange that we have a set of four vectors in C2 that is linearly independent, but

the crucial point here is that we are considering C2 as a vector space over R. When we consider C2 as
a vector space over C, then it would have been impossible to have a linearly independent set of four
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vectors. This illustrates the important point that when we consider a set V as a vector space over K,
our choice of K actually does affects the algebraic properties of V. We will see some surprising instances
of this phenomenon next quarter.
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Generalization of Definitions and Results

• The additive identity 0 ∈ V is unique.

• For every v ∈ V , the additive inverse −v of v is unique.

• (−1)v = −v and −(−v) = v for every v ∈ V .

• 0v = 0 and a0 = 0 for every v ∈ V and a ∈ K.

• If a ∈ K and v ∈ V satisfy av = 0, then a = 0 or v = 0.

• The distributive properties apply to finite sums. In particular, for every k ∈ N,

(a1 + a2 + · · ·+ ak)v = a1v + a2v + · · ·+ akv for every a1, a2, . . . , ak ∈ K and v ∈ V

and

a(v1 + v2 + · · ·+ vk) = av1 + av2 + · · ·+ avk for every a ∈ K and v1, v2, . . . , vk ∈ V.

Definition. Let V be a vector space over K, and let v1, . . . , vn ∈ V .

• A linear combination of v1, . . . , vn is a sum of the form

c1v1 + c2v2 + · · ·+ cnvn,

where c1, c2, . . . , cn ∈ K are scalars (sometimes called the coefficients of the linear
combination).

• Define the span of v1, . . . , vn, denoted span(v1, . . . , vn), by

span(v1, . . . , vn)
def
= {c1v1 + · · ·+ cnvn : c1, . . . , cn ∈ K}.

• We call the set v1, . . . , vn linearly independent if for every c1, . . . , cn ∈ K, if

c1v1 + · · ·+ cnvn = 0

then c1 = c2 = · · · = cn = 0. A set of vectors that is not linearly independent is called
linearly dependent.



Proposition (Proposition 9). Let V be a vector space over K. Let v1, . . . , vn, u ∈ V . If
u ∈ span(v1, . . . , vn), then span(v1, . . . , vn, u) = span(v1, . . . , vn).

Theorem (Linear Independence and Linear Dependence). Let V be a vector space over K,
let m ≥ 2, and let v1, . . . , vm ∈ V .

(a) v1, . . . , vm is a linearly independent set if, and only if, none of v1, . . . , vm can be written
as a linear combination of the others.

(b) v1, . . . , vm is a linearly dependent set if, and only if, at least one of v1, . . . , vm can be
written as a linear combination of the others.

Proposition (Proposition 10). Let V be a vector space over K. Let v1, . . . , vm, u ∈ V .
Assume that v1, . . . , vm is linearly independent set, and that u /∈ span(v1, . . . , vm). Then
v1, . . . , vm, u is a linearly independent set.

Theorem (Theorem 6). Let V be a vector space over K. Let v1, . . . , vm ∈ V . Then the
following are equivalent:

(a) v1, . . . , vm is a linearly independent set.

(b) There is a unique choice of scalars c1, . . . , cm ∈ K such that 0 = c1v1 + · · ·+ cmvm.

(c) For every u ∈ span(v1, . . . , vm), there is a unique choice of scalars c1, . . . , cm ∈ K such
that u = c1v1 + · · ·+ cmvm.

Proposition (Problem 2, Quiz 2). Let V be a vector space over K. Let
v1, . . . , vm, u1, . . . , un ∈ V . If v1, . . . , vm, u1, . . . , un is a linearly independent set, then
v1, . . . , vm is a linearly independent set.



Lecture 20: Subspaces

Learning Objectives:

• Determine when a subset of a vector space is a vector space in its own right.

• Generate several examples of interesting vector spaces that can be viewed as subspaces of other
vector spaces.

Remark 61. Note that the empty set ∅ is not a vector space over K with any notion of addition or
scalar multiplcation, since property (4) of vector spaces (i.e. that there is an additive identity 0) implies
that a vector space must contain at least one element (i.e. an additive identity).

We have now seen quite a few examples of vector spaces over K: Kn, Mm×n(K), K∞, and even more
abstract examples like F (X,K) (for a nonempty set X) and F (X, V ) (for a nonempty set X and a vector
space V over K). We even saw an example of how to think of the complex vector space Cn as a vector
space over R. (You will explore this last example in more detail on your next homework.)

Many of the examples that we care about in applications are not in the list above, but rather are
subspaces of the spaces listed above. To make this precise, we give a definition.

Definition 34. Let V be a vector space over K. A subset18 W ⊆ V is called a subspace of V if
W is a vector space over K, where addition and scalar multiplication in W are the same as in V .

Here are some examples (proofs to follow).

Example 51. Let V be a vector space over K. Then V is a subspace of itself.

Example 52. Let V be a vector space over K, and let 0 denote the additive identity in V . Then {0}
is a subspace of V (called the trivial subspace).

Example 53. Let V be a vector space over K, and let v1, . . . , vm ∈ V . Then span(v1, . . . , vm) is a
subspace of V .

Example 54. The set Pn(K) of polynomials over K with degree no more n, that is

Pn(K)
def
= {f : K→ K : ∃a0, a1, . . . , an ∈ K such that ∀x ∈ K, f(x) = a0 + a1x+ · · ·+ anx

n},

is a vector space over K with the usual notions of addition and scalar multiplcation of functions. Note
that Pn(K) ⊆ F (K,K).

18If A,B are sets, the notation A ⊆ B, read “A is a subset of B”, indicates that every element of A is also an element
of B.
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Example 55. Let I ⊆ R be an interval. Then the space

C0(I,R)
def
= {f : I → R : f is continuous}

of continuous, real-valued functions on I is a subspace of F (I,R).

If V is a vector space over K and if W ⊆ V , then (in principle, at least) showing that W is a
subspace of V necessitates verifying that W , with its notions of addition and scalar multiplication,
satisfies properties (1)-(9) of the definition of vector space over K. Of course, the fact that the notions
of addition and scalar multiplication in W are exactly the same as those in V should mean that most
of the properties of addition and scalar multiplication in W (like associativity, commutativity, etc.)
should follow immediately from those in V . As one might expect, it turns out that we can simplify this
verification down to a few crucial points. This observation gives us the following theorem.

Theorem 21 (Subspace Criteria). Let V be a vector space over K, and let W ⊆ V . Equip W
with the notions of addition and scalar multiplication from V . Then W is a subspace of V if, and
only if, the following criteria hold:

(i) 0V ∈ W , where 0V is the additive identity of V .

(ii) W is closed under vector addition, in the sense that for every v, w ∈ W , v + w ∈ W .

(iii) W is closed under scalar multiplication, in the sense that for every v ∈ W and a ∈ K,
av ∈ W .

Moreover, in this case the additive identity 0V of V is also the additive identity of W .

Proof. Suppose that W is a subspace of V . Criteria (ii) and (iii) follow immediately from property (1)
of vector spaces. Because W is a vector space, W has an identity element 0W . By property (1) of vector
spaces, 00W = 0V ∈ W . Therefore (i) holds. Moreover, because 0V ∈ W , 0W = 0W + 0V = 0V .

Now assume that (i),(ii),(iii) hold. We verify that W satisfies the properties of a vector space.
Throughout, let v, w, u ∈ W and a, b ∈ K. Because v, w, u ∈ W and W ⊆ V , v, w, u ∈ V as well.

(1) This follows immediately from criteria (ii) and (iii).

(2) Because addition in V is associative, v + (u+ w) = (v + u) + w.

(3) Because addition in V is commutative, v + u = u+ v.

(4) By (i), 0V ∈ W . Because v + 0V = v, 0V is also an additive identity of W . Hence, take 0W = 0V .

(5) By (iii), −v = (−1)v ∈ W . Moreover, v + (−v) = 0V = 0W .

(6) Because scalar multiplcation in V is associative, a(bv) = (ab)v.

(7) Because scalar multiplcation in V distributes over scalar addition, (a+ b)v = av + bv.

(8) Because scalar multiplication in V distributes over vector addition, a(v + u) = av + au.

(9) Because of the scalar multiplicative identity property of V , 1v = v.

This completes the proof that W , with the notions of addition and scalar multiplcation inherited from
V , is a vector space over K.
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With this theorem in hand, producing interesting example of vector spaces is a breeze! Let’s revisit
the examples we listed earlier.

Proposition 21 (Spans are Subspaces). Let V be a vector space over K, and let v1, . . . , vm ∈ V .

Then W
def
= span(v1, . . . , vm) is a subspace of V .

Proof. Note that 0 = 0v1 + · · ·+ 0vm ∈ W . Let u,w ∈ W and a ∈ K. Choose c1, . . . , cm, d1, . . . , dm ∈ K
with

u = c1v1 + · · ·+ cmvm and w = d1v1 + · · ·+ dmvm.

Then

u+ v = (c1 + d1)v1 + · · ·+ (cm + dm)vm ∈ W and au = (ac1)v1 + · · ·+ (acm)vm ∈ W.

By the Subspace Criteria, W is a subspace of V .
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Lecture 21: More Subspaces

Learning Objectives:

• Generate several examples of interesting vector spaces that can be viewed as subspaces of other
vector spaces.

Example 56. Let V be a vector space over K, and let 0 denote the additive identity in V . Then {0}
is a subspace of V (called the trivial subspace).

Proof. Because {0} = span(0) ⊆ V , the Spans are Subspaces proposition implies that {0} is a subspace
of V .

Example 57. For n ∈ N ∪ {0}, the set Pn(K) of polynomials over K with degree no more n, that is

Pn(K)
def
= {f : K→ K : ∃a0, a1, . . . , an ∈ K such that ∀x ∈ K, f(x) = a0 + a1x+ · · ·+ anx

n},

is a vector space over K with the usual notions of addition and scalar multiplcation of functions.

Proof. For each k = 0, . . . , n, let pk : K → K be the polynomial pk(x) = xk (where p0(x) ≡ 1). Then
Pn(K) = span(p0, p1, . . . , pn) ⊂ F (K,K), so by the Spans are Subspaces Proposition, Pn(K) is a subspace
of F (K,K).

The past couple examples get some milage out of the fact that spans of finite sets of vectors are
subspaces. For more general examples where the subsets are defined by some other property, we may
need to get our hands dirty.

Example 58. The set P (K) of polynomials over K,

P (K)
def
= {f : K→ K : ∃n ∈ N and ∃a0, a1, . . . , an ∈ K such that ∀x ∈ K, f(x) = a0+a1x+· · ·+anxn},

is a vector space over K with the usual notions of addition and scalar multiplcation of functions.

Proof. Note that P (K) ⊆ F (K,K). Moreover, note that Pn(K) ⊆ P (K) for every n ∈ N∪ {0}. Because
P0(K) ⊆ P (K) and 0 ∈ P0(K), 0 ∈ P (K). Now suppose f, g ∈ P (K) and a ∈ K. Then there
exist n,m ∈ N ∪ {0} with f ∈ Pn(K) and g ∈ Pm(K). Then f + g ∈ Pmax(n,m)(K) ⊆ P (K) and
af ∈ Pn(K) ⊆ P (K). By the Subspace Criteria, P (K) is a subspace of F (K,K).

Example 59. Let I ⊆ R be an interval. Then the space

C0(I,R)
def
= {f : I → R : f is continuous}

of continuous, real-valued functions on I is a subspace of F (I,R).
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Proof. Note that because the zero function 0(x) ≡ 0 is continuous, 0 ∈ C0(I,R). Now suppose that
f, g ∈ C0(I,R) and a ∈ K. Then since f + g : I → R and af : I → R are continuous19, f + g, af ∈
C0(I,R). By the Subspace Criteria, C0(I,R) is a subspace of F (I,R).

Besides investigating specific examples, we might also prove additional abstract facts about sub-
spaces.

Proposition 22. Let V be a vector space over K, and let W be a subspace of V . Let w1, . . . , wn ∈
W . Then w1 . . . , wn is a linearly independent set in W if, and only if, w1, . . . , wn is a linearly
independent set in V .

Proof. Suppose that w1, . . . , wn is linearly independent in W . Suppose c1, . . . , cn ∈ K satisfy c1w1 + · · ·+
cnwn = 0V . Then c1w1 + · · · + cnvn = 0W (since 0W = 0V ), and therefore c1 = · · · = cn = 0. Therefore
w1, . . . , wn is linearly independent in V . The proof of the reverse direction is almost identical.

Proposition 23. Let V be a vector space over K, and let W and U be subspaces of V . Then the
intersection20 W ∩ U is a subspace of V .

Proof. Because W and U are subspaces, 0 ∈ W and 0 ∈ U . Therefore 0 ∈ W ∩ U . Now suppose
v, z ∈ W ∩ U and a ∈ K. Because v, z ∈ W ∩ U , v, z ∈ W and v, z ∈ U . Because W and U are
subspaces, v + z, av ∈ W and v + z, av ∈ U . Therefore v + z, az ∈ W ∩ U . By the Subspace Criteria,
W ∩ U is a subspace of V .

Remark 62. A natural question to follow the previous example is whether the union21 of two subspaces
of a vector space V must form a subspace of V .

The answer to this question is “no”. For a counterexample, consider the subspaces W,U of K2 given
by W = span(~e1) and U = span(~e2). Then W ∪ U = {~x ∈ K2 : ∃a ∈ K such that ~x = a~e1 or ~x = a~e2}.
But then ~e1, ~e2 ∈ W ∪ U , but ~e1 + ~e2 /∈ W ∪ U . To see this note that if a ∈ K satisfied ~e1 + ~e2 = a~e1,
then (1−a)~e1 +~e2 = ~0 and therefore (because ~e1, ~e2 is a linearly independent set) 1 = 0 (which we know
to be false). Similarly, we cannot write ~e1 + ~e2 = a~e2 for some a ∈ K.

On your homework, you will explore the exact conditions under which the union of two subspaces of
a vector space is a subspace.

Two particular examples of subspaces, investigated (without names) earlier in the quarter, are worth
revisiting now.

19This was proved in your calculus course. Let x0 ∈ I. Then because f and g are continuous at x0, we have lim
x→x0

(f +

g)(x) = lim
x→x0

(f(x) + g(x)) = f(x0) + g(x0) = (f + g)(x0), so f + g is continuous at x0. Similarly, lim
x→x0

(af)(x) =

lim
x→x0

af(x) = af(x0) = (af)(x0), so that af is continuous at x0. Therefore f + g and af are continuous on I.

20If A and B are sets, the intersection of A and B, denoted A ∩ B, is A ∩ B = {x : x ∈ A and x ∈ B}. That is,
A ∩B is the set of elements that are common to both A and B.

21If A and B are sets, the union of A and B, denotes A ∪B, is A ∪B = {x : x ∈ A or x ∈ B}. That is, A ∪B is the
set of elements that are in either A or B (or both).
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Definition 35. Let A ∈ Mm×n(K), and let ~a1, . . . ,~an ∈ Km be the columns of A. The column
space of A, denoted col(A), is defined to be

col(A)
def
= span(~a1, . . . ,~an).

The nullspace of A, denoted null(A), is defined to be

null(A)
def
= {~x ∈ Kn : A~x = ~0}.

Proposition 24. Let A ∈Mm×n(K)

(a) col(A) is a subspace of Km, and col(A) = {A~x ∈ Km : ~x ∈ Kn}.

(b) null(A) is a subspace of Kn.

Proof. Because col(A) is the span of n vectors in Kn, col(A) is a subspace of Kn. The equivalence
of span(~a1, . . . ,~an) and {A~x ∈ Km : ~x ∈ Kn} is immediate from the definition of multiplication of

matrices and vectors, since A

[ x1
...
xn

]
= x1~a1 + · · ·+ xn~an for each x1, . . . , xn ∈ K. This proves (a).

(b) follows immediately from Exercise 8 on Homework 2. However, we’ll prove it again here (with
far better notation!). Note that since A~0 = ~0, ~0 ∈ null(A). If ~x, ~y ∈ null(A) and a ∈ K, then

A(~x+ ~y) = A~x+ A~y = ~0 +~0 = ~0 and A(a~x) = a(A~x) = a~0 = ~0,

so that ~x+ ~y, a~x ∈ null(A). By the Subspace Criteria, null(A) is a subspace of Kn.

Remark 63. At this point, it might be good to pause and note that we can now add a couple more
items to the Invertibility Theorem. In particular, we have the following result.

Theorem 22 (Invertibility Theorem, cont’d). Let A =
[
~a1 · · · ~an

]
∈ Mn×n(K) and let T :

Kn → Kn be the linear transformation T (~x) = A~x. The following statements are equivalent.

(a-1) A is invertible.

...

(a-7) There is B ∈Mn×n(K) such that rref(
[
A In

]
) =

[
In B

]
.

(a-8) AT is invertible.

...

(b-7) col(A) = Kn

...

(c-8) null(A) = {~0}

Moreover, in (a-7), (b-4), and (c-5) we have B = A−1.
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Proof. The equivalence of (a-1) with (a-7) is the Computing Inverses Theorem (which also shows that
B = A−1). The equivalence of (a-1) with (a-8) is Exercise 5(d) from Homework 6. The equivalence of
(a-1) and (b-7) follows immediately from the definition col(A) = span(~a1, . . . ,~an) and the equivalence
of (a-1) with (b-1). The equivalence of (a-1) and (c-8) follows immediately from the equivalence of (a-1)
and (c-2), since null(A) is the solution set of A~x = ~0.

The fact that a right or left inverse of A must be A−1 is Exercise 2(a) on Homework 6.
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Lecture 22: Bases and Dimension

Learning Objectives:

• Determine whether a vector space is finite-dimensional or infinite-dimensional.

• Determine whether a set of vectors is a basis for a finite-dimensional vector space.

• Examine the properties of bases in terms of representing vectors in the space using linear
combinations.

The rest of the course (and much of the next quarter) will be devoted to studying the geometric properties
of vector spaces. Because we have already done so much work studying Kn, it will be important to
distinguish the vector spaces whose geometric structure most closely resembles that of Kn (for some n).
To this end, we make the following definition.

Definition 36. Let V be a vector space over K. Then we say that V is finite-dimensional if
there is a finite set of vectors v1, . . . , vn ∈ V such that span(v1, . . . , vn) = V . We say that V is
infinite-dimensional if V is not finite-dimensional.

Example 60. Kn is finite-dimensional, since Kn = span(~e1, . . . , ~en).

Example 61. Mm×n(K) is finite-dimensional. For each 1 ≤ j ≤ m and 1 ≤ k ≤ n, let Aj,k ∈Mm×n(K)
be the matrix with entry 1 in the j, k-th spot, and all other entries equal to 0. Then for each A = [aj,k] ∈
Mm×n(K), we have

A = a1,1A1,1 + · · ·+ a1,nA1,n + · · ·+ am,1Am,1 + · · ·+ am,nAm,n,

so that A ∈ span(A1,1, . . . , A1,n, . . . , Am,1, . . . , Am,n). Because the span of any collection of vectors in
Mm×n(K) is a subset ofMm×n(K), we therefore haveMm×n(K) = span(A1,1, . . . , A1,n, . . . , Am,1, . . . , Am,n).

Example 62. Because Pn(K) = span(1, x, x2, . . . , xn), Pn(K) is finite-dimensional.

Example 63. If V is a vector space over K, then the trivial subspace W = {0V } is finite-dimensional,
as W = span(0V ).

Example 64. The subspace V =
{
A ∈ M2×2(R) :

[
1 2
2 1

]
A = A

[
1 2
2 1

]}
of M2×2(R) is finite-

dimensional.
First note that V is indeed a subspace of M2×2(R) by the Subspace Criteria, since 02×2 ∈ V and if

A,B ∈ V and c ∈ R, then[
1 2
2 1

]
(A+B) =

[
1 2
2 1

]
A+

[
1 2
2 1

]
B = A

[
1 2
2 1

]
+B

[
1 2
2 1

]
= (A+B)

[
1 2
2 1

]
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and [
1 2
2 1

]
(cA) = c

([1 2
2 1

]
A
)

= c
(
A

[
1 2
2 1

])
= (cA)

[
1 2
2 1

]
.

Note that if A =

[
a b
c d

]
∈ V then[

a+ 2c b+ 2d
2a+ c 2b+ d

]
=

[
1 2
2 1

] [
a b
c d

]
=

[
a b
c d

] [
1 2
2 1

]
=

[
a+ 2b 2a+ b
c+ 2d 2c+ d

]
,

so that a+ 2c = a+ 2b, so b = c. Moreover, 2a+ c = c+ 2d, so a = d. Therefore A =

[
a b
b a

]
for some

a, b ∈ R. On the other hand, if A =

[
a b
b a

]
for some a, b ∈ R, then[

1 2
2 1

]
A =

[
a+ 2b 2a+ b
2a+ b a+ 2b

]
= A

[
1 2
2 1

]
.

Therefore V =
{[a b

b a

]
: a, b ∈ R

}
. Let A ∈ V . Then A =

[
a b
b a

]
for some a, b ∈ R. Moreover,

A = a

[
1 0
0 1

]
+ b

[
0 1
1 0

]
.

Because linear combinations of

[
1 0
0 1

]
,

[
0 1
1 0

]
are also in V , we therefore have V = span

([1 0
0 1

]
,

[
0 1
1 0

])
.

Remark 64. Not every vector space is finite dimensional. Indeed, P (K), K∞, and C0(R,R) are each
infinite-dimensional (and there are many other examples!). We do not yet have the machinery to prove
that these spaces are infinite-dimensional, but we will soon.

Bases

It is usually convenient to study the geometric structure of a vector space in terms of a fixed set of
vectors that exactly captures the structure of the space. Such a set is called a basis for the space.

Definition 37. Let V be a finite-dimensional vector space over K. Let v1, . . . , vn ∈ V . Then the
set v1, . . . , vn is a basis for V if v1, . . . , vn is linearly independent and if span(v1, . . . , vn) = V .

Example 65. Because Kn = span(~e1, . . . , ~en) and ~e1, . . . , ~en is a linearly independent set, ~e1, . . . , ~en is a
basis for Kn. We call this the standard basis for Kn.

Example 66. Because Pn(K) = span(1, x, x2, . . . , xn) and 1, x, x2, . . . , xn is a linearly independent set22,
1, x, x2, . . . , xn is a basis for Pn(K).

22Technically you proved this result only when K = R, but the result is true (with the same proof!) when K = C.
Alternatively, we can prove that the polynomials 1, z, z2, . . . , zn are also linearly independent in P (C) by noting that if
a0, . . . , an ∈ C and we write aj = rj + itj , rj , tj ∈ R for each 0 ≤ j ≤ n, then if 0 = a0 + a1z + · · · + anz

n for each
z ∈ C, then taking z = x + i0 for x ∈ R implies that 0 = (r0 + r1x + · · · + rnx

n) + i(t0 + t1x + · · · + tnx
n) for every

x ∈ R. Because the real and imaginary parts of a complex number are unique, we see that 0 = r0 + r1x + · · · + rnx
n

and 0 = t0 + t1x + · · · + tnx
n for every x ∈ R. Therefore (by the result you proved in discussion) r0 = · · · = rn = 0 and

t0 = · · · = tn = 0. Therefore a0 = · · · = an = 0.
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Example 67. In the notation of Example 61, becauseMm×n(K) = span(A1,1, . . . , A1,n, . . . , Am,1, . . . , Am,n),
and if c1,1, . . . , c1,n, . . . , cm,1, . . . , cm,n ∈ K satisfy

0m×n = c1,1A1,1 + · · ·+ c1,nA1,n + · · ·+ cm,1Am,1 + · · ·+ cm,nAm,n =
[
cj,k
]

then cj,k = 0 for each j, k, we see that A1,1, . . . , A1,n, . . . , Am,1, . . . , Am,n is a basis for Mm×n(K).

To capture the idea that bases describe the vector space V in the most efficient way possible, we
prove a (now almost trivial) theorem that will be absolutely crucial to the observations we will use
throughout the rest of the linear algebra portion of MATH 291.

Theorem 23. Let V be a finite-dimensional vector space over K. Let v1, . . . , vn ∈ V .

(a) v1, . . . , vn is linearly independent if, and only if, for every b ∈ V there is at most one choice
of scalars c1, . . . , cn ∈ K with b = c1v1 + · · ·+ cnvn.

(b) span(v1, . . . , vn) = V if, and only if, for each b ∈ V there is at least one choice of scalars
c1, . . . , cn ∈ K with b = c1v1 + · · ·+ cnvn.

(c) v1, . . . , vn is a basis for V if, and only if, for each b ∈ V there is exactly one choice of scalars
c1, . . . , cn ∈ K with b = c1v1 + · · ·+ cnvn.

Proof. For (a), suppose that v1, . . . , vn is linearly independent. Let b ∈ V . If b /∈ span(v1, . . . , vn),
then there is no choice of scalars c1, . . . , cn with b = c1v1 + · · · + cnvn. If b ∈ span(v1, . . . , vn), then a
past result implies that there is a unique (and therefore at most one) choice of scalars c1, . . . , cn with
b = c1v1 + · · · + cnvn. Conversely, suppose that for each b ∈ V there is at most one choice of scalars
c1, . . . , cn with b = c1v1 + · · ·+ cnvn. Taking b = 0, and noting that 0 = 0v1 + · · ·+ 0vn, we have that if
0 = c1v1 + · · ·+ cnvn then c1 = · · · = cn = 0, so that v1, . . . , vn is a linearly independent set.

Part (b) follows immediately from the definition of span, and part (c) follows immediately from (a),
(b), and the definition of basis.

Remark 65. For infinite-dimensional vector spaces, the definition of basis must be slightly more general.
If V is a (not necessarily finite-dimensional) vector space over K, and if B ⊆ V , then we say that B is
a basis for V if

(i) for every n ∈ N, every set v1, . . . , vn of n elements of B is linearly independent, and

(ii) for every b ∈ V , there is m ∈ N, w1, . . . , wm ∈ B, and c1, . . . , cm ∈ K with b = c1w1 + · · ·+ cmwm.

Part (i) captures the idea that the (possibly infinite) set B is linearly independent, and part (ii) captures
the idea that the (possibly infinite) set B spans V . Note that in (ii), the exact choice of m and the
vectors w1, . . . , wm (as well as the scalars c1, . . . , cm) might depend on b.

We will not study bases in infinite-dimensional vector spaces this year, so this definition is provided
merely for fun. I’ll add more information about how our results for finite-dimensional vectors spaces
generalize to the infinite-dimensional case when it can be done without going too far into the weeds.
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Lecture 23: More Bases and Dimension

Learning Objectives:

• Determine the relationship between the sizes of linearly independent sets and spanning sets.

• Construct basis for finite-dimensional vector spaces.

• Show that a vector space is infinite-dimensional.

Example 68. Let V be a vector space over K. As a matter of convention, we say that the empty set of
vectors is a basis for the trivial subspace {0V } of V . This is because of the fact that the empty set of

vectors is (vacuously) linearly independent, and because of the convention that span()
def
= {0V }.

Existence of Bases

We turn to two questions that may have flown under the radar until now: when does a vector space V
actually have a basis? And if V has a basis, then how can we actually produce a basis for V ? The answers
to both of these questions (for finite-dimensional vector spaces) boils down to an important result that
we’ll call the Independence vs. Span Theorem, which compares the sizes of linearly independent sets
and spanning sets.

Remark 66. To set the stage, we discuss a special case of the Independence vs. Span Theorem that
we already understand. Recall that in Kn, a linearly independent set ~v1, . . . , ~vm cannot have more than
n vectors (because, by the Linear Independence and Linear Systems Theorem, the reduced row-echelon
form of the n×m matrix

[
~v1 · · · ~vm

]
must have a pivot in every column), so that m ≤ n. We also saw

that if span(~w1, . . . , ~w`) = Kn, then (by the Spanning Set in Km Theorem, since the reduced row-echelon
form of the n × ` matrix

[
~w1 · · · ~w`

]
must have a pivot in every row) n ≤ `. In particular, m ≤ `,

or rather that every linearly independent set in Kn must necessarily have no more vectors than any
spanning set in Kn. Intuitively, this can be explained using the idea (which we will make rigorous soon)
that Kn is “n dimensional”. Here, it is impossible to have more than n “independent directions” in Kn,
and yet we need at least n “directions” to span Kn. The Independence vs. Span Theorem generalizes
this idea (that linearly independent sets must no larger than spanning sets) to all finite-dimensional
vector spaces.

Theorem 24 (Independence vs. Span). Let V be a vector space over K. Let v1, . . . , vm ∈ V and
w1, . . . , w` ∈ V . If v1, . . . , vm is a linearly independent set and span(w1, . . . , w`) = V , then m ≤ `.

Proof. Because w1, . . . , w` span V , for each k = 1, . . . ,m there are scalars u1,k, . . . , u`,k ∈ K such that

vk = u1,kw1 + · · ·+ u`,kw`.

109



Let U ∈ M`×m(K) be U =
[
uj,k
]
. We claim that the columns of U are linearly independent. To see

this, suppose ~x =

[ x1
...
xm

]
∈ Km satisfies U~x = ~0. Then for each 1 ≤ j ≤ `, uj,1x1 + · · ·+ uj,mxm︸ ︷︷ ︸

j−th entry of U~x

= 0.

Therefore

0V = 0w1 + · · ·+ 0w`

= (u1,1x1 + · · ·+ u1,mxm)w1 + · · ·+ (u`,1x1 + · · ·+ u`,mxm)w`

= x1(u1,1w1 + · · ·+ u`,1w`) + · · ·+ xm(u1,mw1 + · · ·+ u`,mw`)

= x1v1 + · · ·+ xmvm.

Because v1, . . . , vm is a linearly independent set, x1 = · · · = xm = 0. Therefore the columns of U are
linearly independent. By the Linear Independence and Linear Systems Theorem, rref(U) has a pivot in
every column. Therefore U ∈M`×m(K) has at least as many rows as it has columns, so m ≤ `.

We can immediate apply the Independence vs. Span Theorem to prove that our examples of infinite-
dimensional vector spaces are indeed infinite dimensional. The argument for each is almost the same.

Example 69. P (K) is infinite-dimensional, for if there were p1, . . . , p` ∈ P (K) with span(p1, . . . , p`) =
P (K), then every linearly independent set in P (K) would have no more than ` elements. But you showed
on your discussion worksheet that 1, x, . . . , x` is a linearly independent set of `+ 1 polynomials in P (K),
and `+ 1 > `. Therefore no finite set of polynomials spans P (K), so that P (K) is infinite-dimensional.

Example 70. Because P (R) is a subspace of C0(R,R), and because there are linearly independent sets
of every (finite) size in P (R), there are linearly independents sets of every (finite) size in C0(R,R).
Therefore the same arguments as above show that C0(R,R) is infinite-dimensional.

Example 71. K∞ is infinite-dimensional. To see this, for each n ∈ N let En = (δj,n)∞j=1, where δn,n = 1
and δj,n = 0 if j 6= n. That is, En is the sequence with entry 1 in the n-th spot, and 0 for every other entry.
Suppose that there were S1, . . . , S` ∈ K∞ with span(S1, . . . , S`) = K∞. Then every linearly indpendent
set in K∞ has at most ` elements. But E1, . . . , E`+1 is linearly indpenedent, for if c1, . . . , c`+1 ∈ K
satisfies

0K∞ = c1E1 + · · ·+ c`+1E`+1 = (c1, c2, . . . , c`+1, 0, 0, . . .),

then c1 = · · · = c`+1 = 0. Therefore K∞ is not spanned by a finite number of vectors.

Example 72. The set
[

1
2
1

]
,
[

2
0
0

]
,
[

1
1
1

]
is a basis for K3. To see why, note that since

rref

1 2 1
2 0 1
1 0 1

 = rref

1 2 1
0 −4 −1
0 −2 0

 = rref

1 0 1
0 0 −1
0 −2 0

 = rref

1 0 0
0 0 1
0 1 0

 =

1 0 0
0 1 0
0 0 1

 ,
the Invertibility Theorem implies that

[
1
2
1

]
,
[

2
0
0

]
,
[

1
1
1

]
both spans K3 and is linearly independent.
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Remark 67. The last example suggests that we should add another line to the Invertibility Theorem.
Let’s do that now.

Theorem (Invertibility Theorem, cont’d). Let A =
[
~a1 · · · ~an

]
∈ Mn×n(K) and let T : Kn →

Kn be the linear transformation T (~x) = A~x. The following statements are equivalent.

(a-1) A is invertible.

...

(a-9) ~a1, . . . ,~an is a basis for Kn.

...

Proof. Suppose that A is invertible. By our first version of the Invertibility Theorem, ~a1, . . . ,~an is a
linearly independent and span(~a1, . . . ,~an) = Kn. Therefore ~a1, . . . ,~an is a basis for Kn.

Suppose that ~a1, . . . ,~an is a basis for Kn. Then ~a1, . . . ,~an is a linearly independent set.

Perhaps the most important application of the Independence vs. Span Theorem is that it allows us
to explicitly describe how to construct bases.

Theorem 25 (Constructing Bases). Let V be a finite-dimensional vector space over K.

(a) Every spanning set for V contains a basis for V , in the sense that if v1, . . . , vn ∈ V and
span(v1, . . . , vn) = V , then there are 1 ≤ k1 < · · · < km ≤ n such that vk1 , . . . , vkm is a basis
for V .

Here we allow m = 0 in the case where the empty set of vectors is a basis for V .

(b) Every linearly independent set in V can be extended to a basis for V , in the sense that if
v1, . . . , vn ∈ V and v1, . . . , vn is a linearly independent set, then there are w1, . . . , wm ∈ V
such that v1, . . . , vn, w1, . . . , wm is a basis for V .

Here we allow the cases where n = 0 (where the linearly independent set we start with is
the empty set) or m = 0 (where v1, . . . , vn already spans V ).

In particular, if V is finite-dimensional then V has a basis.

Remark 68. The proof of this result should be very intuitive, but writing the proof to emphasize the
intuition results in an overly technical argument. Therefore, to supplement the proof, we will also give
an informal argument that captures the the intuition of the rigorous proof (without the complication).

“Proof” (Enlightening, Not Rigorous). For (a), suppose that v1, . . . , vn ∈ V and span(v1, . . . , vn) = V .
If v1, . . . , vn is linearly independent, then we are done. If not, then one of the vectors (say vj) is a linear
combination of the others. Therefore by a past result we have

V = span(v1, . . . , vj−1, vj, vj+1, . . . , vn) = span(v1, . . . , vj−1, vj+1, . . . , vn).

We therefore get a set v1, . . . , vj−1, vj+1, . . . , vn of n − 1 vectors that still span V . We repeat this
argument, at each stage removing a vector that is a linear combination of the others in the set, until
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we arrive at a linearly independent set (which could very well be the empty set). Eventually we have a
(perhaps empty) subcollection vk1 , . . . , vkm of v1, . . . , vn that is linearly independent and spans V .

For (b), because V is finite-dimensional, there is N ∈ N and a set of N vectors in V that spans
V . Suppose v1, . . . , vn is a linearly independent set in V . If span(v1, . . . , vn) = V , then we are done
(this is the case where m = 0). If not, then there is w1 ∈ V with w1 /∈ span(v1, . . . , vn). By a past
result, v1, . . . , vn, w1 is a linearly independent set of n + 1 vectors. We repeat this argument as many
times as possible. Because a linearly independent set in V cannot have more than N vectors (due to
the Independence vs. Span Theorem), for some m with n+m ≤ N we will have a linearly independent
list v1, . . . , vn, w1, . . . , wm which (by our inability to repeat the above argument) also spans V .

Proof (Rigorous, Not Enlightening). We start with (a). Suppose v1, . . . , vn ∈ V and span(v1, . . . , vn) =
V . If V = {0V }, then the empty subset of v1, . . . , vn is a linearly independent set that spans V . Suppose
that V is not trivial. Then at least one of the vj is nonzero, so v1, . . . , vn contains a linearly independent
set consisting of one vector. Define

S = {j : 1 ≤ j ≤ n and there are 1 ≤ k1 < · · · < kj ≤ n with vk1 , . . . , vkm linearly indpendent}.

Then 1 ∈ S and S ⊆ {1, . . . , n}. Let m be the maximum23 number in S. Then there is 1 ≤
k1 < · · · < km ≤ n with vk1 , . . . , vkm . Note that span(vk1 , . . . , vkm) ⊆ V . If there were j with
vj /∈ span(vk1 , . . . , vkm), then vk1 , . . . , vkm , vj would be a linearly independent subset of v1, . . . , vn with
m + 1 vectors which contradicts the definition of m. Therefore vj ∈ span(vk1 , . . . , vkm) for each j, so
that V = span(v1, . . . , vn) ⊆ span(vk1 , . . . , vkm). Therefore vk1 , . . . , vkm is a linearly independent set with
V = span(vk1 , . . . , vkm), so that vk1 , . . . , vkm is a basis for V .

We now turn to (b). Because V is finite-dimensional, there is N ∈ N such that some set of N vectors
in V spans V . Let v1, . . . , vn ∈ V with v1, . . . , vn linearly independent. (If we are starting with the
empty set, then n = 0.) By the Independence vs. Span Theorem, n ≤ N . Let

S = {k : 0 ≤ k ≤ N−n and there are w1, . . . , wk ∈ V with v1, . . . , vn, w1, . . . , wk linearly independent}.

Because v1, . . . , vn is linearly independent, 0 ∈ S. Letm be the maximum number in S. Let w1, . . . , wm ∈
V with v1, . . . , vn, w1, . . . , wm linearly independent. Then we have span(v1, . . . , vn, w1, . . . , wm) ⊆ V . Let
b ∈ V . If b /∈ span(v1, . . . , vn, w1, . . . , wm), then a past lemma implies that v1, . . . , vn, w1, . . . , wm, b is a
linearly indpendent set, contradicting the choice of m. Therefore b ∈ span(v1, . . . , vn, w1, . . . , wM). This
shows that span(v1, . . . , vn, w1, . . . , wm) = V , so that v1, . . . , vn, w1, . . . , wm is a basis for V .

Remark 69. The Constructing Bases Theorem only applies to finite-dimensional vector spaces, and
therefore you might still wonder whether an infinite-dimensional vector space V must have a basis (and,
of course, how to find such a basis if one exists). It is possible to prove that every infinite-dimensional
vector space has a basis (called a Hamel Basis) using the logical sledgehammer known as Zorn’s
Lemma. Because the proof gives no blueprint to how to actually produce a basis (in the way that the
Constructing Bases Theorem does), there is no insight that allows us to actually find such a basis.

23

Lemma 3. For every n ∈ N, if S ⊆ {1, . . . , n} is nonempty, then S has a maximum.

Proof. We proceed by induction. The only nonempty S ⊆ {1} is S = {1}, and the maximum of {1} is 1. Let n ∈ N and
suppose that the result holds for subsets of {1, . . . , n}. Let S ⊆ {1, . . . , n, n + 1} be nonempty. If n + 1 ∈ S, then since
k ≤ n + 1 for every k ∈ S, n + 1 is the maximum of S. If n + 1 /∈ S, then S ⊆ {1, . . . , n} and the induction hypothesis
implies that S has a maximum. By the Principle of Mathematical Induction, the proof is complete.
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Invertibility Theorem, revisited.

Theorem (Invertibility Theorem, cont’d). Let A =
[
~a1 · · · ~an

]
∈ Mn×n(K) and let T :

Kn → Kn be the linear transformation T (~x) = A~x. The following statements are equivalent.

(a-1) A is invertible.

...

(a-7) There is B ∈Mn×n(K) such that rref(
[
A In

]
) =

[
In B

]
.

(a-8) AT is invertible.

(a-9) ~a1, . . . ,~an is a basis for Kn.

...

(b-4) There is B ∈Mn×n(K) with AB = In.

...

(b-7) col(A) = Kn

...

(c-5) There is B ∈Mn×n(K) with BA = In.

...

(c-8) null(A) = {~0}

Moreover, in (a-7), (b-4), and (c-5) we have B = A−1.



Lecture 24: Even More Bases and Dimension

Learning Objectives:

• Define the notion of dimension of a finite-dimensional vector spaces in terms of the number of
vectors in a basis.

• Compute the dimension of several standard finite-dimensional vector spaces.

• Show that the dimension of a finite-dimensional vector space V behaves similarly to the notion
of dimension in Kn.

• Establish results about dimension that confirm our intuition about what dimension should
measure.

Another easy consequence of the Independence vs. Span Theorem is the observation that, for a finite-
dimensional vector space V , there is only one possiblity for the number of vectors that appear in a basis
for V .

Proposition 25. Let V be a finite-dimensional vector space. Suppose that v1, . . . , vn and
w1, . . . , wm are bases for V . Then m = n.

Proof. Because v1, . . . , vn is linearly independent and span(w1, . . . , wm) = V , the Independence vs. Span
Theorem implies that n ≤ m. Because w1, . . . , wm is linearly independent and span(v1, . . . , vn) = V ,
the Independence vs. Span Theorem implies that m ≤ n. Therefore m = n.

Because the number of vectors in a basis for a finite-dimensional vector space V captures the number
of “independent direction” needed to describe V , the number of vectors in a basis for V should capture
what we intuitively think of as the “dimension” of V . We therefore make the following definition.

Definition 38. Let V be a finite-dimensional vector space. Let n be the number of vectors in a
basis for V . We call n the dimension of V , and write dim(V ) = n.

Example 73. Because ~e1, . . . , ~en is a basis for Kn, dim(Kn) = n.

Example 74. Because 1, x, x2, . . . , xn is a basis for Pn(K), dim(Pn(K)) = n+ 1.

Example 75. Because A1,1, . . . , A1,n, . . . , Am,1, . . . , Am,n is a basis for Mm×n(K) (where Aj,k ∈Mm×n(K)
has entry 1 in the j, k-th spot, and all other entries 0), dim(Mm×n(K)) = mn.

Example 76. Let V be a vector space over K. Because the empty set is a basis for the trivial subspace
of V , dim({0V }) = 0.
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Example 77. Because

[
1 0
0 1

]
,

[
0 1
1 0

]
is a basis for

V =
{
A ∈M2×2(R) :

[
1 2
2 1

]
A = A

[
1 2
2 1

]}
,

we conclude that dim(V ) = 2.

Example 78. Because

[
1
0

]
,

[
i
0

]
,

[
0
1

]
,

[
0
i

]
is a basis for C2 (considered as a vector space over R), we

have that dimR(C2) = 4 (here the subscript dimR indicates that we are computing the dimension of C2

as a vector space over R, whereas dimC(C2) = 2).

Example 79. Let a, b, c ∈ R with at least one of a, b, c nonzero. On Exercise 2 of Homework 2, you
showed that the plane P through the origin of R3 given by ax + by + cz = 0 is spanned by a linearly
independent set of two vectors ~v1, ~v2. Therefore, as a subspace of R3, dim(P ) = 2. This agrees with our
notion that a plane is a “two-dimensional object”.

Example 80. Let ~v ∈ Rn with ~v 6= ~0. Because the line L through ~0 that is parallel to ~v is given by
L = span(~v), and because the set ~v is linearly indpendent (because ~v 6= ~0), we see that, as a subspace
of Rn, dim(L) = 1. This agrees with our intuition that a line is a “one-dimensional object”.

The fact that the dimension of a finite-dimensional vector space is well-defined allows us to recover
at least a portion of the Invertibility Theorem (of course, without any reference to invertibility) for
finite-dimensional vector spaces.

Theorem 26. Let V be a finite-dimensional vector space over K, and let n = dim(V ). Let
v1, . . . , vn ∈ V . Then the following are equivalent.

(a) v1, . . . , vn is linearly independent.

(b) span(v1, . . . , vn) = V .

(c) v1, . . . , vn is a basis for V .

Proof. (a)⇒(c). Suppose v1, . . . , vn is linearly independent. By the Constructing Bases Theorem,
v1, . . . , vn extends to a basis for V . But since dim(V ) = n, this extended set must also consist of
n vectors, and is therefore v1, . . . , vn itself.

(b)⇒(c). Suppose span(v1, . . . , vn) = V . By the Constructing Bases Theorem, v1, . . . , vn contains a
basis for V . But since dim(V ) = n, this basis must also consist of n vectors, and is therefore v1, . . . , vn
itself.

(c)⇒(a),(b). This is immediate from the definition of basis.
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The Constructing Bases Theorem (and its proof) are the keys to proving all sorts of intuitive results
about dimensionality. Here are a couple results.

Theorem 27 (Characterization of Infinite-Dimensionality). Let V be a vector space over K. Then
V is infinite-dimensional if, and only if, for every n ∈ N there are vectors v1, . . . , vn ∈ V with
v1, . . . , vn linearly indpendent.

Proof. (⇒) Assume that V is infinite-dimensional. We proceed by induction. Because the trivial
vector space is finite-dimensional, V contains a nonzero vector v1. Because v1 is nonzero, the set v1 is
linearly independent. Now let n ∈ N and assume that there are v1, . . . , vn ∈ V with v1, . . . , vn linearly
independent. Because V is infinite-dimensional, there exists vn+1 ∈ V with vn+1 /∈ span(v1, . . . , vn).
Therefore v1, . . . , vn, vn+1 is linearly independent. By the Principle of Mathematical Induction, the
result is proved.

(⇐) Assume that for every n ∈ N there are vectors v1, . . . , vn ∈ V with v1, . . . , vn linearly indepen-
dent. Suppose to the contrary that V were finite-dimensional. Then there is N ∈ N and a set of N
vectors in V that spans V . But by hypothesis there is a linearly independent set of N + 1 vectors in V .
By the Independence vs. Span Theorem, we obtain the absurd result that N + 1 ≤ N .

Remark 70. Note that the “⇐” part of the proof of the Characterization of Infinite-Dimensionality
was exactly the argument that we gave when we showed that P (K), K∞, C0(R,R), etc. were infinite
dimensional!

The next result confirms our intuition that a finite-dimensional vector space cannot have an infinite-
dimensional subspace, and that any proper subspace of a finite-dimensional vector space must have
smaller dimension than the space itself.

Theorem 28 (Dimension and Subspaces). Let V be a finite-dimensional vector space over K,
and let W be a subspace of V . Then W is finite-dimensional and dim(W ) ≤ dim(V ). Moreover,
dim(W ) = dim(V ) if, and only if, W = V .

Proof. Let n = dim(V ). Let m ∈ N, let w1, . . . , wm ∈ W , and suppose that w1, . . . , wm is linearly inde-
pendent (in W ). Then w1, . . . , wm is also linearly independent in V , and therefore (by the Constructing
Bases Theorem) extends to a basis w1, . . . , wm, v1, . . . , v` for V . Since m+ ` = n, we must have m ≤ n.
Therefore W is finite-dimensional, and if we take m = dim(W ) then we have dim(W ) ≤ dim(V ). If
m = n then there is a basis w1, . . . , wn for W that extends (by the Constructing Bases Theorem) to a
basis for V . But since a basis for V must consist of n vectors, w1, . . . , wn was already a basis for V , so
that W = span(w1, . . . , wn) = V . Conversely, if W = V then every basis for W is also a basis for V , so
that dim(W ) = dim(V ).
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Lecture 25: General Linear Transformations

Learning Objectives:

• Determine when a map from one vector space to another is linear.

• Establish the basic properties of linear transformations that generalize from earlier results.

• Characterize the existence and uniqueness of a linear transformation with finite-dimensional
domain in terms of its values on a basis.

Now that we have generalized the notion of vector space from Kn to general vector spaces over K, our
next task is to generalize the notion of linear transformations between vector spaces. Just as with vector
spaces, we will see that almost everything about linear transformation from Kn to Km will generalize (in
a suitable way) to linear transformations between two vector spaces over K (especially then the vector
spaces involved are finite-dimensional).

Definition 39. Let V and W be vector spaces over K, and let T : V → W . We call T linear (or
a linear transformation) if the following two conditions are satisfied:

(i) For every u, v ∈ V , T (u+ v) = T (u) + T (v).

(ii) For every c ∈ K and every v ∈ V , T (cv) = cT (v).

Remark 71. Note that here we require both V and W to be vector spaces over the same field K, as
this is the only way that property (ii) makes sense.

Remark 72. Note that the operations of addition and scalar multiplication that appear are those in V
and W , respectively. We mustn’t become confused and attempt, for example, to add an element of V
and an element of W . If we wanted to be very pedantic here, for (i) and (ii) we should write something
along the lines of T (u⊕V v) = T (u)⊕W T (v) and T (c�V v) = c�W T (v), where ⊕V ,�V are the notions
of vector addition and scalar multiplication in V , and ⊕W ,�W are the notions of vector addtiion and
scalar multiplication in W . As an act of mercy, let’s avoid this level of pendantry unless it become
absolutely necessary in order to avoid confusion.

Example 81. The map S : Mm×n(K) → Mn×m(K), S(A)
def
= AT is a linear transformation, since for

every A,B ∈Mm×n(K) and c ∈ K,

S(A+B) = (A+B)T = AT +BT = S(A) + S(B) and S(cA) = (cA)T = cAT = cS(A).

Here is an example that illustrates why it is useful (sometimes, at least) to be a little pedantic with
our notation.

Example 82. Note that R is a vector space over R with the usual notions of addition and (scalar)
multiplication. Let R+ = (0,+∞) be the collection of positive real numbers with the notions of addition
⊕ and scalar multiplication ⊕ given by

x⊕ y def
= xy and c� x def

= xc.
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On your homework you showed that R+ (with these operations) is a vector space over R (with additive
identity 0R+ = 1, and where the additive inverse of x ∈ R+ is 1

x
).

The transformation exp : R→ R+, exp(x) = ex is linear, since for each x, y ∈ R and c ∈ R,

exp(x+ y) = ex+y = exey = exp(x)⊕ exp(y) and exp(cx) = ecx = (ex)c = c� ex = c� exp(x).

Example 83. The map D : P (R) → P (R), D(p(x))
def
= p′(x) is linear, since for each p, q ∈ P (R) and

c ∈ R we have

D(p(x) + q(x)) = (p(x) + q(x))′ = p′(x) + q′(x) and D(cp(x)) = (cp(x))′ = cp′(x) for every x ∈ R.

In fact, differentiation can be viewed as a linear map between various vector spaces (with the same
proof!):

D : Pn(R)→ Pn(R), D : Pn(R)→ Pn−1(R), D : C1(R,R)→ C0(R,R).

The only thing to check here (other than that differentiation is linear, which has an identical proof as
the one above) is that the derivative of a polynomial of degree no more than n is a polynomial of degree
no more than n− 1, and that the derivative of a differentiable function with continuous derivative is a
continuous function.

Example 84. Consider Cn as a vector space over R, and define T : R2n → Cn by

T





x1
...
xn
y1
...
yn




def
=

x1 + iy1
...

xn + iyn

 .

Then T is linear, since for each


x1
...
xn
y1
...
yn

 ,

a1
...
an
b1
...
bn

 ∈ R2n and c ∈ R,

T





x1
...
xn
y1
...
yn


+



a1
...
an
b1
...
bn




= T





x1 + a1
...

xn + an
y1 + b1

...
yn + bn




=

x1 + a1 + i(y1 + b1)
...

xn + an + i(yn + bn)

 =

x1 + iy1
...

xn + iyn

+

a1 + ib1
...

an + ibn



= T





x1
...
xn
y1
...
yn




+ T





a1
...
an
b1
...
bn




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and

T


c



x1
...
xn
y1
...
yn




= T





cx1
...
cxn
cy1
...
cyn




=

cx1 + icy1
...

cxn + icyn

 = c

x1 + iy1
...

xn + iyn

 = cT





x1
...
xn
y1
...
yn




.

Example 85. Here is an example that will be extremely important next quarter. Fix ~a =

[
a1

a2

]
∈ K2,

and define T : K2 → K by

T

([
x1

x2

])
def
= x1a2 − x2a1.

The significance of this map is that T (~x) is the determinant of the 2× 2 matrix

[
x1 a1

x2 a2

]
, and therefore

(as you showed on your homework) T (~x) = 0 if, and only if,

[
x1 a1

x2 a2

]
is not invertible.

The map T is linear, since for ~x, ~y ∈ K2 and c ∈ K,

T (~x+ ~y) = T
([x1 + y1

x2 + y2

])
= (x1 + y1)a2 − (x2 + y2)a1 = (x1a2 − x2a1) + (y1a2 − y2a1) = T (~x) + T (~y)

and

T (c~x) = T
([cx1

cx2

])
= (cx1)a2 − (cx2)a2 = c(x1a2 − x2a1) = cT (~x).

Properties of Linear Transformations

Many of the properties of linear transformations T : V → W are already familiar to us from the special
case where V = Kn and W = Km. Here are a couple such results.

Proposition 26. Let V and W be vector spaces over K, and let T : V → W be linear. Then
T (0V ) = 0W .

Proof. By linearity, we have T (0V ) = T (00V ) = 0T (0V ) = 0W .

Proposition 27. Let V and W be vector spaces over K, and let T : V → W be a transformation.
Then the following are equivalent.

(a) T is linear.

(b) For every n ∈ N, v1, . . . , vn ∈ V , and c1, . . . , cn ∈ K,

T (c1v1 + · · ·+ cnvn) = c1T (v1) + · · ·+ cnT (vn).

(c) For every u, v ∈ V and c ∈ K, T (cu+ v) = cT (u) + T (v).
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Proof. We prove that (a)⇒ (b)⇒ (c)⇒ (a).
Suppose (a) holds. We proceed by induction. If v1 ∈ V and c1 ∈ K, then by linearity we have

T (c1v1) = c1T (v1). Now let n ∈ N and suppose the result of (b) holds. Let c1, . . . , cn+1 ∈ K and
v1, . . . , vn, vn+1 ∈ V . Then linearity and the induction hypothesis imply that

T (c1v1 + · · ·+ cnvn + cn+1vn+1) = T ((c1v1 + · · ·+ cnvn) + cn+1vn+1)

= T (c1v1 + · · ·+ cnvn) + T (cn+1vn+1)

= c1T (v1) + · · ·+ cnT (vn) + cn+1T (vn+1).

By the Principle of Mahtematical Induction, (b) holds.
Suppose (b) holds. Let u, v ∈ V and c ∈ K. Then T (cu + v) = T (cu + 1v) = cT (u) + 1T (v) =

cT (u) + T (v). Therefore (c) holds.
Suppose (c) holds. Note first that since T (0V ) = T (10V + 0V ) = 1T (0V ) + T (0V ) = T (0V ) + T (0V ),

so adding −T (0V ) to both sides yields 0W = T (0V ). Let u, v ∈ V and c ∈ K. Then we have

T (u+ v) = T (1u+ v) = 1T (u) + T (v) = T (u) + T (v)

and
T (cu) = T (cu+ 0V ) = cT (u) + T (0V ) = cT (u) + 0W = cT (u).

Therefore (a) holds.

Recall that the standard matrix A of a linear transformation T : Kn → Km is completely determined
by the values T (~e1), . . . , T (~en), since these end up being the columns of A. As a generalization of
this, we prove that a linear transformation (defined on a finite-dimensional vector space) is completely
determined by its values on a basis for the space (and, moreover, that we can always get a linear
transformation with specified outputs associated to the input basis).

Theorem 29 (Constructing Linear Maps). Let V and W be vector spaces over K, assume V is
finite-dimensional, let v1, . . . , vn ∈ V , and assume that v1, . . . , vn is a basis for V .

Then for every w1, . . . , wn ∈ W , there is a unique linear transformation T : V → W such that

T (v1) = w1, T (v2) = w2, . . . , T (vn) = wn.

Proof. Define T : V → W as follows. Let x ∈ V . Because v1, . . . , vn is a basis, there are unique

c1, . . . , cn ∈ K with x = c1v1 + · · ·+ cnvn. Then take T (x)
def
= x1w1 + · · ·+ xnwn. For a given x ∈ V , the

existence of the scalars c1, . . . , cn shows that T is defined on V . Because these scalars are unique (and
therefore that there is no ambiguity about how T (x) is defined), T is well-defined.

For linearity, let x, y ∈ V and λ ∈ K. Let c1, . . . , cn, d1, . . . , dn ∈ K be the unique scalars such that
x = c1v1 + · · ·+ cnvn and y = d1v1 + · · ·+ dnvn. Then

T (x+ y) = T ((c1 + d1)v1 + · · ·+ (cn + dn)vn)

= (c1 + d1)w1 + · · ·+ (cn + dn)wn

= (c1w1 + · · ·+ cnwn) + (d1w1 + · · ·+ dnwn)

= T (x) + T (y)

and

T (λx) = T ((λc1)v1 + · · ·+ (λcn)vn) = (λc1)w1 + · · ·+ (λcn)wn = λ(c1w1 + · · ·+ cnwn) = λT (x).
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Therefore T is linear.
For uniqueness, suppose that S : V → W is another linear transformation with S(vj) = wj for

j = 1, . . . , n. Let x ∈ V , and choose c1, . . . , cn ∈ K with x = c1v1 + · · ·+ cnvn. Then

T (x) = c1w1 + · · ·+ cnwn = S(c1v1 + · · ·+ cnvn) = S(x).

Therefore S = T as functions from V to W .

Example 86. Recall Example 38, wherein we were asked to determine whether there exists a linear
transformation T : K3 → K3 such that

T

(1
1
0

) =

8
0
0

 , T

( 2
−2
1

) =

8
0
2

 , T

( 3
−1
−1

) =

4
0
2

 .
We have now solved this problem in two ways: first in Example 38, and second (using invertibility)

in Example 42. Given the machinery we have at our disposal now, answering this question is very easy.
First note that because

rref

1 2 3
1 −2 −1
0 1 −1

 = rref

1 2 3
0 −4 −4
0 1 −1

 = rref

1 0 1
0 1 1
0 0 −2

 =

1 0 0
0 1 0
0 0 1

 = I3,

the Invertibility Theorem implies that
[

1
1
0

]
,
[

2
−2
1

]
,
[

3
−1
−1

]
is a basis for K3. By the Invertibility Theorem,

there is a (unique!) linear transformation T : K3 → K3 with

T

(1
1
0

) =

8
0
0

 , T

( 2
−2
1

) =

8
0
2

 , T

( 3
−1
−1

) =

4
0
2

 .
Of course, while this approach allows us to answer the qualitative question of whether such a linear
transformation exists, it does not actually give us the (more refined) information about how to compute
the outputs of such a transformation, other than that the value of T (~x) is completely determined by

linearity and the fact that ~x can be written uniquely as a linear combination of
[

1
1
0

]
,
[

2
−2
1

]
,
[

3
−1
−1

]
.
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Lecture 26: Images and Kernels

Learning Objectives:

• Investigate the notions of injectivity, surjectivity, bijectivity, and invertibility for linear trans-
formations.

• Establish basic properties of the image and kernel of a linear transformation.

In addition to the properties we summarized last time, we note that the definitions of injective, surjective,
and bijective remain the same when we consider general linear transformations.

Definition 40. Let V and W be vector spaces over K, and suppose that T : V → W is a linear
transformation.

• We call T injective (or one-to-one) if for every u, v ∈ V , if T (u) = T (v) then u = v.

• We call T surjective (or onto) if for every w ∈ W there is v ∈ V with T (v) = w.

• We call T bijective if T is both injective and surjective.

The definition of invertibility also generalizes in the expected way.

Definition 41. Let V and W be vector spaces over K, and let T : V → W be a linear transforma-
tion. We call T invertible if there is a linear transformation S : W → V with S(T (v)) = v and
T (S(w)) = w for every v ∈ V and w ∈ W . We sometimes call an invertible linear transformation
an (linear) isomorphism between V and W .

We’ll say more about why we are introducing the term isomorphism in a couple days. The argu-
ment that you gave on Exercise 5 of Homework 5 shows that the inverse function of a bijective linear
transformation is linear. When combined with the argument we gave in Proposition 17 (i.e. that the
inverse of an invertible linear transformaton is unique), we immediately have the following result.

Theorem 30. Let V and W be vector spaces over K, and let T : V → W be a linear transfor-
mation. Then T is bijective if, and only if, T is invertible.
Moreover, inverse function T−1 of T is the unique function satisfying T−1(T (v)) = v and
T (T−1(w)) = w for every v ∈ V and w ∈ W .

Images and Kernels

Recall that for A ∈ Mm×n(K) we had two natural subspaces associated with A: the column space
col(A) ⊆ Km, and the nullspace null(A) ⊆ Kn. In terms of linear transformations, we have the following.
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Definition 42. Let V and W be vector spaces over K, and assume that T : V → W is a linear
transformation. Define the image of T , denoted image(T ), to be the collection of outputs of T :

image(T )
def
= {T (v) ∈ W : v ∈ V } = {w ∈ W : there is v ∈ V with w = T (v)}.

Define the kernel of T , denotes ker(T ), to be

ker(T )
def
= {v ∈ V : T (v) = 0W}.

Remark 73. Note that if T : Kn → Km is a linear transformation with T (~x) = A~x for every ~x ∈ Kn,
then

image(T ) = {T (~x) : ~x ∈ Kn} = {A~x : ~x ∈ Kn} = col(A)

and
ker(T ) = {~x ∈ Kn : T (~x) = ~0} = {~x ∈ Kn : A~x = ~0} = null(A),

so that the image and kernel of a linear transformation generalize the notions of column space and
nullspace.

Just as for the column space and nullspace of a matrix, the image and kernel of a linear transformation
are subspaces of the domain and codomain (respectively) of the transformation.

Proposition 28. Let V and W be vector spaces over K, and let T : V → W be a linear
transformation. Then the following hold.

(a) image(T ) is a subspace of W ,

(b) ker(T ) is a subspace of V ,

(c) If V is finite-dimensional then

(c-i) ker(T ) and image(T ) are finite-dimensional, and

(c-ii) if V = span(v1, . . . , vn), then image(T ) = span(T (v1), . . . , T (vn)).

Proof. We start with the image. Note that since T (0V ) = 0W , 0W ∈ image(T ). Suppose u,w ∈ image(T )
and c ∈ K. Then there are v, z ∈ V with T (v) = u and T (z) = w, so that

u+ w = T (v) + T (z) = T (v + z) ∈ image(T ) and cu = cT (v) = T (cv) ∈ image(T ).

By the Subspace Criteria, image(T ) is a subspace of W .
Now we show that ker(T ) is a subspace of V . Note that since T (0V ) = 0W , 0V ∈ ker(T ). Suppose

that v, z ∈ ker(T ) and c ∈ K. Then

T (v + z) = T (v) + T (z) = 0W + 0W = 0W and T (cv) = cT (v) = c0W = 0w,

so that v + z ∈ ker(T ) and cv ∈ ker(T ). By the Subspace Criteria, ker(T ) is a subspace of V .
Finally, assume that V is finite-dimensional. By the Subspaces and Dimension Theorem, ker(T ) is

finite-dimensional. Moreover, there are v1, . . . , vn ∈ V with V = span(v1, . . . , vn). Because T (v1), . . . , T (vn) ∈
image(T ) and image(T ) is a subspace of W , span(T (v1), . . . , T (vn)) ⊆ image(T ). On the other hand, if
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w ∈ image(T ) then there is v ∈ V with T (v) = w. Write v = c1v1 + · · ·+ cnvn for some c1, . . . , cn ∈ K.
Then w = T (c1v1 + · · · + cnvn) = c1T (v1) + · · · + cnT (vn) ∈ span(T (v1), . . . , T (vn)). Therefore
image(T ) = span(T (v1), . . . , T (vn)) and image(T ) is finite-dimensional.

As an application, we have our most general version of a result you first proved in Exercise 9 of
Homework 2.

Theorem 31 (Solution Sets of Linear Equations). Let V and W be vector spaces, let T : V → W
be a linear transformation, and let w0 ∈ W . If there is v0 ∈ V such that T (v0) = w, then the set
of solutions of T (v) = w0 is exactly

v0 + ker(T )
def
= {v0 + vh : vh ∈ ker(T )}.

Proof. Suppose first that v ∈ {v0 + vh : vh ∈ ker(T )}. Choose vh ∈ ker(T ) with v = v0 + vh. Then
T (v) = T (v0 + vh) = T (v0) + T (vh) = w0 + 0W = w0.

Conversely, suppose that v ∈ V and T (v) = w0. Then v = v0 + (v − v0), and, since T (v − v0) =
T (v)− T (v0) = w0 − w0 = 0W , v − v0 ∈ ker(T ). Therefore v ∈ {v0 + vh : vh ∈ ker(T )}, and the proof
is complete.

The Solution Sets of Linear Equations Theorem has wide-ranging applications. Here is one from
analysis (where we can solve a linear partial differential equation).

Example 87. Find all twice-differentiable functions f : R → R that solve the differential equation
f ′′(x) + f(x) = 2x2 − x.

Solution. Note first that if f is a solution to the above equation, then since f is differentiable (and
therefore continuous) we have that f ′′(x) = 2x2−x−f(x) is also continuous, and therefore f ∈ C2(R,R).
Therefore it suffices to look for solutions in C2(R,R). Consider the map L : C2(R,R)→ C0(R,R) given
by L(f(x)) = f ′′(x) + f(x). Then L is linear, for if f, g ∈ C2(R,R) and c ∈ R, then

L(f(x) + g(x)) = (f(x) + g(x))′′ + f(x) + g(x)

= f ′′(x) + g′′(x) + f(x) + g(x)

= f ′′(x) + f(x) + g′′(x) + g(x)

= L(f(x)) + L(g(x))

and
L(cf(x)) = (cf(x))′′ + cf(x) = cf ′′(x) + cf(x) = c(f ′′(x) + f(x)) = cL(f(x))

for every x ∈ R. Note that we are trying to find solutions of the equation T (f(x)) = 2x2 − x. We use
whatever techniques we wish to first find a single solution f0 of this equation. For one approach, let’s
guess (given the form of the right-hand side) that there is a solution f0 of the form f0(x) = ax2 + bx+ c.
Then we must have

2x2 − x = T (f0(x)) = f ′′0 (x) + f0(x) = 2a+ ax2 + bx+ c, so that 2 = a, −1 = b, 0 = 2a+ c.

Therefore a = 2, b = −1, and c = −2a = −4, so that f0(x) = 2x2 − x − 4. (We quickly verify that
L(f0(x)) = 4 + 2x2 − x − 4 = 2x2 − x, so that the f0 we produced really does solve the equation.) By
the Solution Sets of Linear Equations Theorem, every solution of this differential equation has the form
f0(x) + fh(x), where fh ∈ ker(L). But on your homework you showed that

ker(L) = {f : R→ R : f ′′(x) + f(x) = 0 for every x ∈ R} = span(cos(x), sin(x)),
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so that the solution set of the differential equation is

{2x2 − x− 4 + c1 cos(x) + c2 sin(x) : c1, c2 ∈ R}.
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Lecture 27: More Images and Kernels

Learning Objectives:

• Use the kernel and image of a linear transformation to characterize whether the function is
injective and/or surjective.

• Compute the kernel, image, nullity, and rank of a linear transformation.

One important use of images and kernels is that they characterize surjectivity and injectivity of linear
transformations, much as, in light of the Linear Independence and Linear Systems and Spanning Sets in
Km Theorems, column space and nullspace did for (the linear transformations associated to) matrices.

Proposition 29. Let V and W be vector spaces over K, and let T : V → W be linear.

(a) T is injective if, and only if, ker(T ) = {0V }.

(b) T is surjective if, and only if, image(T ) = W .

Proof. We start with (a). Suppose T is injective. Because T (0V ) = 0W , {0V } ⊆ ker(T ). Suppose
v ∈ ker(T ). Since T (v) = 0W = T (0V ) and T is injective, v = 0V ∈ {0V }. Therefore ker(T ) = {0V }.
Conversely, suppose ker(T ) = {0V }. Let u, v ∈ V and suppose T (u) = T (v). Then 0W = T (u)−T (v) =
T (u − v), so that u − v ∈ ker(T ) = {0V }. Therefore u − v = 0V , so that u = v. In other words, T is
injective.

We now prove (b). Suppose T is surjective. The inclusion image(T ) ⊆ W is automatic from the
deifnition of T . Suppose w ∈ W . Because T is surjective, there is v ∈ V with T (v) = w. Therefore
w ∈ image(T ), so that image(T ) = W . Conversely suppose image(T ) = W . Let w ∈ W . Because
w ∈ W = image(T ), there is v ∈ V with T (v) = w. Therefore T is surjective.

In the finite-dimensional case, it turns out that there are some interesting things that we can say
about the dimensions of the image and kernel of a linear transformation. To motivate this, consider the
following observations (including some results that you will prove on your homework).

Remark 74. Let T : K7 → K4, be a linear transformation with matrix A =
[
~a1 · · · ~a7

]
∈ M4×7(K),

and assume that

rref(A) =


0 1 2 0 0 −3 5
0 0 0 1 0 4 −7
0 0 0 0 1 3 0
0 0 0 0 0 0 0

 .
Then the pivot columns of A are ~a2,~a4,~a5 and the redundant columns of A are ~a1,~a3,~a6,~a7. Indeed,
from rref(A) we see that we can write the redundant columns as linear combinations of the preceding
pivot columns as

~a1 = ~0, ~a3 = 2~a2, ~a6 = −3~a2 + 4~a4 + 3~a5, ~a7 = 5~a2 − 7~a4 + 0~a5,
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or rather

~0 = 1~a1, ~0 = −2~a2 + 1~a3, ~0 = 3~a2 − 4~a4 − 3~a5 + 1~a6, ~0 = −5~a2 + 7~a4 + 0~a5 + 1~a7. (5)

By Exercise 4 on Homework 4, you proved that the pivot columns of A form a linearly independent
set. On your last homework assignment, you will show that the pivot columns of A actually form a basis
for the column space of A (which is also the image of T ). That is, you will prove that

image(T ) = col(A) = span(~a2,~a4,~a5)

(and that ~a2,~a4,~a5 is a linearly independent set), so that dim(image(T )) = 3.
On the other hand, the equations in (5) (interpreted as linear combinations of the columns of A) tell

us that

~v1, ~v2, ~v3, ~v4
def
=



1
0
0
0
0
0
0


,



0
−2
1
0
0
0
0


,



0
3
0
−4
−3
1
0


,



0
−5
0
7
0
0
1


∈ null(A) = ker(T ),

so that (by the Spans are Subspaces Theorem)

span (~v1, ~v2, ~v3, ~v4) ⊆ null(A) = ker(T ).

On the other hand, if ~x =

[ x1
...
x7

]
∈ null(A), then from rref(A) we see that we have x2 = −2x3 +3x6−5x7,

x4 = −4x6 + 7x7, and x5 = −3x6, so that

~x =



x1

−2x3 + 3x6 − 5x7

x3

−4x6 + 7x7

−3x6

x6

x7


= x1



1
0
0
0
0
0
0


+ x3



0
−2
1
0
0
0
0


+ x6



0
3
0
−4
−3
1
0


+ x7



0
−5
0
7
0
0
1


∈ span (~v1, ~v2, ~v3, ~v4) ,

and therefore ker(T ) = span(~v1, ~v2, ~v3, ~v4). On the other hand, note that if c1, c2, c3, c4 ∈ K and

~0 = c1~v1 + c2~v2 + c3~v3 + c4~v4 =



c1

−2c2 + 3c3 − 5c4

c2

−4c3 + 7c4

−3c3

c3

c4


,

then c1 = c2 = c3 = c4 = 0. Therefore ~v1, ~v2, ~v3, ~v4 is a basis for ker(T ), so that dim(ker(T )) = 4.
Note that dim(image(T )) + dim(ker(T )) = 3 + 4 = 7, which is the dimension of the domain of T (i.e.

K7). This is no accident. Here, one could predict this from the fact that the pivot columns of A form a
basis for image(T ), and there is a basis for ker(T ) consisting of one vector for each redundant columns
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of A (where the vector encodes how to represent that redundant columns as a linear combination of
the preceding pivot columns). Since A has 7 columns, and each column is either a pivot column or a
redundant column, the sum of the number of pivot columns (rank(A), which is also dim(image(T ))) and
the number of redundant columns (dim(ker(T ))) must be 7.

In light of the connection between the dimensions of ker(T ) and image(T ) and rank(A) and the
dimension of null(A), we therefore give the following definitions.

Definition 43. Let V and W be vector spaces with V finite-dimensional, and assume that T :
V → W is linear.

(i) The rank of T , denoted rank(T ), is defined by

rank(T )
def
= dim(image(T )).

(ii) The nullity of T , denoted nullity(T ), is defined by

nullity(T )
def
= dim(ker(T )).

Remark 75. In the last example, we had rank(T ) = 3 and nullity(T ) = 4.

The Rank-Nullity Theorem

The observation in the previous example—that if T : V → W then nullity(T ) measures the dimension
of the subspace of V that is sent to 0W or “killed off” by T , and that rank(T ) measures the dimension of
the space of outputs of T—leads us to the intuition that if dim(V ) = n (and so there are n “independent
directions” needed to account for V ), and since T kills off nullity(T )-many directions by sending ker(T )
to {0W}, then we would expect the remaining n − nullity(T ) directions to “fill out” image(T ), so that
n−nullity(T ) = rank(T ), or dim(V ) = rank(T ) + nullity(T ). This is good intuition, and leads us to the
so-called Rank-Nullity Theorem.

Theorem 32 (Rank-Nullity). Let V and W be vector spaces over K, and assume that V is
finite-dimensional. Let T : V → W be a linear transformation. Then image(T ) and ker(T ) are
finite-dimensional and

dim(V ) = rank(T ) + nullity(T ).

We will prove this next time.
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Lecture 28: Rank-Nullity Theorem

Learning Objectives:

• Use the kernel and image of a linear transformation to characterize whether the function is
injective and/or surjective.

• Compute the kernel, image, nullity, and rank of a linear transformation.

We start today by proving the Rank-Nullity Theorem.

Theorem 33 (Rank-Nullity). Let V and W be vector spaces over K, and assume that V is
finite-dimensional. Let T : V → W be a linear transformation. Then image(T ) and ker(T ) are
finite-dimensional and

dim(V ) = rank(T ) + nullity(T ).

Proof. We have already proved that image(T ) and ker(T ) are finite-dimensional because V is finite-
dimensional. Therefore we need only show that the desired relationship between the dimensions of V
and these spaces holds.

By the Constructing Bases Theorem, the empty set extends to a basis v1, . . . , vp for ker(T ). Extend
the linearly independent list v1, . . . , vp to a basis v1, . . . , vp, u1, . . . , u` for V . (Here we allow the case
p = 0 if ker(T ) = {0V }, and we allow ` = 0 if ker(T ) = V .) Then dim(V ) = p+ ` and nullity(T ) = p.

We will finish the proof by showing that T (u1), . . . , T (u`) is a basis for image(T ) (so that rank(T ) =
`). Note first that since T (u1), . . . , T (u`) ∈ image(T ), span(T (u1), . . . , T (u`)) ⊆ image(T ). Let w ∈
image(T ). Choose v ∈ V with T (v) = w. Choose c1, . . . , cp, d1, . . . , d` ∈ K with

v = c1v1 + · · ·+ cpvp + d1u1 + · · ·+ d`u`.

Then since v1, . . . , vp ∈ ker(T ),

T (v) = c1T (v1)+· · ·+cpT (vp)+d1T (u1)+· · ·+d`T (u`) = d1T (u1)+· · ·+d`T (u`) ∈ span(T (u1), . . . , T (u`))

and therefore image(T ) = span(T (u1), . . . , T (u`)).
It remains to show that T (u1), . . . , T (u`) is a linearly independent set. Let d1, . . . , d` ∈ K and

assume that 0W = d1T (u1) + · · · + d`T (u`). Because T is linear, 0W = T (d1u1 + · · · + d`u`), so that
d1u1 + · · ·+ d`u` ∈ ker(T ). Therefore there are c1, . . . , cp ∈ K with

d1u1 + · · ·+ d`u` = c1v1 + · · ·+ cpvp, or 0V = c1v1 + · · ·+ cpvp − d1u1 − · · · − d`u`.

Because v1, . . . , vp, u1, . . . , u` is a basis for V (and therefore linearly independent), c1 = · · · = cp = d1 =
· · · = d` = 0. Therefore T (u1), . . . , T (u`) is a linearly independent set and the proof is complete.

Remark 76. On your homework you will show that the Rank-Nullity Theorem still holds if we replace
the assumption that V is finite-dimensional with the assumption that both ker(T ) and image(T ) are
finite-dimensional. One consequence of this is that if V is infinite-dimensional, then at least one of
ker(T ) or image(T ) must be infinite-dimensional as well.
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Example 88. Consider the space Mn×n(C) as a vector space over R, and consider the set of skew-
Hermitian matrices

W = {A ∈Mn×n(C) : A∗ = −A}.

Show that W is a (real) subspace of Mn×n(C and compute its dimension.

We could attempt to mimic the computation in your homework where you showed that the space

H = {A ∈Mn×n(C) : A∗ = A}

of Hermitian matrices is a real subspace of Mn×n(C) of dimension24 n2.
For a more creative approach, consider the transformation

T : Mn×n(C)→Mn×n(C), T (A)
def
= A− A∗.

Then note that for A = [aj,k] and B = [bj,k] ∈Mn×n(C) and c ∈ R,

T (A+B) = T ([aj,k + bj,k]) = [aj,k + bj,k]− [ak,j + bk,j] = [aj,k]− [ak,j] + [bj,k]− [bk,j] = T (A) + T (B)

and (since c ∈ R, so that c = c)

T (cA) = T ([caj,k]) = [caj,k]− [cak,j] = c[aj,k]− [cak,j] = c[aj,k]− c[ak,j] = c[aj,k]− [ak,j] = cT (A).

Note that T (A) = 0n×n if, and only if, A∗ = A, so that ker(T ) = H is the real subspace of Hermitian
matrices. Therefore nullity(T ) = dim(H) = n2.

We claim that W = image(T ). To see this, note that if A ∈ W then A∗ = −A. Then

T
(1

2
A
)

=
1

2
T (A) =

1

2
(A− A∗) =

1

2
(A+ A) = A,

so A ∈ image(T ). On the other hand, if B ∈ image(T ) then there is A ∈ Mn×n(C) such that B =
T (A) = A− A∗. Then

B∗ = (A− A∗)∗ = A∗ − (A∗)∗ = A∗ − A = −(A− A∗) = −B,

so that B ∈ W . Therefore W = image(T ). It is therefore immediate that W is a (real) subspace of
Mn×n(C).

Because the dimension of Mn×n(C) (as a real vector space) is 2n2, the Rank-Nullity Theorem implies
that

2n2 = dim(Mn×n(C)) = dim(ker(T )) + dim(image(T )) = dim(H) + dim(W ) = n2 + dim(W ),

so that dim(W ) = n2.

The Rank-Nullity Theorem has many interesting practical applications of the type displayed in the
previous example, but its important theoretical applications allow us to recover some of the conclusions
of the Invertibility Theorem for linear maps between finite-dimensional spaces.

24The basis you produced for this space had n diagonal matrices, and 2(n−1)+2(n−2)+· · ·+2(2)+2 = 2 (n−1)n
2 = n2−n

other matrices, and n + (n2 − n) = n2.
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Theorem 34. Let V and W be finite-dimensional vector spaces over K, and let T : V → W be
a linear transformation.

(a) If T is injective, then dim(V ) ≤ dim(W ).

(b) If T is surjective, then dim(V ) ≥ dim(W ).

(c) If T is bijective, then dim(V ) = dim(W ).

(d) If dim(V ) = dim(W ), then T is injective if, and only if, T is surjective.

Proof. By the Rank-Nullity Theorem, we have

dim(V ) = dim(image(T )) + dim(ker(T )). (6)

Suppose T is injective. Then ker(T ) = {0V }, so dim(ker(T )) = 0. Because image(T ) is a subspace of
W , (6) and the Subspaces and Dimension Theorem imply that dim(V ) = dim(image(T )) ≤ dim(W ).

Suppose T is surjective. Then image(T ) = W , so that dim(image(T )) = dim(W ). Equation (6)
gives

dim(V ) = dim(ker(T )) + dim(image(T )) = dim(ker(T )) + dim(W ) ≥ dim(W ).

Part (c) follows immediately from (a) and (b).
Now assume that dim(V ) = dim(W ). Then (6) gives

dim(image(T )) + dim(ker(T )) = dim(W ).

If T is injective then dim(ker(T )) = 0, so dim(image(T )) = dim(W ). By the Subspaces and Dimension
Theorem, image(T ) = W , so that T is surjective. Conversely, if T is surjective then dim(image(T )) =
dim(W ), so that dim(ker(T )) = 0 and therefore ker(T ) = {0V }. Therefore T is injective.

Remark 77. One consequence of the previous theorem is that if T : V → W is linear and if V and W
are finite-dimensional with dim(V ) = dim(W ), then T is invertible if, and only if, T is either injective
or surjective.

Example 89. The conclusions above do not hold in general for infinite-dimensional vector spaces. For
example, consider the maps

D : P (R)→ P (R), D(p(x)) = p′(x)

and
M : P (R)→ P (R), M(p(x)) = xp(x).

Then D is not injective because D(1) = 0 (so ker(D) 6= {0(x)}), yet D is surjective because, for if
p(x) = a0 + a1x+ · · ·+ anx

n ∈ P (R) we have

D
(
a0x+

a1

2
x2 + · · ·+ an

n+ 1
xn+1

)
= a0 + a1x+ · · ·+ anx

n = p(x).

You will investigate the map M on your homework.
Intuitively, the reasons why the conclusions of the last theorem do not hold for infinite-dimensional

vectors spaces is that because an infinite set can have a proper subset that is also infinite.
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Lecture 29: Isomorphisms

Learning Objectives:

• Determine when two vector spaces are isomorphic.

• Explore the properties of isomorphisms.

Example 90. Consider Cn as a vector space over R, and consider the map

T : R2n → Cn, T





x1
...
xn
y1
...
yn




=

x1 + iy1
...

xn + iyn

 .

We showed in Example 84 that T is a linear transformation. Because complex numbers are uniquely
determined by their real and imaginary parts, it is immediate to show that T is bijective (and therefore
invertible). Therefore it has an inverse maps T−1 : Cn → R2n that is also linear.

Note that because T is bijective, T gives a one-to-one correspondence between elements ~v ∈ R2n and
T (~v) ∈ Cn. Because T is linear (and therefore preserve linear combinations), we therefore expect that
T should preserve anything that we might characterize using linear combinations (i.e. subspaces, span,
linear independence, bases, dimension, etc.). Because there is a bijective map between Cn and R2n that
preserves linear structure, we expect that, as vector spaces over R, Cn and R2n should have exactly the
“same” algebraic structure.

In light of the above example, we recall a definition.

Definition 44. Let V and W be vector spaces over K. An invertible linear transformation
T : V → W is called an isomorphism from V to W . If such an isomorphism exists, then we say
that V is is isomorphic to W .

Remark 78. Note that if V is isomorphic to W , then there is an invertible linear map T : V → W , and
therefore T−1 : W → V is also an invertible linear map so that W is isomorphic to V . Therefore we can
simply say that V and W “are isomorphic” rather than “V is isomorphic to W and W is isomorphic to
V .”

Example 91. The space Pn(K) is isomorphic to Kn+1. There are many isomorphisms, but one straight-
forward candidate is to use the unique linear map T : Pn(K)→ Kn+1 that satisfies

T (1) = ~e1, T (x) = ~e2, T (x2) = ~e3, . . . , T (xn) = ~en+1.
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Note that such a map exists (and is unique!) by the Constructing Linear Maps Theorem because
1, x, x2, . . . , xn+1 is a basis for Pn(K). By linearity of T , we have that

T (a0 + a1x+ · · ·+ anx
n) = a0~e1 + a1~e2 + · · ·+ an~en+1 =


a0

a1
...
an

 for every a0 + a1x+ · · ·+ anx
n ∈ Pn(K).

By one of your homework problems, because T is a linear map that sends a basis (1, x, x2, . . . , xn) for
Pn(K) to a basis (~e1, . . . , ~en+1) for Kn+1, T is an isomorphism.

Example 92. An argument similar to that in the last example shows that Mm×n(K) and Kmn are
isomorphic, with one isomorphism given by

T : Mm×n(K)→ Kmn, T ([aj,k]) =



a1,1
...

am,1
a1,2

...
am,2

...
a1,n

...
am,n



.

Isomorphisms give a way to say two objects are “equivalent” when they are not “equal”.

Example 93. Let p ≤ n, and consider the subspace Vp =





x1
...
xp
0
...
0


: x1, . . . , xp ∈ K


= span(~e1, . . . , ~ep)

of Kn. Because ~e1, . . . , ~ep (in Kn) is a basis for Vp, the Constructing Bases Theorem implies that there
is a unique linear map T : Vp → Kp with T (~ej) = ~ej for each 1 ≤ j ≤ p. By linearity, this T is given by

T





x1
...
xp
0
...
0




=

x1
...
xp

 .

Because the linear transformation T sends a basis of Vp to a basis for Kp, one of your homework problems
implies that T is an isomorphism.

Therefore, while Kp is not a subset of Kn if n 6= p (since Kp consists of vectors with p entries, while
Kn consists of vectors with n entries), we can think of Vp as an isomorphic copy of Kp that is a subspace
of Kn.
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Just as “row equivalence” was a type of equivalence between matrices (that is different than ordinary
equality), “isomorphism” is a type of equivalence between vector spaces. In particular, we have the
following properties.

Proposition 30 (Isomorphism is an Equivalence Relation). Let V,W,U be vector spaces over K.

• (Reflexivity) V is isomorphic to V .

• (Symmetry) If V is isomorphic to W , then W is isomorphic to V .

• (Transitivity) If V is isomorphic to W and W is isomorphic to U , then V is isomorphic to
U .

Proof. Note that I : V → V is a bijective linear transformation, and therefore an isomorphism. This
proves reflexivity.

Suppose V is isomorphic to W . Let T : V → W be an isomorphism. Then T is an invertible linear
transformation, so the inverse T−1 : W → V is an invertible linear transformation (and therefore also
an isomorphism). This proves symmetry.

Suppose V is isomorphic to W and that W is isomorphic to V . Let T : V → W and S : W → U be
isomorphism. We claim that S ◦T : V → U is an isomorphism. Let u ∈ U . Since S is surjective, there is
w ∈ W with S(w) = u. Since T is surjective, there is v ∈ V with T (v) = w. Then (S◦T )(v) = S(T (v)) =
S(w) = u, so that S ◦ T is surjective. Now let v1, v2 ∈ V , and suppose that (S ◦ T )(v1) = (S ◦ T )(v2).
Since S(T (v1)) = S(T (v2)) and S is injective, T (v1) = T (v2). Since T is injective, v1 = v2. Therefore
S ◦ T is injective. Since the composition of linear maps is linear, S ◦ T is linear. Therefore S ◦ T is an
isomorphism, and the result is proved.

Example 94. The identity map I : Kn → Kn from Kn to itself is an isomorphism, but there are many
other isomorphisms from Kn to itself. Indeed, because a linear transformation is an isormophism exactly
when it is invertible, every linear T : Kn → Kn with invertible standard matrix A is an isomorphism.
If we denote the columns of A by ~a1, . . . ,~an, then this is exactly the linear map from Kn to itself that
sends the standard basis to the basis ~a1, . . . ,~an, in the sense that

T (~e1) = ~a1, . . . , T (~en) = ~an.

Example 95. You showed on your homework that if T : Kn → Km is invertible, then it must be that
m = n. Therefore Kn and Km are isomorphic if, and only if, m = n.

Isomorphisms preserve almost any algebraic structure that you might wish to preserve. To hammer
this home, consider the following theorem. To explain some notation that appears in this theorem: if
A,B are sets and f : A→ B, then for a subset C ⊆ A we write the image of C under f as

f(C)
def
= {f(c) : c ∈ C} ⊆ B.
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Theorem 35 (Properties of Isomorphisms). Let V, W be vector spaces over K, and let T : V → W
be an isomorphism. Let v1, . . . , vn ∈ V , and let U ⊆ V .

(a) V = span(v1, . . . , vn) if, and only if, W = span(T (v1), . . . , T (vn)).

(b) v1, . . . , vn is a linearly independent set if, and only if, T (v1), . . . , T (vn) is a linearly indepen-
dent set.

(c) v1, . . . , vn is a basis for V if, and only if, T (v1), . . . , T (vn) is a basis for W .

(d) V is finite-dimensional if, and only if W is finite-dimensional. Moreover, in this case we have
dim(V ) = dim(W ).

(e) U is a subspace of V if, and only if, T (U) is a subspace of W .

Proof. You will prove the ⇒ direction (c) on your homework (by, of course, proving the ⇒ directions
of (a) and (b)). The ⇐ directions of (a),(b),(c) follow by applying the ⇒ directions of these results to
T−1 : W → V .

Both directions of (d) follows from (a), and the statement that dim(V ) = dim(W ) if one (and
therefore both) of V and W are finite-dimensional follows from Theorem 34.

Suppose that U is a subspace of V . By the Subspace Criteria, 0V ∈ U , so that 0W = T (0V ) ∈ T (U).
Let h1, h2 ∈ T (U) and c ∈ K. Choose u1, u2 ∈ U with T (u1) = h1 and T (u2) = h2. Then h1 + h2 =
T (u1) + T (u2) = T (u1 + u2) ∈ T (U) and ch1 = cT (u1) = T (cu1) ∈ T (U). By the Subspace Criteria,
T (U) is a subspace of W . The reverse direction follows from the same argument applied to T−1 once
we show that U = T−1(T (U)). Let u ∈ U . Then u = T−1(T (u)) ∈ T−1(T (U)). Now suppose that
u ∈ T−1(T (U)). Then there is h ∈ T (U) with u = T−1(h). There is u′ ∈ U with T (u′) = h. Then
u = T−1(T (u′)) = u′ ∈ U .

Example 96. One upshot of the Properties of Isomorphism Theorem is that isomorphisms allow us to
answer questions about one vector space using techniques developed for a different vector space. For an
illustration, we will show that for each a ∈ K, the set 1, x− a, (x− a)2, (x− a)3 is a basis for P3(K).

To see this, let T : P3(K)→ K4 be the isomorphism T (a0 + a1x+ a2x
2 + a3x

3) =


a0

a1

a2

a3

. Then

T (1) =


1
0
0
0

 , T (x− a) =


−a
1
0
0

 , T ((x− a)2) = T (a2 − 2ax+ x2) =


a2

−2a
1
0

 ,
and

T ((x− a)3) = T (−a3 + 3a2x− 3ax2 + x3) =


−a3

3a2

−3a
1

 .
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Because

rref
[
T (1) T (x− a) T ((x− a)2) T ((x− a)3)

]
= rref


1 −a a2 −a3

0 1 −2a 3a2

0 0 1 −3a
0 0 0 1

 = I4,

The Invertibility Theorem implies that T (1), T (x − a), T ((x − a)2), T ((x − a)3) is a basis for K4, and
therefore the Properties of Isomorphisms Theorem implies that 1, x− a, (x− a)2, (x− a)3 is a basis for
P3(K).
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