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Lecture 1: Local Extrema

Learning Objectives:

� Locate the critical points of a scalar-valued function on Rn.

� Classify non-degenerate critical points as a local maximum, local minimum, or saddle point
using the Second Derivative Test.

Welcome to MATH 291-3! Last quarter we spent a considerable amount of time and effort understand-
ing diagonalization of square matrices. This culminated in the proof of the Spectral Theorem, which
says that every symmetric real matrix is orthogonally diagonalizable. We also studied the elements of
multivariable differential calculus, which was linked to the linear algebra through the interpretation of
differentiability as “having a good affine approximation”. The next few lectures continue to draw on the
links between differentiation and linear algebra to establish the multivariable analogues of optimization
(finding the maximum and minimum values of a function on a set). Once we have explored optimization
of multivariable functions, we will turn our attention to multivariable integral calculus for the remain-
der of the course, with the ultimate goal of understanding the various types of “integration” that exist
and the appropriate way(s) to understand the “fundamental theorem of calculus” in the multivariable
setting.

Local Extreme Values

To simplify the notation, throughout this section we will assume that Ω ⊆ Rn and f : Ω → R is a
scalar-valued function.

Definition 1. Suppose that f is defined on an open set containing ~a. We say that f has a local
maximum value at ~a if

f(~x) ≤ f(~a) for every ~x in an open ball centered at ~a.

Similarly, f has a local mimimum value at ~a if

f(~x) ≥ f(~a) for every ~x in an open ball centered at ~a.

We say f has a local extreme value at ~a if f either has a local maximum or local minimum
value at ~a.

Just as in single-variable calculus, the local extreme values of a differentiable function can only occur
when the derivative is zero.

Theorem 1 (Fermat). If f is differentiable and has a local extreme value at ~a, then Df(~a) = 01×n.

Proof. Suppose that f has a local maximum value at ~a and is differentiable at ~a. (The argument when
f has a local minimum value is similar.) Let 1 ≤ k ≤ n. We show that ∂f

∂xk
(~a) = 0.
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To do this, note that ∂f
∂xk

(~a) = g′(0), where g(t) = f(~a + t~ek). The Chain Rule implies that g is
differentiable at 0, and

g′(0) = Df(~a+ 0~ej)~ej = Df(~a)~ej =
∂f

∂xk
(~a).

Because f has a local maximum value at ~a, g(t) = f(~a + t~ej) ≤ f(~a) = g(0) for t near 0. In other
words, the single-variable function g also has a local maximum value at 0. Because g is differentiable at
0, g′(0) = 0. Therefore ∂f

∂xk
(~a) = 0 as well, and the proof is complete.

Remark 1. Therefore, just as in single-variable calculus, the only points ~a at which f can have a local
extreme value satisfy either

(i) f is differentiable at ~a and Df(~a) = 01×n

(ii) f is not differentiable at ~a.

Such a point ~a is called a critical point of f . In practice most of the functions we deal with will be
differentiable (i.e. all critical points will fall under case (i)), but case (ii) can happen as well.

Example 1. The function f : R2 → R given by f(x, y) =
√
x2 + y2 is C1 on R2 − {(0, 0)}, and is

therefore differentiable everywhere except possibly at (0, 0). You can check that f is not differentiable
at (0, 0) (since, for example, fx(0, 0) does not exist), so that (0, 0) is a critical point of f . Moreover, for

(x, y) 6= (0, 0), Df(x, y) =
[

x√
x2+y2

y√
x2+y2

]
6=
[
0 0

]
, so (x, y) is not a critical point of f . Therefore

the only point at which f might have a local extreme value is (0, 0).
Indeed, f has a local minimum value at (0, 0) because f(0, 0) = 0 ≤

√
x2 + y2 = f(x, y) for every

(x, y) ∈ R2.

Example 2. Identify the critical points of the function f(x, y) = y2 − x2 − x3 − x2y.

Here we note that f is C1 (and therefore differentiable) on R2, so the critical point(s) (x, y) of f
must satisfy[

0 0
]

= Df(x, y) =
[
−2x− 3x2 − 2xy 2y − x2

]
, or rather 0 = −x(2 + 3x+ 2y) and 0 = 2y − x2.

The first equation implies that x = 0 or 2 + 3x+ 2y = 0. In light of the second equation, if x = 0 then
y = 1

2
x2 = 0, and one can verify that (0, 0) is indeed a critical point of f .

On the other hand, if 2 + 3x+ 2y = 0 then we can substitute y = 1
2
x2 (from the second equation) to

see that 0 = x2 + 3x + 2 = (x + 2)(x + 1), so that x = −2 or x = −1. If x = −2 then y = 1
2
(−2)2 = 2.

If x = −1 then y = 1
2
(−1)2 = 1

2
. One can indeed verify that (−2, 2) and (−1, 1

2
) are critical points of f .

To summarize, the critical points of f are exactly (0, 0), (−2, 2), and (−1, 1
2
).

Example 3. It is not the case that Df(~a) = 01×n necessarily implies that f has a local extreme value
at ~a. Indeed, it is possible for every ball centered at ~a to contain points ~x and ~y with f(~y) > f(~a) and
f(~x) < f(~a). Such a critical point ~a is called a saddle point of f .

For an example where this occurs, consider the function f(x, y) = x2 − y2. Then f is C1 (and
therefore differentiable) with Df(0, 0) =

[
0 0

]
, so that (0, 0) is a critical point of f . On the other hand,

f(x, 0) = x2 > 0 = f(0, 0) for every x 6= 0 and f(0, y) = −y2 < 0 = f(0, 0) for every y 6= 0. Therefore f
has neither a local maximum value nor a local minimum value at (0, 0), so that (0, 0) is a saddle point
of f .
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Characterizing A Critical Point

In single-variable calculus one can use the second derivative of a C2 function to characterize the behavior
of the function at a critical point: if f ′(a) = 0 and f ′′(a) > 0 then f has a local minimum value at
a (if f ′′(a) < 0, then f has a local maximum value at a). In your single-variable calculus course this
was called the “Second Derivative Test”, and was likely explained by appealing to concavity. In the
multivariable setting we instead appeal to our approximation

f(~x) ≈ f(~a) +Df(~a)(~x− ~a) +
1

2
(~x− ~a) · (D2f(~a)(~x− ~a))

for ~x near ~a. If ~a is a critical point of f , then Df(~a) = 01×n, so for ~x near ~a we have

f(~x) ≈ f(~a) +
1

2
(~x− ~a) · (D2f(~a)(~x− ~a)).

This suggests that the quadratic form on the right (with matrix D2f(~a)) should capture the qualitative
behavior of f(~x)− f(~a) for ~x near ~a.

To make this precise, we will need to know that f is C2 in an open ball centered at ~a, and that the
Hessian of f at ~a is invertible. With this in mind, we make the following definition.

Definition 2. Suppose that ~a is a critical point of f and that f is C2 in an open ball centered at
~a. If D2f(~a) is invertible, then we say that ~a is a non-degenerate critical point of f . If D2f(~a)
is not invertible, then we say that ~a is a degenerate critical point of f .

Recall that a real symmetric matrix A (and also its associated quadratic form ~x 7→ ~x · (A~x)) is called
positive definite if all of the eigenvalues of A are positive, negative definite if all of the eigenvalues
of A are negative, and indefinite if A has at least one positive eigenvalue and at least one negative
eigenvalue.

The multidimensional Second Derivative Test can therefore be stated as follows.

Theorem 2 (Second Derivative Test). Let Ω ⊆ Rn, let ~a ∈ Ω, assume f : Ω → R is C2 in an
open ball centered at ~a, and assume that ~a is a non-degenerate critical point of f .

(i) If D2f(~a) is positive definite, then f has a local minimum value at ~a.

(ii) If D2f(~a) is negative definite, then f has a local maximum value at ~a.

(iii) If D2f(~a) is indefinite, then f has a saddle point at ~a.

Proof. We will prove the result under the assumption that f is C3. (The proof under the weaker
assumption that f is C2 is more technical, but not much more enlightening.)

Suppose that f is C3 on some ball Bδ(~a). Note that B
def
= {~y : ‖~y − ~a‖ ≤ δ

2
} is a compact subset

of Bδ(~a). Because f is C3 and B is compact, there is a constant M > 0 such that for each third-order
partial derivative fxixjxk of f , |fxixjxk(~y)| ≤M for every ~x ∈ B. (We’ll use this estimate later on in the
proof.)

Fix ~x ∈ B, define g(t) = f(~a+ t(~x−~a)). By the one-variable Taylor Formula, there is c ∈ [0, 1] such
that

g(1) = g(0) + g′(0)1 +
1

2!
g′′(0)12 +

1

3!
g′′′(c)13 = g(0) + g′(0) +

1

2
g′′(0) +

1

6
g′′′(c).
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The equation above is secretely the same as

f(~x) = f(~a) +
1

2
(~x− ~a) · (D2f(~a)(~x− ~a)) +

1

6
g′′′(c).

To see why, note that g(1) = f(~x), g(0) = f(~a), and (by the chain rule) we have

g′(t) = Df(~a+ t(~x− ~a))(~x− ~a) =
n∑
i=1

fxi(~a+ t(~x− ~a))(xi − ai)

and

g′′(t) =
n∑
i=1

(
Dfxi(~a+ t(~x− ~a))(~x− ~a)

)
(xi − ai) =

n∑
i=1

n∑
j=1

fxixj(~a+ t(~x− ~a))(xj − aj)(xi − ai)

and

g′′′(t) =
n∑
i=1

n∑
j=1

(
Dfxixj(~a+ t(~x− ~a))(~x− ~a)

)
(xj − aj)(xi − ai)

=
n∑
i=1

n∑
j=1

n∑
k=1

fxixjxk(~a+ t(~x− ~a))(xk − ak)(xj − aj)(xi − ai).

Then because ~a is a critical point of f ,

g′(0) = Df(~a)(~x− ~a) = 01×n(~x− ~a) = 0.

Also

g′′(0) =
n∑
i=1

n∑
j=1

fxixj(~a)(xj−aj)(xi−ai) = (~x−~a) ·


∑n

j=1 fx1xj(~a)(xj − aj)∑n
j=1 fx2xj(~a)(xj − aj)

...∑n
j=1 fxnxj(~a)(xj − aj)

 = (~x−~a) ·(D2f(~a)(~x−~a)).

We have therefore shown that

f(~x) = f(~a) +
1

2
(~x− ~a) · (D2f(~a)(~x− ~a)) +

1

6
g′′′(c).

We think of 1
6
g′′′(c) as an “error” term that represents the difference between f(~x) and the polynomial

f(~a) + 1
2
(~x − ~a) · (D2f(~a)(~x − ~a)). We would like to say that the behavior of f(~x) is the same as the

behavior of f(~a) + 1
2
(~x− ~a) · (D2f(~a)(~x− ~a)) for ~x near ~a, but to do this we need to know that 1

6
g′′′(c)

is smaller than 1
2
(~x− ~a) · (D2f(~a)(~x− ~a)).

We first find an upper bound for the size of g′′′(c). Since ~a+ c(~x−~a) ∈ B and |xm − am| ≤ ‖~x−~a‖
for each 1 ≤ m ≤ n,

|g′′′(c)| ≤
n∑
i=1

n∑
j=1

n∑
k=1

|fxixjxk(~a+ c(~x− ~a))||xk − ak||xj − aj||xi − ai|

≤
n∑
i=1

n∑
j=1

n∑
k=1

M‖~x− ~a‖‖~x− ~a‖‖~x− ~a‖

=
n∑
i=1

n∑
j=1

n∑
k=1

M‖~x− ~a‖3 =
n∑
i=1

n∑
j=1

nM‖~x− ~a‖3 =
n∑
i=1

n2M‖~x− ~a‖3 = n3M‖~x− ~a‖3,
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so that −n3M‖~x− ~a‖3 ≤ g′′′(c) ≤ n3M‖~x− ~a‖3.
Next we analyze (~x − ~a) · (D2f(~a)(~x − ~a)) (the proof that this is “not too small” will come later).

Recall that because f is C2, D2f(~a) is symmetric. By the Spectral Theorem, D2f(~a) has an orthonormal
eigenbasis ~u1, . . . , ~un. For each 1 ≤ k ≤ n, let λk be the eigenvalue of D2f(~a) associated to ~uk. Then

(~x− ~a) · (D2f(~a)(~x− ~a)) = λ1((~x− ~a) · ~u1)2 + · · ·+ λn((~x− ~a) · ~un)2.

We are now in a position to prove the various statements in the theorem. Suppose that D2f(~a) is
positive definite. Then if λ > 0 denotes the smallest eigenvalue of D2f(~a), we have

(~x− ~a) · (D2f(~a)(~x− ~a)) = λ1((~x− ~a) · ~u1)2 + · · ·+ λn((~x− ~a) · ~un)2

≥ λ((~x− ~a) · ~u1)2 + · · ·+ λ((~x− ~a) · ~un)2

= λ(((~x− ~a) · ~u1)2 + · · ·+ ((~x− ~a) · ~un)2)

= λ‖~x− ~a‖2.

Therefore for ~x ∈ B we have

f(~x) = f(~a) +
1

2
(~x− ~a) · (D2f(~a)(~x− ~a)) +

1

6
g′′′(c)

≥ f(~x) +
1

2
λ‖~x− ~a‖2 − 1

6
n3M‖~x− ~a‖3

= f(~a) +
1

2
‖~x− ~a‖2

(
λ− n3M

3
‖~x− ~a‖

)
.

Therefore, as long as

λ− n3M

3
‖~x− ~a‖ ≥ 0, or rather ‖~x− ~a‖ ≤ 3λ

n3M
,

then we have f(~x) ≥ f(~a). Since we already needed ‖~x− ~a‖ ≤ δ
2

at the beginning of the proof, we see

that f(~x) ≥ f(~a) as long as ‖~x− ~a‖ ≤ min
(
δ
2
, 3λ
n3M

)
. Therefore f has a local minimum value at ~a.

The proof that f has a local maximum value at ~a is D2f(~a) is negative definite follows from a similar
argument, but with replacing λ with the largest eigenvalue of D2f(~a) (note that λ < 0 if D2f(~a) is
negative definite).

If D2f(~a) is indefinite, then by relabelling the vectors ~u1, . . . , ~un we can arrange it so that λ1 > 0
and λ2 < 0. Then

f(~a+ t~u1) ≥ f(~a) +
t2λ1

2
− 1

6
n3Mt3 = f(~a) +

t2

2

(
λ1 −

n3Mt

3

)
> f(~a)

as long at 0 < t < min( δ
2
, 3λ1
n3M

). Therefore every ball centered at ~a contains a point ~x for which
f(~x) > f(~a). By replacing ~u1 with ~u2, we see that

f(~a+ t~u2) ≤ f(~a) +
t2λ2

2
+

1

6
n3Mt3 = f(~a) +

t2

2

(
λ2 +

n3M

3
t
)
< f(~a)

as long as 0 < t < −3λ2
n3M

(remember that λ2 < 0!). Therefore every ball centered at ~a contains a point ~x
for which f(~x) < f(~a), and f has a saddle point at ~a.
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Example 4. Recall that the function f(x, y) = y2 − x2 − x3 − x2y has critical points at (0, 0), (−2, 2),
and (−1, 1

2
). Let’s use the Second Derivative Test to classify each of these critical points.

We first compute that

D2f(x, y) =

[
fxx(x, y) fxy(x, y)
fyx(x, y) fyy(x, y)

]
=

[
−2− 6x− 2y −2x
−2x 2

]
.

At the critical point (0, 0) we have D2f(0, 0) =

[
−2 0
0 2

]
, which has eigenvalues −2 and 2. Therefore

D2f(0, 0) is invertible (so that the critical point (0, 0) is non-degenerate), and D2f(0, 0) is indefinite.
Therefore the Second Derivative Test implies that f has a saddle point at (0, 0). To picture what is
going on here, note that the conditions of the Second Derivative Test tell us that

f(0, 0) +
1

2
(~x−~0) · (D2f(0, 0)(~x−~0)) = 0 +

1

2

[
x
y

]
·
([−2 0

0 2

] [
x
y

])
= −x2 + y2

should be a good approximation for f near (0, 0), and that f should have the same type of critical point
at (0, 0) as does the quadratic polynomial −x2 +y2. The graphs of z = f(x, y) (orange) and z = −x2 +y2

(blue) are superimposed in the picture below.

At the critical point (−2, 2) we have D2f(−2, 2) =

[
6 4
4 2

]
. Because this matrix is diagonalizable its

characteristic polynomial factors as λ2− 8λ− 4 = (λ1−λ)(λ2−λ), where λ1, λ2 are the (not necessarily
distinct) eigenvalues of D2f(−2, 2). Evaluating1 at 0 gives −4 = λ1λ2, so that one of λ1, λ2 is positive
and the other is negative. Therefore D2f(−2, 2) is indefinite, so that f has a saddle point at (−2, 2).
Again, we plot the graphs of z = f(x, y) (orange) and the hyperbolic paraboloid

z = f(−2, 2) +
1

2

[
x+ 2
y − 2

]
·
([6 4

4 2

] [
x+ 2
y − 2

])
= 3(x+ 2)2 + 4(x+ 2)(y − 2) + (y − 2)2

(blue) near (−2, 2) in the picture below.

1Note that we are essentially proving an altered version of a result that we had last quarter: if A ∈ Mn×n(R) is

diagonalizable with eigenvalues λ1, . . . , λk, then det(A) = λ
almu(λ1)
1 · · ·λalmu(λk)

k . Last quarter we proved this result for
complex matrices without the assumption of diagonalizability, but the same proof works for this case as well. The only
thing we need to know is that the characteristic polynomial of A factors completely into first-order factors, and that holds
for n×n diagonalizable matrices because the sum of the geometric multiplicities of the eigenvalues (and therefore the sum
of the algebraic multiplicities) is equal to n.
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At the critical point (−1, 1
2
) we have D2f(−1, 1

2
) =

[
3 2
2 2

]
which has characteristic equation λ2 −

5λ+ 2 = 0. The roots of this equation are λ = 5±
√

25−8
2

. Because 0 <
√

25− 8 <
√

25 = 5, 5+
√

25−8
2

> 0

and 5−
√

25−8
2

> 0, so that D2f(−1, 1
2
) is positive definite. Therefore the Second Derivative Test implies

that f has a local minimum at (−1, 1
2
). Here is a plot of the graph of z = f(x, y) (orange) and the

elliptic paraboloid

z = f
(
− 1,

1

2

)
+

1

2

[
x+ 1
y − 1

2

]
·
([3 2

2 2

] [
x+ 1
y − 1

2

])
= −1

4
+

3

2
(x+ 1)2 + 2(x+ 1)

(
y − 1

2

)
+
(
y − 1

2

)2

(blue) near (−1, 1
2
):
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Lecture 2: Global Extrema

Learning Objectives:

� Determine the global extreme values of a continuous function on a compact set.

Although local extreme values are particularly nice to study because they are detectable (and sometimes
classifiable) using differential calculus, in practice one is usually concerned with the global (or absolute)
extreme values of a function on a set.

Definition 3. Let E ⊆ Ω ⊆ Rn, let f : Ω → R, and let ~a ∈ E. We say that f has a global
minimum value on E at ~a if f(~x) ≥ f(~a) for every ~x ∈ E. Similarly, we say that f has a global
maximum value on E at ~a if f(~x) ≤ f(~a) for every ~x ∈ E.

The global minimum and maximum values of f on E (when they exist) are unique. They are the
smallest and largest values of f on E. It is not always true that every function attains global extreme
values on a set, and it is also not the case that the concepts of “global extreme value” and “local extreme
value” interact as nicely as you’d expect.

Example 5. Let f(x, y) = x2(1 − y)3 + y2. Then (0, 0) is the unique critical point of f on R2, and f
has a local minimum value at (0, 0), but f does not have a global minimum value on R2.

To see this, note that f is C1 (indeed, Ck for every k) on R2 and therefore differentiable, and that[
0 0

]
= Df(x, y) =

[
2x(1− y)3 −3x2(1− y)2 + 2y

]
exactly when 0 = 2x(1− y)3 and 0 = −3x2(1− y)2 + 2y. The first equation requires that either x = 0
or y = 1. If x = 0 then the second equation simplifies to 0 = 2y, so we must have y = 0 as well.
Therefore (0, 0) is a critical point of f . If x 6= 0 then y = 1, but then the second equation simplifies to
0 = −3x2(0)2 + 2 = 2, an impossibility. Therefore (0, 0) is the only critical point of f .

Note also that

D2f(x, y) =

[
2(1− y)3 −6x(1− y)2

−6x(1− y)2 6x2(1− y) + 2

]
, so that D2f(0, 0) =

[
2 0
0 2

]
.

Therefore all eigenvalues of D2f(0, 0) are positive, and the Second Derivative Test implies that f has a
local minimum value at (0, 0).

But f(0, 0) = 0 is not the global minimum value of f on R2, since (for example) f(1, 4) = (1 −
4)3 + 42 = −27 + 16 = −11 < 0 = f(0, 0). (Indeed, f has no global minimum value on R2, since
f(1, y) = (1− y)3 + y2 approaches −∞ as y →∞.)

Finding Global Extrema

There is one circumstance under which we can be certain that a function f has global extreme values
on a set E ⊆ Rn: when f is continuous on E and E is compact. This is a direct consequence of the
Extreme Value Theorem.
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For such a function f , if the global maximum (or minimum) on E occurs at a point ~a ∈ E that is
not on the boundary of E, then f will have a f(~a) will be a local extreme value of f and therefore ~a
will be a critical point of f .

If the global maximum (or minimum) of f on E occurs at a point on the boundary of E, then that
point need not be a critical point of f and we will need some other way to detect it besides checking
Df . One technique for this is to parameterize pieces of the boundary (we’ll see how this is done in the
next example), and another is to use a more sophisticated technique known as the Method of Lagrange
Multipliers (discussed next time). In either case, we will note the following (very important) point: if
the global maximum (or minimum) of f on E occurs on ∂E, then this value will also be the global
maximum (or minimum) of f when viewed as a function on ∂E.

Example 6. Find the global minimum and maximum values of f(x, y) = 2x2 + 2y2 − xy − 3y − 3x+ 2
on the region E pictured below (the curved portion of the boundary of E is part of the unit circle):

Note that f is C1 (and therefore differentiable) throughout R2, and that[
0 0

]
= Df(x, y) =

[
4x− y − 3 4y − x− 3

]
exactly when (x, y) satisfies

[
4 −1
−1 4

] [
x
y

]
=

[
3
3

]
, or when

[
x
y

]
= 1

15

[
4 1
1 4

] [
3
3

]
= 1

15

[
15
15

]
=

[
1
1

]
, so at

(1, 1). Because (1, 1) does not lie in E, we conclude that f does not have any local extreme values on
E.

We turn our attention to the boundary of E, which is comprised of three curves: C1 (the portion
of the positive x-axis between the origin and (1, 0)), C2 (the portion of the line y = −x in the second
quadrant between (− 1√

2
, 1√

2
) and the origin), and C3 (the portion of the circle x2 + y2 = 1 in the upper-

half plane between the positive x-axis and the line y = −x). On each piece C1, C2, and C3, we write f
as a one-variable function and determine where it may have its maximum or minimum values.

On C1 we can think of f as a function of one variable by writing h(x) = f(x, 0) = 2x2 − 3x + 2
for 0 ≤ x ≤ 1. The critical numbers of h are solutions to 0 = h′(x) = 4x − 3, or rather x = 3

4
. Since

0 ≤ 3
4
≤ 1, we will test h at x = 3

4
in addition to the endpoints x = 0 and x = 1 of the interval [0, 1].

Therefore, the only possible points at which h might have an global maximum or minimum value are
x = 0, x = 3

4
, and x = 1. Therefore the only points on C1 at which f could have global extreme values

are (0, 0), (3
4
, 0), and (1, 0).

On C2 we have y = −x, and therefore our simplified version of f is h(x) = f(x,−x) = 5x2 + 2 for
− 1√

2
≤ x ≤ 0. The critical numbers of h are solutions to 0 = h′(x) = 10x, or rather x = 0. Since 0 is in

the interval [− 1√
2
, 0], the possible points at which h might have an global maximum or minimum value

are the endpoints x = 0 and x = − 1√
2
. Therefore the only points on C2 at which f could have global

extreme values are (− 1√
2
, 1√

2
) and (0, 0).

9



On C3 we can represent f as a function of one variable by first noting that the path ~r(t) =
(cos(t), sin(t)), 0 ≤ t ≤ 3π

4
traces out C3, and therefore we want to determine where

h(t) = f(~r(t)) = 2 cos2(t) + 2 sin2(t)− cos(t) sin(t)− 3 sin(t)− 3 cos(t) + 2

= − cos(t) sin(t)− 3 sin(t)− 3 cos(t) + 4, 0 ≤ t ≤ 3π

4

might achieve its maximum or minimum values. The critical numbers of h all satisfy

0 = h′(t)

= sin2(t)− cos2(t)− 3 cos(t) + 3 sin(t)

= (sin(t)− cos(t))(sin(t) + cos(t)) + 3(sin(t)− cos(t))

= (sin(t)− cos(t))(sin(t) + cos(t) + 3).

Since −2 ≤ sin(t)+cos(t), we have 1 ≤ sin(t)+cos(t)+3, and therefore sin(t)+cos(t)+3 6= 0. Therefore
we must have sin(t) − cos(t) = 0, or rather sin(t) = cos(t). The only value of t in [0, 3π

4
] at which this

occurs is t = π
4
, and therefore we will test h at t = π

4
and also at the endpoints t = 0 and t = 3π

4
.

Therefore the only points on C3 at which f might have global extreme values are (0, 0) (when t = 0),
( 1√

2
, 1√

2
) (when t = π

4
), and (− 1√

2
, 1√

2
) (when t = 3π

4
).

In total, we see that the only possible points where f could achieve its global extreme values on E
must be (0, 0), (3

4
, 0), (1, 0), ( 1√

2
, 1√

2
), (− 1√

2
, 1√

2
).

We have

f(0, 0) = 2, f
(3

4
, 0
)

= 2
(3

4

)2

− 3
(3

4

)
+ 2 =

7

8
, f(1, 0) = 1,

f
( 1√

2
,

1√
2

)
= 1 + 1− 1

2
− 6√

2
+ 2 =

7− 6
√

2

2
, f

(
− 1√

2
,

1√
2

)
= 1 + 1 +

1

2
+ 2 =

9

2
.

Note that since 49 < 72, taking square roots gives 7 < 6
√

2, so that 7−6
√

2
2

< 0.
Therefore the global maximum value of f on E is 9

2
(and occurs at (− 1√

2
, 1√

2
)). The global minimum

value of f on E is 7−6
√

2
2

(and occurs at ( 1√
2
, 1√

2
)).

Summary

To summarize: the global maximum and minimum values of a continuous function f : Ω → R on a
compact subset E ⊆ Ω must occur at a critical point of f in E, or at a point on the boundary of E. We
therefore have an algorithm for determining these points:

(i) Determine all critical points of f that lie in E.

(ii) Determine all points on ∂E at which f might have a maximum or minimum value (relative to its
other values on ∂E).

(iii) Compute the value of f at each point you identified in (i) and (ii). The global maximum and
minimum values of f will be among these values.

Example 7. Find the extreme values of f(x, y) = 3x2 +y3 on the region x2 + 2y2 ≤ 1 (this is the region
bounded by the ellipse x2 + 2y2 = 1).

10



We first compute the critical points of f :

0 = fx(x, y) = 6x and 0 = fy(x, y) = 3y2,

so the only critical point of f is (0, 0) (which is within our region).
Now we determine at which points on the boundary we might have a maximum or a minimum value.
The boundary is described by the equation x2 + 2y2 = 1, so that x2 = 1− 2y2. Substituting this into

f , we obtain
f(y) = 3(1− 2y2) + y3 = y3 − 6y2 + 3.

We also need to determine the domain of this simplified version of f . Because 2y2 ≤ 1, the domain is
− 1√

2
≤ y ≤ 1√

2
.

Now, f ′(y) = 3y2 − 12y = 3y(y − 4) = 0 exactly when y = 0 or y = 4. Because y = 4 is not in our
domain, we ignore it. This tells us that we should test the points on the ellipse corresponding to y = 0
(the critical point), and y = 1√

2
and y = − 1√

2
(the endpoints).

The points on the ellipse x2 + 2y2 = 1 which satisfy y = 0 are (1, 0) and (−1, 0). The only point
satisfying y = 1√

2
is (0, 1√

2
), and the only point satisfying y = − 1√

2
is (0,− 1√

2
).

Therefore, in addition to (0, 0), we need to test (1, 0), (−1, 0), (0, 1√
2
), and (0,− 1√

2
). Testing yields

f(0, 0) = 0, f(1, 0) = 3, f(−1, 0) = 3, f
(

0,
1√
2

)
=

1

2
√

2
, f

(
0,− 1√

2

)
= − 1

2
√

2
.

Therefore, the global maximum value of f is 3 (at (1, 0) and (−1, 0)), while the global minimum value
of f is − 1

2
√

2
(at (0,− 1

2
√

2
)).
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Lecture 3: Constrained Extrema

Learning Objectives:

� Explain the geometric idea behind the method of Lagrange multipliers.

� Compute the constrained extrema of a function using the method of Lagrange multipliers.

We start today by finishing up a problem from last time.

Example 8. Find the global minimum and maximum values of f(x, y) = 2x2 + 2y2 − xy − 3y − 3x+ 2
on the region E pictured below (the curved portion of the boundary of E is part of the unit circle):

Last time we determined that (1, 1) is the only critical point of f , but that we are uninterested in (1, 1)
because it lies outside of E.

We next turned our attention to finding points on ∂E at which f might have a maximum or minimum
value.

On the curve C1, we noted that f can be thought of as a one-variable function h(x) = f(x, 0) =
2x2− 3x+ 2, for x ∈ [0, 1]. By applying single-variable calculus techniques, we found that h might have
a maximum or minimum value when x = 0, x = 3

4
, or x = 1, so that if we constrain (i.e. restrict) the

inputs of f to C1, f might have a maximum or minimum value at (0, 0), (3
4
, 0), or (1, 0).

On the curve C2, we can think of f as a one-variable function h(x) = f(x,−x) = 5x2 + 2 for
x ∈ [− 1√

2
, 0]. Again by applying single-variable calculus techniques, we found that h might have a

maximum or minimum value when x = − 1√
2

or x = 0. This means that if we constrain f to C2, then f

might have a maximum or minimum value at (− 1√
2
, 1√

2
) or (0, 0).

We now constrain the inputs of f to (x, y) ∈ C3. Here we can represent f as a function of one
variable by first noting that the path ~r(t) = (cos(t), sin(t)), 0 ≤ t ≤ 3π

4
traces out C3, and therefore we

want to determine where

h(t) = f(~r(t)) = 2 cos2(t) + 2 sin2(t)− cos(t) sin(t)− 3 sin(t)− 3 cos(t) + 2

= − cos(t) sin(t)− 3 sin(t)− 3 cos(t) + 4, 0 ≤ t ≤ 3π

4

12



might achieve its maximum or minimum values. The critical numbers of h all satisfy

0 = h′(t)

= sin2(t)− cos2(t)− 3 cos(t) + 3 sin(t)

= (sin(t)− cos(t))(sin(t) + cos(t)) + 3(sin(t)− cos(t))

= (sin(t)− cos(t))(sin(t) + cos(t) + 3).

Since −2 ≤ sin(t)+cos(t), we have 1 ≤ sin(t)+cos(t)+3, and therefore sin(t)+cos(t)+3 6= 0. Therefore
we must have sin(t) − cos(t) = 0, or rather sin(t) = cos(t). The only value of t in [0, 3π

4
] at which this

occurs is t = π
4
, and therefore we will test h at t = π

4
and also at the endpoints t = 0 and t = 3π

4
. In

terms of f , this means that we should test f at (0, 0) (when t = 0), at ( 1√
2
, 1√

2
) (when t = π

4
), and at

(− 1√
2
, 1√

2
) (when t = 3π

4
).

In total, we see that the only possible points where f could achieve its global extreme values on E
must be (0, 0), (3

4
, 0), (1, 0), ( 1√

2
, 1√

2
), (− 1√

2
, 1√

2
).

We have

f(0, 0) = 2, f
(3

4
, 0
)

= 2
(3

4

)2

− 3
(3

4

)
+ 2 =

7

8
, f(1, 0) = 1,

f
( 1√

2
,

1√
2

)
= 1 + 1− 1

2
− 6√

2
+ 2 =

7− 6
√

2

2
, f

(
− 1√

2
,

1√
2

)
= 1 + 1 +

1

2
+ 2 =

9

2
.

Note that since 49 < 72, taking square roots gives 7 < 6
√

2, so that 7−6
√

2
2

< 0.
Therefore the global maximum value of f on E is 9

2
(and occurs at (− 1√

2
, 1√

2
)). The global minimum

value of f on E is 7−6
√

2
2

(and occurs at ( 1√
2
, 1√

2
)).

Constrained Local Extreme Values

In the previous problem we found the points where f(~x) may have a global extreme value on E when ~x
is constrained (or restricted) to each of the curves C1, C2, and C3. Each of these curves is a portion of
a curve defined by a single equation: y = 0 for C1, x+ y = 0 for C2, and x2 + y2 = 1 for C3. We call an
equation of this form a constraint on the inputs of f .

In practice we are often interested in finding the constrained extreme values of a function,
which are just the values of the function when the input is subject to a constraint. As we saw in the
previous example, attempting to find constrained extreme values through parametrization can get very
complicated very quickly, as parameterization is sometimes difficult and usually messy.

We can bring more powerful geometric ideas to bear on the problem through the following observa-
tion: constraints can usually be seen as level sets of functions. In the previous example, our analysis on
C3 can be viewed as trying to find the constrained extreme values of f on the level set g(x, y) = 1, where
g(x, y) = x2 + y2 (we also have the additional conditions here that y ≥ 0 and x ≥ − 1√

2
, but let’s ignore

those for now). Below we sketch some level curves of the function f(x, y) = 2x2 +2y2−xy−3y−3x+2,
as well as the graph of the constraint x2 + y2 = 1:
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From this picture we expect that for ~a ∈ S, if f(~a) is a local minimum or maximum when compared
only against f(~x) for ~x on C3 near ~a (we call f(~a) a constrained local extreme value), then the
point ~a should be a point where ∇f is perpendicular to the constraint curve x2 + y2 = 1. For if ∇f is
not perpendicular to the circle at a given point (x, y), then it should be that one can change the input
on C3 slightly in one direction to yield larger values of f , and in the other direction to yield smaller
values of f . In the picture below (illustrating a point where the gradient of f is not perpendicular to
the constraint), moving along the constraint in the counterclockwise direction from the specified point
results in larger values of f , while moving in the clockwise direction results in smaller values of f . (NB:
the vectors ∇g(x, y) and ∇f(x, y) as shown have the correct directions, but the magnitudes have been
adjusted to make the picture easier to parse.)

Thinking of the curve C3 as the level curve of g(x, y) = x2 + y2 = 1, this means that ∇f(~a) = λ∇g(~a)
for some number λ. The number λ is called a Lagrange multiplier. Of course, this reasoning would

14



not detect an extreme value that occurs at one of the endpoints of the curve C3, but we can check those
points manually.

This informal reasoning can be turned into a general result, called the Method of Lagrange Multi-
pliers, which we now state and prove.

Theorem 3 (Lagrange Multipliers). Let Ω ⊆ Rn be open and suppose that f, g : Ω→ R are C1

on Ω. Let S = {~x ∈ Ω : g(~x) = c} be the level set of g at height c, and let ~a ∈ S. Assume that
∇g(~a) 6= ~0, and that the restriction f : S → R of f to S has a constrained local extreme value
(i.e. a local extreme value when compared only to nearby points on S) at ~a. Then there exists
λ ∈ R such that ∇f(~a) = λ∇g(~a).

Proof. The idea of the proof is to note that ∇f(~a) is orthogonal to every vector that is tangent to S at ~a.
Because ∇g(~a) also has this property and the space of vectors orthogonal to S at ~a is one-dimensional,
∇f(~a) must lie in the span of ∇g(~a). Here is a sketch2 of the details.

The condition that g is C1 near ~a implies that the space T of vectors tangent to S at ~a has dimension
n− 1 and T⊥ = span(∇g(~a)). We show that ∇f(~a) ∈ T⊥.

Suppose that ~u is tangent to S at ~a (i.e. ~u ∈ T ). let ~r : R → S be a differentiable path such
that ~r(0) = ~a and D~r(0) = ~u. Since the restriction f : S → R has a local extreme value at ~a, the
single-variable function h(t) = f(~r(t)) also has a local extreme value at t = 0. By the chain rule, we
therefore have

0 = h′(0) = Df(~r(0))D~r(0) = Df(~a)~u = ∇f(~a) · ~u.

Therefore ∇f(~a) is orthogonal to ~u. Because ~u ∈ T was arbitrary,

∇f(~a) ∈ T⊥ = span(∇g(~a)).

Therefore there is λ ∈ R with ∇f(~a) = λ∇g(~a).

Example 9. Going back to the first example, we want to maximize f(x, y) = 2x2 +2y2−xy−3x−3y+2
subject to the constraint g(x, y) = x2 + y2 = 1 (and we also require that x ≥ − 1√

2
and y ≥ 0, but this

won’t come into play until the end). By the previous theorem, the local extreme values must occur at
points ~x satisfying the following system of equations (for some λ ∈ R):

{
∇f(x, y) = λ∇g(x, y)

g(x, y) = 1
⇔


4x− y − 3 = 2λx

4y − x− 3 = 2λy

x2 + y2 = 1.

Note that the equation ∇f(x, y) = λ∇g(x, y) exactly captures the condition that ∇f(x, y) lies in the
span of ∇g(x, y), while the equation g(x, y) = 1 restricts our attention to points (x, y) on the constraint.

We solve this system. The first equation on the right can be rewritten as (4− 2λ)x− y = 3, and the
second equation on the right can be written as−x+(4−2λ)y = 3. Therefore (4−2λ)x−y = −x+(4−2λ)y,
so that (5− 2λ)(x− y) = 0. It follows that either λ = 5

2
or x = y.

If λ = 5
2

then the first two equations simplify to x + y = −3. But the third equation says that we
have ‖(x, y)‖ = 1, so that |x + y| ≤ |x| + |y| ≤ 2‖(x, y)‖ = 2 < 3, and therefore it is not possible that
x+ y = −3. We conclude that λ 6= 5

2
.

2I say “sketch” here because the claim that dim(T ) = n− 1 is a consequence of the Implicit Function Theorem, which
implies that near ~a we can view S as the graph of one variable as a function of the other variables.
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Therefore x = y, and the third equation yields x = y = ± 1√
2
, which gives us the points ( 1√

2
, 1√

2
) and

(− 1√
2
,− 1√

2
). (We could solve for λ here as well, but this is not so important.) These are the only points

on the circle x2 + y2 = 1 where f could have a local constrained extreme value. Because we have the
additional constraints that x ≥ − 1√

2
and y ≥ 0, we see that only one of these points is on the portion

of the circle that we care about: ( 1√
2
, 1√

2
).

Of course, the endpoints of the curve C3 could also be places where f has a constrained (global)
extreme value on C3, so we would need to test at (− 1√

2
, 1√

2
) and (1, 0) as well.

In total, we found that the points on C3 where f might have a maximum or minimum value are
(− 1√

2
, 1√

2
), ( 1√

2
, 1√

2
), and (1, 0), which agrees with what we found using the parametrization argument.

Example 10. We want to design a cylindrical bottle to hold 1 liter (1000 cm3) of water. The base
and sides of the bottle are to be metal, and cost $2 per square centimeter to make, while the top is a
high-grade plastic which costs $3 per square centimeter to make. What dimensions of the bottle will
minimize the cost?

We want to minimize the cost function

C(r, h) = 2(πr2 + 2πrh) + 3(πr2) = 5πr2 + 4πrh

subject to the constraint
πr2h = 1000.

The global minimum value of C(r, h) constrained to g(r, h)
def
= πr2h = 1000 (if it exists! More on this

below.) must also be a constrained local minimum value, so we can identify where this might occur by
using the method of Lagrange multipliers.

The choice (r, h) or radius and height that minimize the cost of the cylinder should satisfy (for some
λ ∈ R) {

∇C(r, h) = λ∇g(r, h)

g(r, h) = 1000
⇔


10πr + 4πh = 2λπrh

4πr = λπr2

πr2h = 1000

Multiplying the first equation by r and using the constraint gives us

10πr2 + 4πrh = 2λπr2h = 2000λ.

Similarly, multiplying the second equation by h and using the constraint gives us

4πrh = λπr2h = 1000λ.

Dividing the (new) first equation by 2 and subtracting yields

5πr2 − 2πrh = 0, or rather r(5r − 2h) = 0.

Since r 6= 0, we must have 5r = 2h.
Plugging this into the constraint and solving yields

r = 2
3

√
50

π
cm, h = 5

3

√
50

π
cm.
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This shows that (r, h) =
(

2 3

√
50
π
, 5 3

√
50
π

)
is the only point where the restriction of C(r, h) to the constraint

g(r, h) = 1000 might have a global minimum value.
There is still a subtle issue here: the constraint set described by g(r, h) = 1000 is not compact

because it is not bounded, and therefore it is not obvious that a global minimum value even exists. To
see this, note that we have h = 1000

πr2
, so that the points (r, h) become arbitrarily large in size as r → 0+.

(Note that here we only consider r > 0 and h > 0, as these are suppose to represent the radius and
height of a cylinder.)

To get around this difficulty, note that the relationship h = 1000
πr2

shows that

C(r, h) = 5πr2 + 4πrh = 5πr2 +
4000

r
→∞ as r →∞

and, instead writing r =
√

1000
πh

,

C(r, h) = 5πr2 + 4πrh =
5000

h
+ 4πh

√
1000

πh
=

5000

h
+ 40
√

10πh→∞ as h→∞.

Therefore there is some large δ so that if ‖(r, h)‖ ≥ δ, then C(r, h) ≥ C
(

2 3

√
50
π
, 5 3

√
50
π

)
+ 1. Then the

portion of the constraint that lies inside of the closed ball of radius δ,

{(r, h) : ‖(r, h)‖ ≤ δ, πr2h = 1000},

is compact and C(r, h) ≥ C
(

2 3

√
50
π
, 5 3

√
50
π

)
outside of this set.

Because the restriction of C(r, h) attains a global minimum value somewhere in this compact set (by
the Extreme Value Theorem), and such a global minimum value on this set must be no greater than

C
(

2 3

√
50
π
, 5 3

√
50
π

)
. Because C(r, h) ≥ C

(
2 3

√
50
π
, 5 3

√
50
π

)
+1 if (r, h) lies on the constraint and ‖(r, h)‖ ≥ δ,

the global minimum value of C(r, h) in the compact set is actually the global minimum value of C(r, h)
on the entire (non-compact) constraint set. Because the global minimum value of C(r, h) must also be

a local minimum value, we see that C
(

2 3

√
50
π
, 5 3

√
50
π

)
must actually be the global minimum value of

C(r, h).
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Lecture 4: More Constrained Extrema

Learning Objectives:

� Apply the method of Lagrange multipliers with one or several constraints.

We start today with one of the classic computations in multivariable calculus.

Example 11. Let A ∈ Mn×n(R) be symmetric, and consider the quadratic form q(~x) = ~x · (A~x). Last
quarter we used the Spectral Theorem to determine that the maximum and minimum values of q on the
unit sphere Sn−1 = {~x : ‖~x‖ = 1} are exactly the largest and smallest eigenvalues of A.

We prove this result a second time, now using the method of Lagrange Multipliers. Indeed, we seek to
optimize the function q(~x) = ~x·(A~x) subject to the constraint g(~x) = 1, where g(~x) = ‖~x‖2 = x2

1+· · ·+x2
n.

(We use this form for the constraint to make computing the derivative easier.) Because q is continuous
on the constraint set Sn−1 = {~x : g(~x) = 1} and Sn−1 is compact, the Extreme Value Theorem implies
that q does indeed attain global extreme values on Sn−1 (which will also be constrained local extreme
values of q).

By the method of Lagrange Multipliers, a point ~x at which q attains a constrained extreme value
must satisfy, for some λ ∈ R, {

∇q(~x) = λ∇g(~x)

g(~x) = 1

Note that since g(~x) = x2
1 + · · ·+ x2

n, gxj(~x) = 2xj for each 1 ≤ j ≤ n, and therefore ∇g(~x) = 2~x.
We will show that ∇q(~x) = 2A~x. The computation can be a little tricky, so we will proceed in

a way that doesn’t involve using too many indices. Fix 1 ≤ k ≤ n, and write ~x = xk~ek + ~v, where
~v = x1~e1 + · · ·+ xk−1~ek−1 + xk+1~ek+1 + ·+ xn~en. Note that ~v does not depend on xk; this will facilitate
our computation of qxk . Indeed, using the fact that A is symmetric we have

q(~x) = (xk~ek + ~v) · (A(xk~ek + ~v))

= x2
k(~ek · (A~ek)) + xk(~ek · (A~v)) + xk(~v · (A~ek)) + ~v · (A~v)

= x2
k(~ek · (A~ek)) + xk(~ek · (A~v)) + xk((A~v) · ~ek) + ~v · (A~v)

= x2
k(~ek · (A~ek)) + 2xk(~ek · (A~v)) + ~v · (A~v),

so that

qxk(~x) = 2xk(~ek · (A~ek)) + 2(~ek · (A~v)) + 0

= ~ek · (2A(xk~ek)) + ~ek · (2A~v)

= ~ek · (2A(xk~ek + ~v))

= ~ek · (2A~x).

Because qxk(~x) is the k-th entry of ∇q(~x), and ~ek · (2A~x) is the k-th entry of 2A~x, we conclude that
∇q(~x) = 2A~x.

Therefore the equation ∇q(~x) = λ∇g(~x) simplifies to 2A~x = λ(2~x), or rather A~x = λ~x. Because the
equation g(~x) = 1 implies that ‖~x‖2 = 1 (and therefore ~x 6= ~0), it follows that such a point ~x we have
that ~x is an eigenvector and q(~x) = ~x · (A~x) = ~x · (λ~x) = λ‖~x‖2 = λ. Therefore we conclude that the
global maximum value of q on Sn−1 is the largest eigenvalue of q, and the global minimum value of q on
Sn−1 is the smallest eigenvalue of q.
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Lagrange Multipliers with Multiple Constraints

The version of the method of Lagrange Multipliers that we established last time is great when we are
attempting to optimize a function f : Rn → R constrained to a subset that is the level set of a single
C1 function g : Rn → R. In practice we are often led to consider the case where there are multiple
constraints on the inputs of f , say g1(~x) = c1, g2(~x) = c2, . . . , gm(~x) = cm.

If we assume that the set S = {~x : gi(~x) = ci for i = 1, . . . ,m} is appropriately non-degenerate (in
the sense that the space of vectors tangent to S at a point has the “correct” dimension), then we can
generalize the method of Lagrange multipliers to identify points where f has constrained local extreme
values on S. We can think of S as the intersection of the level sets Si = {~x : gi(~x) = ci}, each of
which is an (n − 1)-dimensional set that locally resembles Rn−1 (in the same way that a curve locally
resembles R1, and a surface locally resembles R2). This exact notion is made more precise in a course
in differential geometry, but hopefully the intuition here makes sense.

One fact from differential geometry that we need is that if the vectors ∇g1(~a), . . . ,∇gm(~a) form a
linearly independent set, then the level sets S1, . . . , Sm intersect3 “nicely”, in the sense that the vectors
that are tangent to S at ~a are exactly the vectors that are tangent to each of S1, . . . , Sm at ~a.

In this case, it follows that if T is the set of vectors tangent to S at ~a, then

T =
(

span(∇g1(~a), . . . ,∇gm(~a))
)⊥
.

But by repeating part of the proof of the single-constraint case of the Method of Lagrange Multipliers,
we see that ∇f(~a) ∈ T⊥. It therefore follows that ∇f(~a) ∈ span(∇g1(~a), . . . ,∇gm(~a)). We summarize
this reasoning in the following theorem.

Theorem 4 (Lagrange Multipliers - Multiple Constraints). Let Ω ⊆ Rn be open, and assume
that f, g1, . . . , gm : Ω → R are C1 on Ω. Let S = {~x ∈ Ω : gi(~x) = ci, i = 1, . . . ,m} and
~a ∈ S. Assume that ∇g1(~a), . . . ,∇gm(~a) forms a linearly independent set, and that the restriction
f : S → R of f to S has a constrained local extreme value (i.e. a local extreme value when
compared to nearby points on S) at ~a. Then there exists λ1, . . . , λm ∈ R such that

∇f(~a) = λ1∇g1(~a) + · · ·+ λm∇gm(~a).

Example 12. Find the extreme values of f(x, y, z) = x + y + z on the intersection of the cylinder
x2 + y2 = 2 and the plane x+ z = 1.

We are attempting to find the extreme values of f subject to the constraints g1(x, y, z) = 2 and
g2(x, y, z) = 1, where g1(x, y, z) = x2 + y2 and g2(x, y, z) = x + z. Because the first constraint restricts
(x, y, z) to the cylinder of radius

√
2 centered on the z-axis, and the second constraint restricts (x, y, z)

to the plane x + z = 1, imposing both of these constraints restricts (x, y, z) to the intersection of the
cylinder and the plane.

3Alas, this is another consequence of the Implicit Function Theorem!
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Note that this curve is compact, and therefore the continuous function f does indeed have global extrema
on this curve (which must be constrained local extrema). We will apply the multiple-constraint version
of the method of Lagrange multipliers.

Note that

∇g1(x, y, z) =

2x
2y
0

 and ∇g2(x, y, z) =

1
0
1


are linearly independent for (x, y, z) satisfying x2 + y2 = 2 and x+ z = 1, since if

∇g1(x, y, z) + c2∇g2(x, y, z) =

2c1x+ c2

2c1y
c2

 = ~0

then we must have c2 = 0, and therefore (since at least one of x or y is nonzero) we have c1 = 0 as
well. Therefore the Lagrange Multipliers Theorem for multiple constraints applies, and at the points
where f might have local extreme values (and therefore global extreme values) must satisfy, for scalars
λ1, λ2 ∈ R,


∇f(x, y, z) = λ1∇g1(x, y, z) + λ2∇g2(x, y, z)

g1(x, y, z) = 2

g2(x, y, z) = 1

⇔



1 = λ12x+ λ2

1 = λ12y

1 = λ2

x2 + y2 = 2

x+ z = 1
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At such points we must have λ2 = 1, so that 2λ1x = 0, or rather λ1x = 0. Because 1
2

= λ1y, we have

1
4

= 02 +
(

1
2

)2

= λ2
1x

2 + λ2
1y

2 = λ2
1(x2 + y2) = 2λ2

1 by the fourth equation, so that λ1 = ± 1
2
√

2
. If

λ1 = 1
2
√

2
, then we have x = 0 (so that z = 1) and y =

√
2. If λ1 = − 1

2
√

2
, then we have x = 0 (so that

z = 1) and y = −
√

2.
Therefore the points where f might have extreme values on the intersection of the plane and the

sphere are (0,
√

2, 1) and (0,−
√

2, 1). At these points we have f(0,
√

2, 1) = 1 +
√

2 and f(0,−
√

2, 1) =
1−
√

2, so that the global maximum value of f is 1 +
√

2, and the global minimum is 1−
√

2.
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Lecture 5: Riemann Sums

Learning Objectives:

� Describe the geometric intuition of the Riemann integral in terms of dimension-appropriate
volume.

� Use partitions and sample points to construct a Riemann sum for a function over a box.

� Describe integrability and integrals in terms of limits of Riemann sums.

Now that we have completed our treatment of multivariable differential calculus, we turn to multivariable
integral calculus. Just as in single-variable calculus there are two important (and related) notions of
integration: one geometric (related to areas, volumes, etc.), and the other dynamic (related to an
appropriate notion of antidifferentiation). Both of these notions are important, and they are related in
single-variable calculus by the Fundamental Theorem of Calculus. We will spend the rest of this quarter
generalizing these ideas (including the Fundamental Theorem of Calculus) to the multivariable setting.
We start by understanding integration from a geometric point of view.

What can you use from Single-Variable Integral Calculus?

This is not a single-variable calculus course, and we will therefore utilize ideas and techniques that
were established in your single-variable integral calculus. Some topics that you should feel free to
use (and therefore might find helpful to review) are:

� standard antiderivative formulas (power rule, 1
x
, trigonometric functions, inverse trigono-

metric functions, exponential functions)

� antidifferentiation techniques (substitution for indefinite integrals, substitution for defi-
nite integrals, integration by parts, partial fraction decomposition, trigonometric integrals,
trigonometric substitution)

� The Fundamental Theorem of Calculus

� improper integrals

Don’t hesitate to reach out to Prof. Peterson or the TA if you need help reviewing any of these
ideas!

Meaning of Multiple Integrals

For a scalar-valued function f : R → R of a single-variable, the integral of f over an interval [a, b]
was understood to measure the (signed) area of the region enclosed between the graph of f and the
x-axis over the interval [a, b], with points where f(x) > 0 contributing “positive area” and points where
f(x) < 0 contributing “negative area”:
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This generalizes to higher-dimensions in the same way. For example, if Ω is a region in R2 and if
f : R2 → R, then the integral of f over Ω should measure the (3-dimensional) “signed volume” of the
region in R3 = R2+1 between the graph of f and the xy-plane over the region Ω, with points where
f(x, y) > 0 contributing “positive volume” and points where f(x, y) < 0 contributing “negative volume”:

If Ω is a region in Rn and if f : Rn → R, then the integral of f over Ω should measure the “signed
(n + 1)-volume” of the region in Rn+1 between the graph of f and the region Ω (thought of as lying
in the subspace Rn of Rn+1), with points where f(~x) > 0 contributing “positive (n + 1)-volume” and
points where f(~x) < 0 contributing “negative (n+ 1)-volume”.

At this point we cannot draw any more pictures, but we can note that the notion of n-volume we
will use here should be compatible with the notion of n-volume that we worked with when we studied
parallelotopes in MATH 291-2. To leverage this, we will build our notion of integration using boxes
(the higher-dimensional analogues of rectangles), for which we can compute the appropriate notion of
volume in the usual way.

Riemann Integration

To formalize the idea of what the integral of f should be, we build up some fundamental notions.

Boxes

Definition 4. A box B ⊂ Rn is a set of the form

B = [a1, b1]× [a2, b2]× · · · × [an, bn]
def
= {(x1, x2, . . . , xn) : xi ∈ [ai, bi] for i = 1, . . . , n}.

Here we assume that ai ≤ bi for each i = 1, . . . , n.

Remark 2. A box B = [a1, b1]× · · · × [an, bn] is exactly the set of points ~x ∈ Rn where each coordinate
xi lies in the interval [ai, bi]. For example:
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(a) A box in R is just an interval [a, b].

(b) A box in R2 is a rectangular-shaped region with sides parallel to the coordinate axes. Such a box
has the form [a, b]× [c, d], which consists of points (x, y) where x ∈ [a, b] and y ∈ [c, d].

(c) A box in R3 is a solid box (in the ordinary usage of the word) with sides parallel to the coordinate
planes. Such a box has the form [a, b] × [c, d] × [e, f ], which consists of points (x, y, z) where
x ∈ [a, b] and y ∈ [c, d] and z ∈ [e, f ].

Remark 3. Note that a box B = [a1, b1]× [a2, b2]× · · · × [an, bn] in Rn is just a (shifted) parallelotope
with sides parallel to ~e1, . . . , ~en, since

B = {(x1, x2, . . . , xn) : xi ∈ [ai, bi] for i = 1, . . . , n}
= {(a1 + t1(b1 − a1), a2 + t2(b2 − a2), . . . , an + tn(bn − ab) : ti ∈ [0, 1] for i = 1, . . . , n}
= (a1, . . . , an) + {t1(b1 − a1)~e1 + t2(b2 − a2)~e2 + · · ·+ tn(bn − an)~en : ti ∈ [0, 1] for i = 1, . . . , n}
= (a1, . . . , an) + E((b1 − a1)~e1, (b2 − a2)~e2, . . . , (bn − an)~en).

Because the box B = [a1, b1]×· · ·×[an, bn] is a (shifted by (a1, . . . , an)) parallelotope in Rn determined
by the vectors (b1 − a1)~e1, . . . , (bn − an)~en, we apply our notion of n-volume from last quarter to make
the following definition.

Definition 5. The n-volume of a box B = [a1, b1]× · · · × [an, bn] in Rn is defined as

Voln(B)
def
= Voln(E((b1 − a1)~e1, (b2 − a2)~e2, . . . , (bn − an)~en)) = (b1 − a1)(b2 − a2) · · · (bn − an).

Partitions and Riemann Sums

The integral of f : Rn → R over a box B is defined analogously to how the integral is defined in
single-variable calculus: as a limit of Riemann sums. A Riemann sum can be thought of as an approxi-
mation of the integral of f over B obtained by first partitioning (i.e. splitting) B into smaller boxes
B1, B2, . . . , BM , choosing one sample point ~c1, . . . ,~cM in each Bi. (The sample points ~ci are shown in
the picture below in purple.) We allow (only) the boundaries of B1, B2, . . . , BM to overlap.

We denote the collection of smaller boxes as P , and the choice of sample points as C.
Given the partition P of B and the choice of sample points C, we approximate the signed (n + 1)-

volume between the graph of f and Bi as f(~ci)Voln(Bi). Here f(~ci) should be thought of as the “height”
of a box in Rn+1 with base Bi. (Here we are allowing the “height” to be negative, hence the quotes.)
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Each partition P of B and choice of sample points C determines a Riemann sum R(f,P , C), which
is an approximation for the signed (n+ 1)-volume between the graph of f and the box B:

R(f,P , C) def
=
∑
i

f(~ci)Voln(Bi).

Let ‖P‖ denote the maximum edge-length over all of the smaller boxes that make up the partition P .
In a perfect world, as ‖P‖ → 0 (i.e. as the maximum edge-length of the boxes created by the partition
P approach 0), we would hope that R(f,P , C) would approach “the” integral of f over B. Indeed, we
will actually define the integral of f in terms of this limiting process.

Definition 6. Let B be a box in Rn, and let f : B → R. Then we define the (Riemann)
integral of f over B to be

�
B

f(~x) dVn(~x)
def
= lim
‖P‖→0

R(f,P , C),

provided that the limit on the right exists. In this case we say that f is (Riemann) integrable
over B.

Remark 4. Your book (and we) will refer to the type of integral described in the previous definition
as a multiple integral, signifying that we are integrating a function over a multidimensional set as a
limit of Riemann sums. When n = 2 it is standard to say double integral instead of multiple integral,
and when n = 3 it is standard to say triple integral instead of multiple integral. These are standard
names for these special cases that you will see “out in the wild” and in your textbook, but they all refer
to the integral of a function over a box as a limit of Riemann sums.

Remark 5. The notation dVn(~x) is intended to denote an “infinitesimal” version of Voln(Bi) from
the Riemann sums, and so should be considered the infinitesimal n-volume of a box in B containing
~x. This is merely a suggestive notational device, but will be convenient for framing various results in
easy-to-remember ways.

When n = 2 we may write dA(x, y) instead of dV2(x, y) (because 2-volume is just area), and when
n = 3 we may write dV (x, y, z) instead of dV3(x, y, z) (because 3-volume is just the traditional notion
of volume).

Notation 1. When there is no ambiguity about which variables we are integrating in, then we
may just write fdVn instead of f(~x)dVn(~x) for brevity.
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Remark 6. If B ⊂ Rn is a box with Voln(B) > 0, and if f : B → R is unbounded (in the sense that its
set of outputs is not bounded), then f is not integrable on B. In other words, a necessary precondition
for a function to be integrable on a box is that it have bounded outputs!

To see why, suppose (towards a contradiction) that f is integrable on B and let

L =

�
B

f dVn = lim
‖P‖→0

R(f,P , C).

Choose δ > 0 such that if ‖P‖ < δ then |L−R(f,P , C)| < 1 regardless of the choice C of sample points.
Let P be a partition of B into boxes B1, . . . , BN with nonzero n-volume, such that ‖P‖ < δ. Then there
must be some i0 such that the outputs of f on Bi0 are unbounded, for if not then for each i = 1, . . . , N
there is Mi ≥ 0 with |f(~x)| ≤Mi for each ~x ∈ Bi. But then |f(~x)| ≤ max(M1, . . . ,MN) for each ~x ∈ B,
contrary to our assumption that f is unbounded. Let C be a choice of sample points ~ci ∈ Bi. Because
f is unbounded on Bi0 and Voln(Bi0) > 0, we can choose ~c∗i such that |f(~ci0)− f(~c∗i0)| > 2/(Voln(Bi0)).
Then

2 < |(f(~ci0)− f(~c∗i0))Voln(Bi0)|

= |(f(~ci0)− f(~c∗i0))Voln(Bi0) + L−
∑
i 6=i0

f(~ci)Voln(Bi)− L+
∑
i 6=i0

f(~ci)Voln(Bi)|

= |L−R(f,P , C∗)− (L−R(f,P , C))|
≤ |L−R(f,P , C∗)|+ |L−R(f,P , C)|
< 1 + 1 = 2,

a contradiction. Therefore whenever we assume that a function f is integrable on a box B, we may
assume that f is bounded on B.

Example 13. Consider the function f(x, y) (some of the level curves of which are given below) over
the box B = [0, 12]× [0, 8]. Let’s use Riemann sums to estimate

�
B
f dA.

First we partition B into 4 equal-sized rectangles, and choose a sample point in each rectangle:
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The Riemann sum for f given these choices of partition P and sample points C is

R(f,P , C) = f(~c1)Area(B1) + f(~c2)Area(B2) + f(~c3)Area(B3) + f(~c4)Area(B4)

= 0(24) + 2(24) +−2(24) + 1(24)

= 24.

Let’s now make the rectangles smaller, say by partitioning R into 16 equal sizes rectangles, with
sample points as indicated:

The Riemann sum for f(x, y) given these choices of partition P ′ and sample points C ′ is

R(f,P ′, C ′) = 0(6) + 0(6) + 1(6) + 2(6) + (−1)(6) + 0(6) + 1(6) + 2(6)

+(−2)(6) + 0(6) + 0(6) + 2(6) + (−2)(6) + (−1)(6) + (−1)(6) + 1(6)

= 12.

Remark 7. Although we will not use it formally for any proofs, it can sometimes be helpful to a
definition of integrability that is easier to use. What follows is an equivalent definition of the Riemann
integral of a function (due to Darboux). To this end, suppose that B is a box in Rn and that f : B → R
has bounded outputs. Let P be a partition of B. For a box Bi given by the partition, let mi be the
largest real number for which mi ≤ f(~x) for all ~x ∈ Bi and let Mi be the smallest real number for which
f(~x) ≤Mi for all ~x ∈ Bi. (Note that mi and Mi will be the minimum and maximum values of f on Bi

if f actually achieves maximum and minimum values on Bi.) We call

U(f,P)
def
=
∑
i

MiVoln(Bi) and L(f,P)
def
=
∑
i

miVoln(Bi)

the upper sum and lower sum of f on B relative to the partition P . The key point here is that
because of how mi and Mi were chosen,

L(f,P) ≤ R(f,P , C) ≤ U(f,P)

for every possible choice of sample points C.
We can then state the following formal definition of integrability:

Definition 7. Suppose that B is a box and that f : B → R has bounded outputs. Then we say
that f is integrable on B if for every ε > 0 there exists a partition P of B such that

U(f,P)− L(f,P) < ε.
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In other words, f is integrable over B if for each ε > 0 there is a partition P such that the difference
between the upper sum of f (which should be an overestimate of the integral of f over B) and the lower
sum of f (which should be an underestimate of the integral of f over B) is less than ε.

One way to interpret this is that, for each ε > 0 there is a partition P of B such that the graph of
f over B is covered by the boxes Ei = Bi × [mi,Mi], and that∑

Voln+1(Ei) =
∑

(Mi −mi)Voln(Bi) =
∑

MiVoln(Bi)−
∑

miVoln(Bi) = U(f,P)− L(f,P) < ε.
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Lecture 6: Integrability

Learning Objectives:

� Establish properties of the integral by using the definition of integrability.

� Determine when a subset of Rn has measure zero.

� Determine when a function is integrable by inspecting its sets of discontinuities.

Last time we built up the notion of the integral of a function f : B → R on a box B ⊂ Rn using Riemann
sums. This definition can be used directly to compute the integrals of only very simple functions.

Using the Definition of Integrability

Example 14. Let B ⊂ Rn be a box, and suppose f : B → R is constant (i.e. f(~x) = c for some
constant c ∈ R). Then f is integrable on B and

�
B

f dVn = cVoln(B).

To prove this, suppose that P is a partition of B and C is a choice of sample points for P . Then we
have

R(f,P , C) =
∑
i

f(~ci)Voln(Bi) =
∑
i

cVoln(Bi) = c
∑
i

Voln(Bi) = cVoln(B),

where the last equality follows from the fact that B is the union of the boxes B1, . . . , BM and these boxes
only overlap on their boundaries (and each ‘face’ of the boundary of one of the Bi can be viewed as a
parallelotope determined by a set of n vectors that includes ~0, and therefore has n-volume 0). Therefore
we have

lim
‖P‖→0

R(f,P , C) = lim
‖P‖→0

cVoln(B) = cVoln(B).

It follows that f is integrable on B and

�
B

f(~x) dVn = cVoln(B).

We will have additional (and much better) ways to compute the integrals of more interesting functions
in a couple days. The definition of the integral is incredibly useful for proving abstract properties of the
integral. To illustrate this, we note that we can prove familiar linearity properties and inequalities for
the integral with relative ease.
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Theorem 5 (Properties of the Integral). Suppose that f and g are both integrable on a box
B ⊂ Rn. Then the the following properties hold.

1. f + g is also integrable on B and

�
B

(f + g) dVn =

�
B

f dVn +

�
B

g dVn.

2. For c ∈ R, cf is also integrable on B and

�
B

cf dVn = c

�
B

f dVn.

3. If f(~x) ≤ g(~x) for all ~x ∈ B, then

�
B

f dVn ≤
�
B

g dVn.

4. |f | is also integrable on B and ∣∣∣∣�
B

f dVn

∣∣∣∣ ≤ �
B

|f | dVn.

Proof. You will prove parts 2., 3., and 4. on your homework (in the special case where n = 2, but your
proof will work for all n). We illustrate how these types of arguments go by proving part 1.

For 1., let P be a partition of B and let C be a choice of sample points for P . Then we have

R(f + g,P , C) =
∑
i

(f(~ci) + g(~ci))Voln(Bi)

=
∑
i

f(~ci)Voln(Bi) +
∑
i

g(~ci)Voln(Bi)

= R(f,P , C) +R(g,P , C).

Because lim
‖P‖→0

R(f,P , C) =

�
B

f(~x) dVn and lim
‖P‖→0

R(g,P , C) =

�
B

g(~x) dVn, we have

lim
‖P‖→0

R(f + g,P , C) = lim
‖P‖→0

[
R(f,P , C) +R(g,P , C)

]
=

�
B

f(~x) dVn +

�
B

g(~x) dVn,

so that f + g is integrable on B and�
B

(f + g) dVn =

�
B

f dVn +

�
B

g dBn.

Integrable Functions

Now that we know the basic properties of the integral, we can turn our attention to the nuanced question
of which functions are actually integrable. We saw in our opening example that constant functions are
integrable. It may not surprise you to learn that all continuous functions are integrable.
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Theorem 6. Let B ⊂ Rn be a box, and suppose that f : B → R is continuous. Then f is
integrable on B.

Proof. We prove this using the the more precise definition of Riemann integrability from the previous
lecture, but we will also need a fact from analysis about continuous functions that we did not prove
last quarter. In particular, we will use the fact that since f is continuous on B and B is compact, then
f is uniformly continuous on B in the sense that for every ε > 0 there exists δ > 0 such that for
every ~x, ~y ∈ B with ‖~x− ~y‖ < δ, it follows that |f(~x)− f(~y)| < ε. Note that this is stronger than mere
continuity, as we are able to choose δ here depending on ε but independent of ~x and ~y.

We now proceed with the proof. To avoid trivialities, assume that Voln(B) > 0. Let ε > 0. Because
f is continuous on B and B is compact, f is uniformly continuous on B. Choose δ > 0 such that for
every ~x, ~y ∈ B with ‖~x− ~y‖ < δ, it follows that |f(~x)− f(~y)| < ε

2Voln(B)
. Let P be a partition of B with

‖P‖ < δ√
n
, and let Bi be any box that is part of the partition P of B. Because Bi is compact and f is

continuous on Bi, the Extreme Value Theorem implies that there exist ~y, ~z ∈ Bi with

f(~y) = mi
def
= min

~x∈Bi
f(~x) and f(~z) = Mi

def
= max

~x∈Bi
f(~x).

Note that because ~y, ~z ∈ Bi and the maximum length of an edge of Bi is ‖P‖ < δ√
n
, we have that

‖~y − ~z‖ =
√

(y1 − z1)2 + ·+ (yn − zn)2 <

√
δ2

n
+ · · ·+ δ2

n
= δ,

and therefore 0 ≤Mi −mi = f(~z)− f(~y) < ε
2Voln(B)

. It follows that

U(f,P)− L(f,P) =
∑
i

MiVoln(Bi)−
∑
i

miVoln(Bi)

=
∑
i

(Mi −mi)Voln(Bi)

≤
∑
i

ε

2Voln(B)
Voln(Bi)

=
ε

2Voln(B)

∑
i

Voln(Bi)

=
ε

2Voln(B)
Voln(B)

=
ε

2
< ε.

Therefore f is integrable on B.

Measure Zero

We can weaken the assumption of continuity a little if our function is bounded (in the sense that the
set of outputs is bounded) and only discontinuous on a “small” set. Here, “small” means that the set
has measure zero, in the sense that it lies inside of another set that we know has n-volume as small
as we’d like. Because we only know how to measure the volume of boxes (and at least overestimate the
volumes of unions of boxes by adding the volumes of the boxes), we are led to the following definition.
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Definition 8. Let A ⊆ Rn. Say that A has measure zero if for every ε > 0 there exists a (finite
or countably infinite4) collection of boxes B1, B2, B3, . . . ⊂ Rn such that

A ⊂
⋃
i

Bi = B1 ∪B2 ∪B3 ∪ · · · and
∑
i

Voln(Bi) < ε.

Note that if there are indeed an infinite number of boxes, then this sum is actually a series.

In other words, a subset of Rn has measure zero if it can be covered by a finite or (countably) infinite
collection of boxes, where we can take the total volume of these boxes to be arbitrarily small.

Example 15. The interval [0, 2] in R does not have measure zero, because Vol1([0, 2]) = 2, and therefore
the sum of 1-volumes of boxes that cover [0, 2] must be at least 2 (and not 0).

But the set I = {(x, 0) : x ∈ [0, 2]} in R2 does have measure zero, since for ε > 0 we note that
I ⊆ [0, 2]× [0, ε

3
], and

Vol2

(
[0, 2]×

[
0,
ε

3

])
=

2ε

3
< ε.

These results confirm what we already know from intuition: the interval [0, 2] has length (i.e. 1-
volume) 2, but has area (i.e. 2-volume) 0. It also illustrates an important point: whether a geometric
object (like a line segment) has measure zero depends on the space in which it lives. For example, a
(solid) square would have measure zero in R3, but would have positive measure in R2.

Example 16. The set of rational numbers Q has measaure zero in R. To prove this, we need to use
the fact that the rational numbers are countably infinite5. That is, it is possible to write the elements
of Q in an infinite list r1, r2, r3, . . .. Let ε > 0. Tor each k ∈ N, set Bk = [rk, rk]. Then Bk is a box and
Vol1(Bk) = rk − rk = 0, so that Q ⊂

⋃
k Bk and

∑
i Vol1(Bk) = 0 < ε.

The fact that Q has measure zero in R is even more remarkable once one considers the surprising fact
that Q is dense in R, in the sense that for every x ∈ R and every ε > 0 there is r ∈ Q with |r− x| < ε.
That is, for every x ∈ R we can find a rational number that is as close to x as we wish. In this sense,
the elements of Q are “everywhere” in R, but somehow manage to have measure zero!

Example 17. The xz-plane P in R3 has measure zero. To see why, let ε > 0 and choose

Bi = [−i, i]× [0,
ε

4i23i
]× [−i, i] for i = 1, 2, 3, . . . .

Then if (x, 0, z) ∈ P , i greater than the maximum of |x| and |z| we have (x, 0, z) ∈ Bi, so that

P ⊆
⋃
i

Bi.

4A set S is countably infinite if there is a bijection between S and the natural numbers N. The natural numbers N,
the integers Z, the rational numbers Q, and any infinite subset of these sets is countably infinite. The real numbers R
(indeed, any interval of the form (a, b) where a < b) is uncountably infinite, in the sense that it is infinite but admits no
bijection with N. Talk to me in office hours if you want to learn more about various types of infinity!

5There are many proofs of this result. Ask me about it in office hours!
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On the other hand, Vol3(Bi) = (2i)(2i) ε
4i23i

= ε
3i

and therefore (using the formula for the sum of a
convergent geometric series, where here the first term is a = ε

3
and the ratio r = 1

3
satisfies |r| < 1)

∞∑
i=1

Vol3(Bi) =
∞∑
i=1

ε

3i
=

ε/3

1− 1
3

=
ε

2
< ε.

Therefore P has measure zero.

The following theorem is indispensable for identifying interesting sets of measure zero.

Theorem 7 (Measure Zero). Let A ⊆ Rn. Then A has measure zero if

(Subset of a Set of Measure Zero) A ⊆ B where B ⊆ Rn has measure zero, or

(Finite Union of Measure Zero) A =
⋃
iBi, where B1, . . . , Bk ⊆ Rn each have measure zero, or

(Image Lower Dimensional Set) A = ~f(B), where B ⊆ Rm for m < n and ~f : B → Rn is C1, or

(Non-Degenerate Level Set) A is a level set of some C1 function g : Rn → R with ∇g(~x) 6= ~0 for
every ~x ∈ A.

Proof. You will prove the first part on your homework.
For the second part, let ε > 0 and choose, for each Bi, a (finite or countable) collection of boxes

that covers Bi and has total measure less than ε
k
. Because the union of a finite collection of finite or

countable sets is either finite or countable, combining these collections of boxes produces a finite or
countable collection of boxes that covers A and has total measure less than k · ε

k
= ε.

The third part is a special case of Sard’s Theorem, a powerful result in differential geometry.
The fourth part follows from the third part and another powerful result (this time from multivariable

differential calculus, but usually proved in an analysis course) called the Implicit Function Theorem,
which says that, under the hypotheses of the fourth part, for each ~a ∈ A there is a ball Bδ(~a) centered
at ~a such that A ∩ Bδ(~a) can actually be written as the graph of one of the variables as a C1 function
of the other variables (e.g. in the case where z can be written as a function of x and y, then the points
(x, y, z) ∈ A∩Bδ(~a) have the form (x, y, z(x, y)) for a C1 function z(x, y), so that A∩Bδ(~a) is the image
of the C1 function (x, y) 7→ (x, y, z(x, y)). The same comments apply if the points in A ∩ Bδ(~a) have
the form (x, y(x, z), z) or (x(y, z), y, z)).

Remark 8. The second conclusion of the Measure Zero Theorem actually holds if A =
⋃
iBi, where

B1, B2, B3, . . . ⊆ Rn is a countable collection of sets with measure zero. The proof is even largely the
same, with some adjustments needed to ensure that the total measure of the combined collection of
boxes has measure less than ε.

The previous theorem is very powerful. Here are some immediate consequences.

Example 18. The image of any C1 path ~r : R→ Rn has measure zero if n ≥ 2.

Example 19. For A,B,C 6= 0, the ellipsoid described by x2

A2 + y2

B2 + z2

C2 = 1 has measure zero, since it

is the level set of g(x, y, z) = x2

A2 + y2

B2 + z2

C2 with ∇g(x, y, z) 6= ~0 everywhere on the set.
Indeed, this same argument shows that all of the standard quadric surfaces have measure zero. The

only care that must be taken is to handle the double-cone, but this can be viewed as the union of
the upper-half described by z =

√
x2 + y2 where x, y 6= 0 (which is the level set of a C1 function

g(x, y, z) = z −
√
x2 + y2 on R3 − {(0, 0, z) : z ∈ R}), the lower-half cone z = −

√
x2 + y2 where

x, y 6= 0, and the single point (0, 0, 0) (which has measure zero).
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The concept of measure zero offers us a complete characterization of which functions are integrable
(as defined last time), and which are not.

Theorem 8 (Lebesgue’s Criterion). Let B ⊂ Rn be a box, and let f : B → R be bounded. Then
f is integrable on B if, and only if, the set of points where f is discontinuous has measure zero.

The proof of this result is technical, and beyond the scope of this course.

34



Lecture 7: Iterated Integrals

Learning Objectives:

� Integrate continuous functions over bounded sets with nice boundaries.

� Compute multiple integrals using Fubini’s Theorem.

Integration on More General Sets

For us, one major application of Lebesgue’s Criterion will be to allow us to integrate continuous functions
on sets that are not boxes. The process here is simple: we simply choose a box that contains the set
that we wish to integrate over, extend the domain of the function we want to integrate to be 0 outside
of the set we care about, and then integrate this extension function over the box. We make this more
precise with the following definition.

Definition 9. Let E ⊆ Ω ⊆ Rn with E bounded, let B ⊂ Rn be a box containing E, and suppose
that ∂E has measure zero. Assume f : Ω → R is bounded on E and continuous throughout E
(except possibly on a set of measure zero), and define the zero extension of f from E to B by

f ext : B → R, f ext(~x)
def
=

{
f(~x) if ~x ∈ E,
0 if ~x /∈ E.

Note that f ext is only possibly discontinuous on ∂E (which has measure zero), and therefore f ext

is integrable on B. We define the integral of f on E to be

�
E

f dVn
def
=

�
B

f ext dVn.

Example 20. For example, if E = {(x, y) ∈ R2 : 1 ≤
√
x2 + y2 ≤ 2} is the annulus centered at (0, 0)

with inner radius 1 and outer radius 2 in R2, then

�
E

(x2 + y2) dA(x, y) =

�
[−2,2]×[−2,2]

f ext(x, y) dA(x, y),

where f(x, y) = x2 + y2 and

f ext(x, y) =

{
x2 + y2 if 1 ≤

√
x2 + y2 ≤ 2,

0 otherwise

is integrable over the rectangle [−2, 2] × [−2, 2] because f ext is only discontinuous along the circles of
radius 1 and 2 centered at (0, 0) (and since a circle, which is the C1 image of a path in R2, has measure
zero).
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Remark 9. As a convention, if we integrate a function f over a set B and if f is defined by a formula
such that f(~x) is actually undefined for finitely many ~x ∈ B, then we will artificially define f(~x) = 0 at
those points. This will allow us to avoid a proliferation of technical arguments around defining integrals
in practice.

Iterated Integrals and Fubini’s Theorem

As mentioned the other day, there are only a limited number of functions that we can actually integrate
by hand using the definition of the integral as a limit of Riemann sums. For more interesting examples, we
will need a way to approach this computation without resorting to Riemann sums. One fruitful approach
is to use iterated single-variable integrals, which are related to multiple integrals via a powerful result
known as Fubini’s Theorem. Because the notion of iterated integrals can involve complicated notation,
we motivate their use and interpretation through a concrete example.

Example 21. Compute6

I =
x

[1,3]×[0, 3π
2

]

sin(y) dA(x, y).

Below we draw the graph of z = f(x, y) = sin(y).

6When integrating over subsets R2, it is standard to write
s

instead of
�

to reflect the fact that we are integrating over
a two-dimensional set. This is analogous to replacing dV2 with dA. Similarly, for integrals over sets in R3 it is standard to
write a triple integral sign

t
instead of a single integral sign. We will continue to use a single integral sign in “dimension

agnostic” settings.
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To motivate the use of iterated integrals, consider that the y-sections of this region (i.e. the intersection
of this region with planes perpendicular to the y-axis at (0, y, 0)) are rectangles with width 3 − 1 = 2
and height sin(y) (Note that this height can be negative!).

Therefore,

Area of cross-section at y :

� 3

1

sin(y)dx = 2 sin(y).

We might expect that the (signed) volume of the region between the graph of f and the box [1, 3]×[0, 3π
2

]
(as a subset of the xy-plane) to be obtained by ‘adding up’ these signed areas over all the possible values
of y by integrating in y. In other words, we expect that

I =

� 3π
2

0

[Area of cross-section at y]dy

=

� 3π
2

0

� 3

1

sin(y)dxdy

=

� 3π
2

0

2 sin(y)dy

= −2 cos(y)
∣∣∣ 3π2
0

= 2.

On the other hand, we could have used the x-sections of the region (i.e. the intersection of this region
with planes x = x0) to compute the area. For this problem,

Area of cross-section at x =

� 3π
2

0

sin(y)dy = − cos(y)
∣∣∣ 3π2
0

= 1.
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Note that (in this problem) all of these cross-sections are identical, so it isn’t surprising that they have
the same (signed) area. ‘Adding up’ these areas over all possible values of x with an integral suggests
that

I =

� 3

1

[Area of cross-section at x]dx

=

� 3

1

� 3π
2

0

sin(y)dydx

=

� 3

1

1dx

= x
∣∣∣3
1

= 3− 1 = 2,

which is the same answer that we got in our first computation!

In the previous example, we actually did not prove that the double integral I of f(x, y) = sin(y)
over [1, 3]× [0, 3π

2
] was equal to 2. We did show that each iterated integral

� 3

1

[ � 3π/2

0

f(x, y) dy

]
dx and

� 3π/2

0

[ � 3

1

f(x, y) dx

]
dy

existed is equal to 2, and we have strong geometric intuition to suggest that the value of these two
iterated integrals ought to agree with I.

It is indeed true that, under suitable mild conditions on the integrand f(x1, . . . , xn), the multiple

integral

�
B

f dVn of f over a box B can be computed as an iterated integral involving n single-variable

integrals (one in each of the variables x1, x2, . . . , xn). Moreover—and this is the crucial fact—the order
in which we compute these single-variable integrals does not matter. This result is known as Fubini’s
Theorem, and we state it in full generality below.

Theorem 9 (Fubini). Let B = [a1, b1] × · · · × [an, bn] be a box in Rn, let Ω ⊆ Rn with B ⊆ Ω,
and suppose that f : Ω→ R is integrable on B. Assume that for each 1 ≤ i ≤ n and xj ∈ [aj, bj]
(for j 6= i), the single-variable function

gi : [ai, bi]→ R, gi(t) = f(x1, . . . , xi−1, t, xi+1, . . . , xn)

is integrable on [ai, bi]. Then for any ordering i1, . . . , in of the numbers 1, . . . , n, we have

�
B

f(x1, . . . , xn) dVn(x1, . . . , xn) =

� bi1

ai1

� bi2

ai2

· · ·
� bin

ain

f(x1, x2, . . . , xn) dxin · · · dxi2dxi1 .

Remark 10. The conclusion about iterated integrals is just to say that you can compute the iterated
integral of f over B in any order that you wish. For example, if n = 3 and f(x, y, z) satisfies the
hypotheses of Fubini’s Theorem on the box B = [a, b] × [c, d] × [e, g], then the conclusion of Fubini’s
Theorem is that each of the six iterated integrals

� b

a

� d

c

� g

e

f(x, y, z)dzdydx and

� d

c

� b

a

� g

e

f(x, y, z)dzdxdy and
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� g

e

� d

c

� b

a

f(x, y, z)dxdydz and

� d

c

� g

e

� b

a

f(x, y, z)dxdzdy and

� g

e

� b

a

� d

c

f(x, y, z)dydxdz and

� b

a

� g

e

� d

c

f(x, y, z)dydzdx

exist and are equal to the multiple (in this case, triple) integral
y
B

f(x, y, z) dV (x, y, z).

A full proof of Fubini’s Theorem is beyond the scope of the course, but we can give a proof in the
case n = 2 to illustrate one argument. Part of the conclusion of Fubini’s Theorem is the existence of
the iterated integrals on the right-hand-side. The key idea of the proof is to approximate each single-
variable integral with a one-variable Riemann sum, and then note that the resulting expression (for
a given iterated integral) gives a Riemann sum for f on B. By choosing the one-variable Riemann
partitions to be “fine” enough, we can ensure that the resulting Riemann sum for f on B is as close as
we’d like to the integral of f over B. The argument is a bit technical, but we will give the full details
here as a partial advertisement for the sorts of estimates you might expect to prove in a course in real
analysis.

Proof of Fubini’s Theorem when n = 2. Write B = [a, b]× [c, d], and define

g(x)
def
=

� d

c

f(x, y) dy, x ∈ [a, b].

To avoid trivialities we will assume that a < b and c < d. Note that g is defined because y 7→ f(x, y) is
integrable on [c, d] for every fixed x ∈ [a, b] by assumption. We will show that g is integrable on [a, b]
and that � b

a

g(x) dx =

�
B

f(x, y) dA(x, y),

This will show that � b

a

� d

c

f(x, y) dydx =
x
B

f(x, y) dA(x, y),

which is our desired conclusion.
Let ε > 0. Choose ρ > 0 such that if P is a partition of B with ‖P‖ < ρ and C is any

choice of sample points for P , then |R(f,P , C) −
x
B

f(x, y) dA| < ε

2
. Suppose we have a partition

{[x0, x1], [x1, x2], . . . , [xn−1, xn]} of [a, b] such that (xk − xk−1) < ρ for each k = 1, . . . , n, and a choice of
sample points ck ∈ [xk−1, xk] for k = 1, . . . , n. Then the corresponding Riemann sum for g over [a, b] is

R(g, {[x0, x1], [x1, x2], . . . , [xn−1, xn]}, {c1, . . . , cn})

=
n∑
k=1

g(ck)Vol1([xk−1, xk])

=
n∑
k=1

� d

c

f(ck, y) dy · (xk − xk−1).

Now choose a partition {[y0, y1], [y1, y2], . . . , [ym−1, ym]} of [c, d] such that (y` − y`−1) < ρ for each
` = 1, . . . ,m and, for each k = 1, . . . , n,∣∣∣∣∣

� d

c

f(ck, y) dy −
m∑
`=1

f(ck, y`)(y` − y`−1)

∣∣∣∣∣ < ε

2(b− a)
.
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Then consider the partition

P def
= {Bk,` = [xk−1, xk]× [y`−1, y`] : k = 1, . . . , n, ` = 1, . . . ,m}

of B and the choice of sample points

C def
= {~ck,` = (ck, y`) : k = 1, . . . , n, ` = 1, . . . ,m}.

Note that because (xk − xk−1) < ρ and (y` − y`−1) < ρ for each k and `, ‖P‖ < ρ. We also have

R(f,P , C) =
n∑
k=1

m∑
`=1

f(~ck,`)Vol2(Bk,`) =
n∑
k=1

m∑
`=1

f(ck, y`)(y` − y`−1)(xk − xk−1).

Then we have∣∣∣∣∣R(g, {[x0, x1], [x1, x2], . . . , [xn−1, xn]}, {c1, . . . , cn})−
x
B

f(x, y) dA

∣∣∣∣∣
=

∣∣∣∣∣
n∑
k=1

� d

c

f(ck, y) dy · (xk − xk−1)−
x
B

f(x, y) dA

∣∣∣∣∣
=

∣∣∣∣∣
n∑
k=1

� d

c

f(ck, y) dy · (xk − xk−1)−R(f,P , C) +R(f,P , C)−
x
B

f(x, y) dA

∣∣∣∣∣
≤

∣∣∣∣∣
n∑
k=1

� d

c

f(ck, y) dy · (xk − xk−1)−R(f,P , C)

∣∣∣∣∣+

∣∣∣∣∣R(f,P , C)−
x
B

f(x, y) dA

∣∣∣∣∣
<

∣∣∣∣∣
n∑
k=1

� d

c

f(ck, y) dy · (xk − xk−1)−
n∑
k=1

m∑
`=1

f(xk, y`)(y` − y`−1)(xk − xk−1)

∣∣∣∣∣+
ε

2

=

∣∣∣∣∣
n∑
k=1

(� d

c

f(ck, y) dy −
m∑
`=1

f(xk, y`)(y` − y`−1)

)
(xk − xk−1)

∣∣∣∣∣+
ε

2

≤
n∑
k=1

∣∣∣∣∣
� d

c

f(ck, y) dy −
m∑
`=1

f(ck, y`)(y` − y`−1)

∣∣∣∣∣ (xk − xk−1) +
ε

2

≤
n∑
k=1

ε

2(b− a)
(xk − xk−1) +

ε

2

=
ε

2(b− a)

n∑
k=1

(xk − xk−1) +
ε

2

=
ε

2(b− a)
(b− a) +

ε

2

= ε.

Therefore, we have shown that for each ε > 0 there is ρ > 0 such that if , = {[x0, x1], . . . , [xn−1, xn]} is
a partition of [a, b] with ‖,‖ < ρ and if / = {c1, . . . , cn} is a choice of sample points for ,, then

|R(g,,,/)−
x
B

f(x, y) dA| < ε.
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This shows that lim
‖,‖→0

R(g,,,/) =
x
B

f(x, y) dA, so that g is integrable on [a, b] and

� b

a

� d

c

f(x, y) dydx =

� b

a

g(x) dx =
x
B

f(x, y) dA(x, y),

as desired.
The same argument shows that

h(y)
def
=

� b

a

f(x, y) dx, y ∈ [c, d]

is defined and integrable on [c, d], and that

� d

c

� b

a

f(x, y) dxdy =

� d

c

h(y) dy =
x
B

f(x, y) dA(x, y),

which completes the proof.

Note that the assumption that f be integrable on B necessitates (via Lebesgue’s Criterion for Rie-
mann Integrability) that the set of points in B at which f is discontinuous must have measure zero.
The integrand f satisfies the technical “integrable in each coordinate separately” condition if any of the
following (stronger) hypotheses are satisfied:

(i) if f is continuous on B, or

(ii) if the set of discontinuities of f intersects each line parallel to one of the coordinate axes in at
most finitely many points (this is the assumption in the book’s version of the theorem), or

(iii) if the iterated integrals exist (this follows from the “integrable in each coordinate separately”
condition, but could also be taken as an assumption).

There are other sufficient conditions for f to satisfy the conclusion of Fubini’s Theorem, but (i) and (ii)
are the ones that will play the biggest role in this course.

Example 22. Let’s compute the double integral of f(x, y) = yexy over the rectangle B = [0, 1]× [0, 2].
We apply Fubini’s Theorem, first integrating in x and then in y, to obtain

x
B

yexydA(x, y) =

� 2

0

� 1

0

yexydxdy =

� 2

0

ey − 1dy = e2 − 3.

On the other hand, if we first try to integrate in y and then in x, we get (by integration by parts)

x
B

yexydA(x, y) =

� 1

0

� 2

0

yexydydx =

� 1

0

(y
x
− 1

x2

)
exy
∣∣∣2
0
dx =

� 1

0

(2x− 1)e2x + 1

x2
dx.

This last integral is not approachable through any of the standard integration techniques used in Calculus
II! This illustrates a good point about double-integration: although the multiple integral of a function
over a box can be written as an theoretically by applying Fubini’s theorem, the order of integration can
be very important from a practical standpoint!
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Lecture 8: Double Integrals

Learning Objectives:

� Evaluate a double integral by setting up an appropriate iterated integral.

� Change the order or integration in an iterated integral.

Today we investigate the typical considerations when evaluating double-integrals of functions over gen-
eral regions. We start by noting that if f(x, y) is continuous in a bounded region Ω and if the extension
of f to some box containing Ω satisfies the hypotheses of Fubini’s Theorem, then setting up the iterated
integral(s) we will use to evaluate

s
Ω
f dA involves an analysis of how to describe Ω (or pieces of Ω)

using nested inequalities.
For example, suppose that [a, b]× [c, d] is the smallest box containing Ω, and that Ω is as shown in

the following picture:

Then to represent
s

Ω
f(x, y) dA using an iterated integral in the order dydx, we first note that [a, b] is

(what your book calls the) shadow7 of Ω onto the x-axis, in the sense that it is the collection of all
values of x for which there is y such that (x, y) ∈ Ω.

The inner integral
� d
c
f ext(x, y) dy is then the integral of f ext(x, y) along the line segment from (x, c)

to (x, d). Of course, because f ext(x, y) = 0 if (x, y) /∈ Ω, we really only need to integrate f ext(x, y) over
the the subset of this line segment for which (x, y) ∈ Ω. The key observation (for Ω as pictured above)
is that if we can think about Ω as the region lying between the graphs of two functions y = γ(x) and
y = δ(x), then for each a ≤ x ≤ b this subset consists of points of the form (x, y) with γ(x) ≤ y ≤ δ(x).
Therefore we can write x

Ω

f(x, y) dA(x, y) =

� b

a

� δ(x)

γ(x)

f(x, y) dydx.

7It might make more sense to call this the projection of Ω onto the x-axis, but your book assumes that you do not
now linear algebra. Foolish book!
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Similarly, if Ω can be described by the (nested) inequalities c ≤ y ≤ d and α(y) ≤ x ≤ β(y) (i.e. if
we can think about Ω as the region lying between the graphs of two functions x = α(y) and x = β(y)
over the interval c ≤ y ≤ d), then

x
Ω

f(x, y) dA(x, y) =

� d

c

� β(y)

α(y)

f(x, y) dxdy.

Example 23. Integrate f(x, y) = xy over the region Ω in the first quadrant below the curve y = 4−x2.

Let’s solve this problem two ways. First, we’ll set up the interated integral so that x is the “outer-
variable”. Our double integral is

x
Ω

xy dA(x, y) =

� 2

0

[ � upper bound for y at x

lower bound for y at x
xy dy

]
dx.

At each x, y runs from 0 to 4− x2. So, we have

x
Ω

xy dA(x, y) =

� 2

0

� 4−x2

0

xy dydx.
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It may look a little strange to have an x in the bounds of an integral. However, it is in the bounds of
the inner intergral, and in the context of the inner integral, x is a constant. Of course, the bounds of
the outer integral cannot depend on x or y. We finish the computation:

x
Ω

xy dA(x, y) =

� 2

0

� 4−x2

0

xy dydx =

� 2

0

1

2
x(4− x2)2dx = − 1

12
(4− x2)3

∣∣∣2
0

= 0 +
1

12
43 =

16

3
.

To set up the integral with y as the outer variable, note that y runs from 0 to 4, and that, at each fixed
y, x runs from 0 to

√
4− y (we use the positive square-root since x is positive here).

Therefore, we have

x
Ω

xy dA(x, y) =

� 4

0

� √4−y

0

xy dxdy =

� 4

0

1

2
y(4−y)dy =

� 4

0

2y− 1

2
y2dy = y2− 1

6
y3
∣∣∣4
0

= 16− 1

6
64 =

16

3
.

Definition 10. Let Ω ⊂ Rn be a bounded set such that ∂Ω has measure zero. We define the
n-volume of Ω to be

Voln(Ω)
def
=

�
Ω

1 dVn.

Even simple examples like computing the area of a region can illustrate some of the techniques one
uses to study iterated integrals.

Example 24. Let T be the triangle with vertices at (0, 0), (1, 1), and (1, 2). Compute the area of T by
evaluating the double integral of f(x, y) = 1 over T . Set up the integral in two ways: first in the order
dydx, and then in the order dxdy.

We first set up the iterated integrals with x as the outer variable. In this case, x runs from 0 to 1, so
our double integral has the form

x
T

1 dA =

� 1

0

[ � upper bound for y at x

lower bound for y at x
1 dy

]
dx.

For each fixed x ∈ [0, 1], y runs from x to 2x.
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Hence,

Area of T =
x
T

1 dA =

� 1

0

� 2x

x

1 dydx =

� 1

0

xdx =
1

2
.

To set up the iterated integrals with y as the outer integral, note first that y runs from 0 to 2.
Computing the bounds for x at a given y is slightly complicated by the fact that the curves which
bound x change at y = 1. We’ll therefore split the region T into two pieces:

In the subregion T1, i.e. when 1 ≤ y ≤ 2, x runs from 1
2
y to 1. In the subregion T2, i.e. when

0 ≤ y ≤ 1, x runs from 1
2
y to y. Therefore, we have

x
T1

1 dA =

� 2

1

� 1

1
2
y

1 dxdy =

� 2

1

1− 1

2
y dy = 1− 4

4
+

1

4
=

1

4
,

and x
T2

1 dA =

� 1

0

� y

1
2
y

1 dxdy =

� 1

0

1

2
y dy =

1

4
.

So, x
T

1 dA =
x
T1

1 dA+
x
T2

1 dA =
1

2
.

Remark 11. In terms of shadows or projections, note that one can think of the double integral over T2

from the previous example as
x
T2

f(x, y)dA =

�
Shadow [0,1]

�
[ 1
2
y,y]

f(x, y)dxdy.

This might seem like overkill here, but the analogous observation in three or more dimensions will be
extremely helpful!
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Example 25. Let T be the region bounded between the curves y = |x| + 1 and y = 2|x|. Set up the
double integral of a general function f(x, y) over T with (a) x as the outer variable, and (b) y as the
outer variable.

We start with (a). Here, note that x runs from −1 to 1, while, for each fixed x, y runs from 2|x| to
|x|+ 1. Hence, we can write

x
T

f(x, y) dA(x, y) =

� 1

−1

� |x|+1

2|x|
f(x, y) dydx.

Now, we consider (b). Note that, if we try to set up the integral where y runs from 0 to 2, then we
run into trouble with the inner integral since, for y between 1 and 2, there are two separate intervals for
x! To get around this, we can split the region T into three pieces as follows:

For T1, we have x
T1

f(x, y) dA(x, y) =

� 2

1

� 1−y

− 1
2
y

f(x, y) dxdy.

For T2, x
T2

f(x, y) dA(x, y) =

� 2

1

� 1
2
y

y−1

f(x, y) dxdy.

Finally, x
T3

f(x, y) dA(x, y) =

� 1

0

� 1
2
y

− 1
2
y

f(x, y) dxdy.

So, in total,

x
T

f(x, y) dA(x, y) =

� 2

1

� 1−y

− 1
2
y

f(x, y) dxdy +

� 2

1

� 1
2
y

y−1

f(x, y) dxdy +

� 1

0

� 1
2
y

− 1
2
y

f(x, y) dxdy.
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You book gives names to the cases that we discussed above. Indeed, the definition given in your
book of the ‘type’ of a region Ω in the plane is:

Type 1: Ω is Type 1 if it can be written as Ω = {(x, y) | a ≤ x ≤ b, γ(x) ≤ y ≤ δ(x)},

Type 2: Ω is Type 2 if it can be written as Ω = {(x, y) | c ≤ y ≤ d, α(y) ≤ x ≤ β(y)},

Type 3: Ω is Type 3 if it is both Type 1 and Type 2.

That is, Type 1 regions are those which can be realized as the region between two functions y of x,
while Type 2 regions are those which can be realized as the region between two functions x of y. Type
1 regions can be set up with y as the inner variable (without splitting up the region), while Type 2
regions can be set up with x as the inner variable (without splitting up the region). The last example
is one which your book refers to as Type 1, and is NOT what the book refers to as Type 2.

This notion of ‘Type’ is not worth memorizing. You should, with a bit of work, be able to find the
best way to set up the double integral over any region that you are given. The more examples you do,
the more you will begin to easily recognize viable options for setting up an iterated integral. Indeed,
we didn’t need to resort to this ‘type’ nonsense in order to compute the previous examples. What is
important is that each of these is an example of an elementary region, which is a form convenient for
expressing multiple integrals over the region using iterated integrals.

Definition 11. Let Ω ⊂ Rn. We say that Ω is elementary if Ω is bounded and it is possible to
write (for some ordering xi1 , . . . , xin of the variables x1, . . . , xn)

Ω = {(x1, . . . , xn) : a ≤ xi1 ≤ b, α1(xi1) ≤ xi2 ≤ β1(xi1), α2(xi1 , xi2) ≤ xi3 ≤ β2(xi1 , xi2),

. . . , αn−1(xi1 , . . . , xin−1) ≤ xin ≤ βn−1(xi1 , . . . , xin−1)},

where a, b ∈ R, and each function αj, βj : Rj → R is continuous.

The integration region in each example we’ll see is either elementary, or we will be able to split it
up into a finite number of elementary regions. You should think of an elementary region as one which
is “cut out” by the surfaces in Rn defined by the equations xi1 = a, xi1 = b, xi2 = α1(xi1), xi2 = β1(xi1),
and so on.

Remark 12. Elementary regions are useful largely because they have “nice” boundaries. For example,
it is possible to prove that if Ω ⊂ Rn is elementary, then ∂Ω has measure zero and therefore we can
always integrate a continuous function over an elementary region. We will see more contexts in which
elementary regions are useful.

Example 26. Sketch the region , ⊂ R2 which is bounded on the right by the right-semicircle of ra-
dius 2 centered at (0, 0), below by the line y = −2, above by the line y = 2, and on the left by the
line x = −3. For a general function f(x, y), express

s, f dA as an iterated integral in two different ways.

There are, as usual, two ways to set this up. The first is to use y as the outer variable. In this case,
y runs from −2 to 2, and x runs from −3 to

√
4− y2.
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Therefore, we have x
,

f dA =

� 2

−2

� √4−y2

−3

f(x, y) dxdy.

Now, if we want to set up the integral with x as the outer variable, then we need to split the region
into two parts:

On ,1, we have x
,1

f dA =

� 0

−3

� 2

−2

f(x, y) dydx.

On ,2, x runs from 0 to 2 and y runs from −
√

4− x2 to
√

4− x2, so that

x
,2

f dA =

� 2

0

� √4−x2

−
√

4−x2
f(x, y) dydx.

So, x
,

f dA =

� 0

−3

� 2

−2

f(x, y) dydx+

� 2

0

� √4−x2

−
√

4−x2
f(x, y) dydx.

Example 27. For R > 0, let ΩR ⊂ R2 denote the triangular region in the first quadrant bounded by
the lines y = 0, x = R, and x = y. Show that

R2

2π
≤
x
ΩR

sin
(y
x

)
dA ≤ R2

4
.
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(Suggestion: You may wish to first show that 2t
π
≤ sin(t) ≤ t for t ∈

[
0, π

2

]
.)

Here is a place where the integrand sin( y
x
) is actually undefined at a point in ΩR (i.e. at (0, 0)), and

so we will by convention assume that we are actually studying
x
ΩR

f(x, y) dA(x, y), where

f(x, y)
def
=

{
sin
(
x
y

)
if (x, y) ∈ ΩR, (x, y) 6= (0, 0),

0 if (x, y) = (0, 0).

To follow the suggestion, note that sin(t) is concave down on [0, π], and therefore on [0, π
2
] its graph lies

above the secant line passing through (0, 0) and (π
2
, 1). In other words, 2t

π
≤ sin(t) for t ∈ [0, π

2
].

For the other inequality, note that if f(t) = t− sin(t), then f(0) = 0 and f ′(t) = 1− cos(t) ≥ 0 for

t ≥ 0. Therefore, the Mean Value Theorem implies that 0 ≤ f(t)−f(0)
t−0

for all t > 0, so that f(t) ≥ 0 for
t > 0. But this exactly means that t ≥ sin(t) for t > 0.

Now that we have the double inequality in hand, note that in the region ΩR we have 0 ≤ y
x
≤ 1, and

therefore 2y
πx
≤ sin

(
y
x

)
≤ y

x
throughout ΩR (and that sin( y

x
) is bounded on ΩR, an. We therefore use

monotonicity of the integral to write

2

π

x
ΩR

y

x
dA(x, y) ≤

x
ΩR

sin
(y
x

)
dA(x, y) ≤

x
ΩR

y

x
dA(x, y).

We therefore need only compute
s

ΩR

y
x
dA. To do this, we use Fubini’s theorem to write

x
ΩR

y

x
dA(x, y) =

� R

0

� R

y

y

x
dxdy =

� R

0

y(ln(R)− ln(y))dy.

We would certainly compute this integral, but this seems like a lot of work. Indeed, the integral is
improper since the integrand is undefined when y = 0, so we must actually compute (using integration
by parts and l’Hopital’s rule)

lim
ε→0+

� R

ε

y(ln(R)− ln(y))dy = lim
ε→0+

R2

2
(ln(R)− ln(R))− ε2

2
(ln(R)− ln(ε)) +

1

2

� R

0

y

2
dy

= lim
ε→0+

R2

4
− ε2

4
=
R2

4
.

If we had just set up the integral in the other order, we would have had a much easier time:

x
ΩR

y

x
dA =

� R

0

� x

0

y

x
dydx =

� R

0

x

2
dx =

R2

4
.

At any rate, plugging this value in for the integral above gives us

R2

2π
≤
x
ΩR

sin
(y
x

)
dA(x, y) ≤ R2

4
,

as desired.
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Example 28. Evaluate , =

� 2π

0

� 1

0

sin(y)
√

1− x2dxdy.

We can evaluate the inner integral via trig substitution. Let x = sin(θ), so that dx = cos(θ)dθ. Then

, =

� 2π

0

� π
2

0

sin(y)
√

1− sin2(θ) cos(θ)dθdy

=

� 2π

0

� π
2

0

sin(y) cos2(θ)dθdy

=

� 2π

0

� π
2

0

sin(y)
1 + cos(2θ)

2
dθdy

=

� 2π

0

1

4
sin(y)(2θ + sin(2θ))

∣∣∣π2
0
dy

=

� 2π

0

π

4
sin(y)dy

= 0.

This was a lot of work. However, if we changed the order of integration we would get

, =

� 1

0

� 2π

0

sin(y)
√

1− x2dydx

=

� 1

0

0dx

= 0.

This example illustrates an important point: changing the order of integration can sometimes make
a difficult (or impossible!) integral easy to evaluate via the Fundamental Theorem of Calculus.

Why might an integral be impossible to evaluate using the Fundamental Theorem of Calculus? It
turns out (according to a theorem of Liouville in the early 19th century) that some continuous functions,

such as ex
2

or sin(x)
x

(where this last function is defined to be 1 when x = 0), do not have antiderivatives
which can be written down explicitly in terms of the ‘nice’ functions that we normally work with (i.e.
rational functions and polynomials, roots, trigonometric functions, exponential functions, etc.). Contrast

this with the Fundamental Theorem of Calculus, which says that F (x) =
� x

0
sin(t)
t
dt is an antiderivative

of sin(x)
x

.

Example 29. Evaluate , =

� 1

0

� 3
√
y

y

ex
2

dxdy.

Right away, we see that the inner integral is impossible to evaluate explicitly using the Fundamental
Theorem of Calculus. However, we can try to change the order of integration to see if something happens.
First, we need to see this iterated integral as a double integral over some region Ω. Note that Ω is given
by 0 ≤ y ≤ 1 and y ≤ x ≤ 3

√
y. This region is sketched below:
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We can change the order of integration by writing

, =

� 1

0

� x

x3
ex

2

dydx

=

� 1

0

(x− x3)ex
2

dx.

We can compute this by writing x =
√
u, so that dx = 1

2
√
u
du. Making this substitution,

, =

� 1

0

1

2
(1− u)eudu =

1

2
(1− u)eu +

1

2
eu
∣∣∣1
0

=
1

2
e− 1.

Example 30. Compute I =

� π

0

� π

y

sin(x)

x
dxdy.

Once again, we see that the integrand doesn’t have an antiderivative which can be written down
nicely. However, we can change the order of integration (and cross our fingers!) to try to make the
integral possible to evaluate. First we sketch the region of integration Ω below:

We can therefore write

I =

� π

0

� x

0

sin(x)

x
dydx

=

� π

0

sin(x)dx

= 2.

Example 31. Compute , =

� π
2

−π
2

� 1

cos(x)

y
π
2
− arccos(y)

dydx.

The integrand looks horrible enough that it may not be possible to evaluate using the Fundamental
Theorem of Calculus. Once again, we need to reverse the order of integration in order to (try to!)
compute the double integral. Here, the region of integration is a bit more complicated than in the
previous examples:

We have to be careful here, since working with inverse trigonometric functions can be tricky. We carefully
label the edges of the domain below:
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We can therefore write

, =

� 1

0

� − arccos(y)

−π
2

y
π
2
− arccos(y)

dxdy +

� 1

0

� π
2

arccos(y)

y
π
2
− arccos(y)

dxdy

=

� 1

0

ydy +

� 1

0

ydy

= 1.
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Lecture 9: Triple Integrals

Learning Objectives:

� Evaluate a triple integral by setting up an appropriate iterated integral.

� Change the order or integration in an iterated integral.

Example 32. For a continuous function f : R3 → R, sketch the region E ⊂ R3 satisfying

� 2

0

� 3

0

� 5−x−y

0

f(x, y, z) dzdxdy =
y
E

f(x, y, z) dV,

and write
t

E
f(x, y, z) dV as an iterated integral in the order dxdzdy.

Reconstructing the region of integration from the iterated integrals is very similar to the two-
dimensional case.

We can think of the bounds on the integrals as giving up the surfaces which bound the region over
which we are integrating. For example, the bounds in this integral suggest that the region E is bounded
by:

� The planes y = 0 and y = 2,

� The planes x = 0 and x = 3,

� The planes z = 0 and z = 5− x− y.

The fact that the (outer) and (middle) integrals have the form
� 2

0

� 3

0
· · · dxdy says that the shadow

(or orthogonal projection) of E onto the xy-plane is exactly the rectangle [0, 3]× [0, 2]. Indeed, we might
therefore write

� 2

0

� 3

0

� 5−x−y

0

f(x, y, z) dzdxdy =
x

[0,3]×[0,2]

� 5−x−y

0

f(x, y, z) dz dA(x, y).

Once we fix x and y in this shadow, then the inner integral
� 5−x−y

0
f(x, y, z)dz tells us that we should

integrate the function f(x, y, z) from z = 0 to z = 5 − x − y. This means that we are integrating over
the region bounded between the xy-plane and the plane x+ y+ z = 5, above the rectangle [0, 3]× [0, 2]
(in the xy-plane). We can sketch the region E as follows:
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We can get an idea for the curves that form the edges of E by noting that, for example, in the xz-plane
the upper edge of E is the intersection of x + y + z = 5 and y = 0, or rather the line z = 5 − x for
0 ≤ x ≤ 3. Similar considerations give the other three edges on the top of E are

In the yz − plane : z = 5− y, 0 ≤ y ≤ 2,

In the plane x = 3 : z = 2− y, 0 ≤ y ≤ 2,

In the plane y = 2 : z = 3− x, 0 ≤ x ≤ 3.

We now want to write
t

E
f(x, y, z)dV as an iterated integral in the order dxdzdy. Our first task

is to compute the shadow of E in the zy-plane. The shadow is the region R where 0 ≤ y ≤ 2 and
0 ≤ z ≤ 5− y (see below).

Our next task is to compute the bounds for the inner integral. However, we run into a small problem
here because although the lower bound for x is always 0, the upper bound changes depending on where
y and z are located in the shadow. Let’s split the shadow R into two regions R1 and R2, where in R1

the upper bound for x is 3, and in R2 the upper bound for x is x = 5− y − z.
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The dividing line between the regions R1 and R2 is the shadow of the intersection of the plane x+y+z = 5
and the plane x = 3. In other words, the regions R1 and R2 are divided by the line z = 2 − y in the
zy-plane.

We therefore set up the iterated integrals as follows:

y
E

f(x, y, z)dV =
x
R1

� 3

0

f(x, y, z)dxdA(z, y) +
x
R2

� 5−y−z

0

f(x, y, z)dxdA(z, y)

=

� 2

0

� 2−y

0

� 3

0

f(x, y, z)dxdzdy +

� 2

0

� 5−y

2−y

� 5−y−z

0

f(x, y, z)dxdzdy.

Remark 13. This example also illustrates an important point, which generalizes from double integrals:
the bounds for the inner integral can depend on (middle) and (outer), the bounds for the middle integral
can only depend on (outer), and the bounds for the outer integral must be constants!

Remark 14. Note in the last example that we found the boundary of the shadow by computing the
shadow of the intersection of two surfaces. This type of geometric reasoning will be very helpful going
forward.

Example 33. Let E be the region bounded by the cone x =
√
y2 + z2 and the plane x = 2. Set up the

iterated integral of a general function f(x, y, z) over this region in two different ways.

Here, it seems to make the most sense to use x as the (inner) variable, since we can easily write√
y2 + z2 ≤ x ≤ 2, which will give us the bounds for the inner integral.
For the middle and outer integrals, we need to know what the shadow of E is in the yz-plane. For

this region, it is not hard to see that the shadow of E is the (filled in) disc y2 + z2 ≤ 4 of radius 2
centered at (0, 0) (in the yz-plane). Choosing z to be the (outer) variable, we have −2 ≤ z ≤ 2, and
−
√

4− z2 ≤ y ≤
√

4− z2. Therefore,

y
E

fdV =

� 2

−2

� √4−z2

−
√

4−z2

� 2

√
y2+z2

f(x, y, z)dxdydz.

Let’s now set up the iterated integral of a general function f(x, y, z) over this region in the order
dydzdx. The shadow of this region in the xz-plane is the triangle bounded by the lines x = 2, z = x,
and z = −x.
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Therefore, we have 0 ≤ x ≤ 2 and −x ≤ z ≤ x.
Since the cone is described by x2 − z2 = y2, we have −

√
x2 − z2 ≤ y ≤

√
x2 − z2 for the bounds for

the inner integral.
Therefore, y

E

fdV =

� 2

0

� x

−x

� √x2−z2
−
√
x2−z2

f(x, y, z)dydzdx.

Example 34. Sketch or describe the region E of integration of

� 4

0

� √8−2(x−2)2

0

� √16−x2−y2

4−x
f(x, y, z)dzdydx.

We first describe the shadow of E in the xy-plane. This is the region between x = 0 and x = 4 which
is bounded below by y = 0 and above by the curve y =

√
8− 2(x− 2)2, which is the upper half of the

ellipse 2(x− 2)2 + y2 = 8.

The actual region sits above this shadow between the plane z = 4−x and the surface z =
√

16− x2 − y2,
which is the upper-half of the sphere of radius 4 centered at the origin.

Note that when y =
√

8− 2(x− 2)2, we have√
16− x2 − y2 =

√
16− x2 − (8− 2(x− 2)2) =

√
x2 − 8x+ 16 = |4− x| = 4− x

(since x ≤ 4), so the plane and sphere intersect above the curve y =
√

8− 2(x− 2)2 in the xy-plane.
Therefore, this region is the ‘half lens’ that you get by slicing the (solid) sphere with the plane z = 4−x
and the xz-plane.
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Example 35. Sketch or describe the region E of integration of

� 4

0

� √y
0

� 6− 1
2
y

y

f(x, y, z)dxdzdy.

The shadow of this region lies in the yz-plane, as pictured

Now we need to determine what E looks like. The boundary of E is formed by the surfaces z = 0 (on
the bottom), z =

√
y (part of the front/top), x = y (the left/back), 2x+ y = 12 (the right/back face).

The faces x = y and 2x + y = 12 intersect at the vertical line x = 4, y = 4. The top edge of E on
the face x = y is the intersection of z =

√
y and x = y, while the top edge of E on the face 2x+ y = 12

is the intersection of the plane 2x+ y = 12 with z =
√
y. Therefore, we can sketch E as follows:

Example 36. Consider the iterated integral

I =

� 4

0

� √y
0

� 6− 1
2
y

y

f(x, y, z)dxdzdy.
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Rewrite the iterated integral in the order dzdydx and dydzdx.

Recall the sketch that we made of the region of integration E:

To write the integral with z as the inner variable, we first need to know what is the shadow of E in the
xy-plane. This shadow is the triangle T bounded by the lines y = 0, x = y, and 2x+ y = 12:

At each point over the shadow, we have 0 ≤ z ≤ √y, which gives the bound for the inner integral. For
the outer double integral, though, we need to split the region into two pieces. That is, for 0 ≤ x ≤ 4 we
have 0 ≤ y ≤ x, and for 4 ≤ x ≤ 6 we have 0 ≤ y ≤ 12− 2x. Therefore, we have

I =

� 4

0

� x

0

� √y
0

f(x, y, z)dzdydx+

� 6

4

� 12−2x

0

� √y
0

f(x, y, z)dzdydx.

For the order dydxdz, we first need to know what is the shadow of the integration region in the
xz-plane. The shadow lives above the x-axis in the interval 0 ≤ x ≤ 6. For x between 0 and 4 we see
that the upper edge of the shadow is given by z =

√
y =
√
x, while for x between 0 and 4 we have that

the upper-edge of the shadow is given by z =
√
y =
√

12− 2x. The shadow is sketched below:

Now, the formula that we use to find the upper-bound for y depends on where in the shadow we look.
If 0 ≤ x ≤ 4, then we have z2 ≤ y ≤ x, while if 4 ≤ x ≤ 6 we have z2 ≤ y ≤ 12 − 2x. Therefore, we
need to split the outer double integral as follows:

I =

� 4

0

� √x
0

� x

z2
f(x, y, z)dydzdx+

� 6

4

� √12−2x

0

� 12−2x

z2
f(x, y, z)dydzdx.
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This last example illustrates that, just as for iterated integrals for two-variable functions, it may be
necessary to split up the domain when changing the order of integration for an iterated integral of a
three-variable function. In the next example, we see that sometimes rather messy sums of integrals can
be rewritten in a much nicer way by changing the order of integration.

Example 37. Let f : R3 → R be a continuous function. Write the sum of the triple integrals

, =

� 2

0

� y

0

� x2

0

f(x, y, z)dzdxdy +

� 4

0

� √z
0

� 2

√
z

f(x, y, z)dydxdz

as an iterated integral with respect to the order dzdydx.

Let I denote the first iterated integral, and II denote the second. Let’s rewrite both I and II in the
order specified, and then see how they relate to one another.

For I, we note that the region of integration W1 lies between the surfaces z = 0 (i.e. the xy-plane)
and the parabolic cylinder z = x2. The shadow of W1 in the xy-plane is the triangle bounded by the
lines x = 0, y = 2, and x = y, so we can sketch the shadow of W1 and W1 as follows:

Now, to rewrite this in the order dzdydx we only need to switch the order of integration for the outer
and middle variables. That is, we now have 0 ≤ x ≤ 2 and x ≤ y ≤ 2, so that

I =

� 2

0

� 2

x

� x2

0

f(x, y, z)dzdydx.

We turn our attention to II and its region of integration W2. First, note that W2 is bounded between
the (parabolic cylinder) y =

√
z (or z = y2) and the plane y = 2. The shadow of W2 in the xz-plane is

region bounded by the lines x = 0, z = 4, and the curve z = x2. We sketch W2 below:
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Our first step in changing the order of integration is to note that the shadow of W2 in the xy-plane is
bounded by the lines x = 0, y = 2, and x =

√
z = y. (Note that this is the same shadow that we got

for W1!) Above a fixed x and y, z runs from x2 (the surface z = x2 bounds the region below) to y2 (the
surface z = y2 bounds W2 from above). Therefore, we have

II =

� 2

0

� 2

x

� y2

x2
f(x, y, z)dzdydx.

Note that both I and II have the same shadow in the xy-plane, and that therefore

, = I + II =

� 2

0

� 2

x

[ � x2

0

f(x, y, z)dz +

� y2

x2
f(x, y, z)dz

]
dydx =

� 2

0

� 2

x

� y2

0

f(x, y, z)dzdydx.

The region of integration W of this integral is sketched below:
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Lecture 10: More Integrals

Learning Objectives:

� Compute multiple integrals over high-dimensional sets using slicing or shadows.

Today we look at a helpful alternate approach to the analysis techniques from the past few days relating
iterated integrals to multiple integrals.

Shadows vs. Slices

In the past few lectures we focused on how to analyze double and triple integrals using iterated integrals,
and this analysis involved a significant amount of sketching and geometric reasoning. It also involved
moving fluently between multiple integrals and iterated integrals. In particular, we noted that if the
value of some (say) triple integral

t
E
f(x, y, z) dV can be expressed as an iterated integral such as

� 2

0

� y

0

� x2

0

f(x, y, z) dz dx dy,

then we might attempt to recover E by analyzing the integration bounds on the iterated integrals. In
particular, we treated the inner-most integral as a function of the outer two variables

,(x, y)
def
=

� x2

0

f(x, y, z) dz,

and then considered the resulting expression as an iterated integral representing a double integral:� 2

0

� y

0

� x2

0

f(x, y, z) dz dx dy =

� 2

0

� y

0

,(x, y) dx dy

=
x
S

,(x, y) dA(x, y)

=
x
S

� x2

0

f(x, y, z) dz dA(x, y),

where S was the shadow of E in the coordinate plane corresponding to the two “outer variables”. In
this case, S is the triangular region described by 0 ≤ y ≤ 2 and 0 ≤ x ≤ y in the xy-plane. This allowed
us to view E as the region between the graphs of z = 0 and z = x2 as (x, y) range through S.
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One powerful observation is that the reasoning used above (i.e. ‘grouping’ some of the single-variable
integrations in an iterated integral as a multiple integration) can be applied in other ways, with different
geometric interpretations. For example, we can instead group the “inner” single-variable integrations:

� 2

0

� y

0

� x2

0

f(x, y, z) dz dx dy =

� 2

0

[ � y

0

� x2

0

f(x, y, z) dz dx

]
dy =

� 2

0

x
0≤x≤y
0≤z≤x2

f(x, y, z) dA(z, x) dy.

For each fixed y0 between 0 and 2, the inequalities 0 ≤ x ≤ y0 and 0 ≤ z ≤ x2 characterize the values
of x and z such that (x, y0, z) ∈ E. This set

{(x, y, z) ∈ E : y = y0} = {(x, y0, z) : 0 ≤ x ≤ y, 0 ≤ z ≤ x2}

is called the slice of E in the plane y = y0. One can define the slices of E with respect to other planes
as well. In higher dimensions, we talk about the slice of a set in a hyperplane.

This technique of slicing is not so useful for some applications (like explicit computations of a multiple
integral of an interesting function), as we usually need the inner-most integral to be a single-variable
integral in order to get a computation off the ground. It is useful, however, when we are trying to
analyze certain high-dimensional problems like computing volumes of standard sets like balls.

Example 38. For each n ≥ 1 and r > 0, let

Dn
r = {~x ∈ Rn : ‖~x‖ ≤ r}

denote the closed n-dimensional ball of radius r centered at ~0. Note that Dn
r = Br(~0) ∪ Sn−1, where

Br(~0) is the open ball of radius r centered at ~0 in Rn and Sn−1 = ∂Br(~0) is the unit hypersphere in Rn.
D1
r , D

2
r , and D3

r are pictured below.
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One of the famous computations in mathematics (which you will do on your homework!) is to compute
the n-volume of Dn

r for each n ≥ 1. Your first step will be to show that Voln(Dn
r ) = rnVoln(Dn

1 ) (using
results we will discuss next time), so the rest of the problem boils down to computing Voln(Dn

1 ).
The first couple computations are not difficult. For example,

Vol1(D1
1) = Vol1([−1, 1]) = (1− (−1)) = 2

(so that Vol1(D1
r) = rVol1(D1

1) = 2r) and (what is a standard problem involving the trigonometric
substitution x = sin(t) in single-variable calculus, and using a power-reducing formula and the fact that
cos(t) ≥ 0 for −π

2
≤ t ≤ π

2
)

Vol2(D2
1) =

x
D2

1

1 dA =

� 1

−1

� √1−x2

−
√

1−x2
1 dydx

=

� 1

−1

2
√

1− x2 dx

=

� π/2

−π/2
2
√

1− sin2(t) cos(t) dt

=

� π/2

−π/2
2
√

cos2(t) cos(t) dt

=

� π/2

−π/2
2| cos(t)| cos(t) dt

=

� π/2

−π/2
2 cos2(t) dt

=

� π/2

−π/2
(cos(2t) + 1) dt

=
sin(2t)

2
+ t
]π/2
−π/2

= π,

so that Vol2(D2
r) = r2Vol2(D2

1) = πr2, which is the well-known formula for the area of a disc of radius r.
The computation for Vol3(D3

1) is a bit more involved. The shadow of D3
1 in the xy-plane is the ball

D2
1, and for each choice of (x, y) ∈ D2

1 have that −
√

1− x2 − y2 ≤ z ≤
√

1− x2 − y2, and therefore we
can write

Vol3(D3
1) =

x
D2

1

� √1−x2−y2

−
√

1−x2−y2
1 dz dA(y, x)

=

� 1

−1

� √1−x2

−
√

1−x2

� √1−x2−y2

−
√

1−x2−y2
1 dz dy dx.
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One can compute this iterated integral using reasoning similar to the first problem by making the
substitution y =

√
1− x2 cos(t) to obtain

Vol3(D3
1) =

� 1

−1

� √1−x2

−
√

1−x2
2
√

1− x2 − y2 dy dx

=

� 1

−1

� π/2

−π/2
2
√

(1− x2)(1− sin2(t))
√

1− x2 cos(t) dt dx

=

� 1

−1

(1− x2)π dx

=
4π

3
.

This computation could have been much easier, though, with the observation that the slice of D3
1 in the

plane z = z0 consists of points (x, y, z0) satisfying x2 + y2 + z2
0 ≤ 1, or rather x2 + y2 ≤ 1 − z2

0 , and
therefore

Vol3(D3
1) =

� 1

−1

x
D2√

1−z2

1 dA(x, y) dz

=

� 1

−1

Vol2(D2√
1−z2) dz

=

� 1

−1

π(
√

1− z2)2 dz

=

� 1

−1

π(1− z2) dz

=
4π

3
.
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The key idea here is that we were able to use the formula for Vol2(D2
r) to compute Vol3(D3

1), because the
slices of the closed 3-dimensional ball D3

1 in planes of the form z = z0 are simply closed 2-dimensional
balls! The same idea can be used to compute Voln(Dn

r ) for every n ≥ 1, and there are a couple ways to
approach the argument. One of your homework problems walks you though a possible solution.
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Lecture 11: Change of Variables

Learning Objectives:

� Determine when it is possible to change variables in a multiple integral.

� Change variables in a multiple integral.

Before we start our general discussion of change of variables in multiple integrals, let’s look at a single-
variable example to motivate the ideas. We’ll use single-variable substitution freely in this example
(which is usually proved in Calculus I using the Fundamental Theorem of Calculus and the chain rule).

Example 39. Consider f : [1, 4] → R, f(x) = e8−
√
x. This function is continuous (and therefore

integrable) on [1, 4], and the integral can be expressed as in your single-variable calculus course:

�
[1,4]

f(x) dV1(x) =

� 4

1

e8−
√
x dx.

If we wanted to compute this integral, the first step would be to make the substitution u = 8 −
√
x.

Since 1 ≤ x ≤ 4 and 8−
√
x is a decreasing function of x, 6 ≤ u ≤ 7. Moreover, if we solve this equation

for x as x = (8− u)2, then we see that dx = 2(8− u)(−1)du, so that

�
[1,4]

f(x) dV1(x) =

� 4

1

e8−
√
x dx =

� 6

7

eu2(8− u)(−1) du =

� 7

6

eu2(8− u) du =

�
[6,7]

eu2(8− u) dV1(u).

To view this result in a way that generalizes to multiple integrals, note that if T : [6, 7] → [1, 4] is
T (u) = (8− u)2, then when we make the subsitution x = T (u) we are actually replacing f(x) = e8−

√
x

(defined on [1, 4] = T ([6, 7])) with f(T (u)) = e8−
√

(8−u)2 = eu (a function defined on [6, 7]).

The function f ◦ T : [6, 7] → R is called the pullback of f by T . (The picture above motivates the
name, as composing f with T “pulls back” the domain of f from [1, 4] = T ([6, 7]) to [6, 7].)8 Note that
f(T (u)) is integrable over [6, 7], and therefore we might expect that

�
T ([6,7])

f(x) dV1(x) and

�
[6,7]

f(T (u)) dV1(u)

are related somehow.

8Indeed, the idea of “pulling back” an object in this way is an important idea that we will see return a few more times
this quarter.
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We don’t necessarily expect equality to hold here because the map T stretches out the interval [6, 7] when
mapping it onto [1, 4]. This stretching would certainly prevent equality for “corresponding” Riemann
sums of f and f ◦ T since if ci = T (di) and [ai, bi] = T ([αi, βi]) we expect [ai, bi] and [αi, βi] to have
different lengths, and therefore

f(ci)|bi − ai| = f(T (di))|T (βi)− T (αi)| 6= f(T (di))|βi − αi|.

However, we can account for the change in lengths using the Mean Value Theorem and continuity
of T ′, since there is γi ∈ (αi, βi) with

|bi−ai| = Vol1(T ([αi, βi])) = |T (βi)−T (αi)| = |T ′(γi)(βi−αi)| = |T ′(γi)||βi−αi| ≈ |T ′(di)|Vol1([αi, βi]),

where the continuity of T ′ is used to say that |T ′(γi)| ≈ |T ′(di)|. The term 2(8− u) = |2(8− u)(−1)| =
|T ′(u)| in the substitution formula is therefore exactly what is needed to correct for how T distorts
lengths, and is necessary for the equality�

T ([6,7])

f(x) dV1(x) =

�
[6,7]

f(T (u))|T ′(u)| dV1(u).

The key features of the previous example that will be important in our general discussion are that
[6, 7] is an elementary domain, T is C1 on [6, 7] with T ′(u) 6= 0 on [6, 7] (which ensures that f(T (u)) will
be integrable on [6, 7] and that our intuition about T “stretching” [6, 7] is valid), and that T is injective
on [6, 7]. (This ensures that we do not “double-count” parts of the integral

�
[1,4]

f(x) dV1(x) when we

change variables to u.)

The theorem is as follows.

Theorem 10 (Change of Variables). Let D ⊂ Rn be an elementary region, and let Ω ⊆ Rn.
Suppose T : Rn → Rn is C1 and injective on D, and that DT (~u) is invertible throughout D. Let
T (D) be the image of D under T . If T (D) ⊆ Ω and f : Ω → R is integrable on T (D), then
f(T (~u)) and f(T (~u))|det(DT (~u))| are integrable on D and

�
T (D)

f(~x) dVn(~x) =

�
D

f(T (~u))|det(DT (~u))| dVn(~u).

Remark 15. The above theorem will hold even if the conditions that T is injective and DT (~u) is
invertible fail on a set X ⊆ D of measure zero as long as the image T (X) of this set also has measure
zero. This is extremely important in applications: the images of portions of ∂D may overlap in T (D),
or DT (~u) may become zero on some small set. We’ll point this out when we use it.
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Remark 16. The statement of the theorem in the book (which is only in the 2- and 3- dimensional
cases) is actually incorrect, as it omits the requirement that DT (~u) is invertible. This is actually a
crucial condition for the proof, as it is used (along with the C1 condition) to invoke the (so-called)
Inverse Function Theorem, which allows one to infer properties of T−1 from those of T .

Proof. A full proof of the theorem is outside of the scope of the course (again, we need much more
analysis machinery than we have). Nevertheless, we can give a sketch of the proof that should give an
idea of why it is true (but perhaps won’t indicate why some of the hypotheses are necessary).

To simplify the argument, assume that D is a box and f is continuous on T (D). Then f ◦ T is
continuous on D, so that f(T (~u))|det(DT (~u))| is also continuous on D because the entries of DT (~u) are
continuous functions of ~u, so that |det(DT (~u))| is the absolute value of a sum of products of continuous
functions (and is therefore continuous). It follows that f(T (~u))|det(DT (~u))| is integrable on D. We will
approximate

�
T (D)

f(~x) dVn(~x) with Riemann sums for
�
D
f(T (~u))|det(DT (~u))| dVn(~u).

Choose a partition P of D into boxes B1, . . . , Bm and choose sample points ~c1, . . . ,~cm in a “corner”
of each box.

The various hypotheses on T ensure that T (D) is then partitioned into the (non-box) regions T (B1), . . . , T (Bm),
which might overlap only on sets of measure zero9 (i.e. the images of the boundaries of B1, . . . , Bm).

Let ~xi
def
= T (~ci) for each i.

Because T is continuous and the maximum edge length of each Bi is small (since we are eventually
taking ‖P‖ → 0), for ~x = T (~u) ∈ T (Bi) we have ‖~x− ~xi‖ = ‖T (~u)−~ci‖ small, and therefore (since f is
continuous) f(~x) ≈ f(~xi).

Similarly, since T is differentiable at ~ci we have

T (~u) ≈ L(~u) = T (~ci) +DT (~ci)(~u− ~ci)

for ~u near ~ci, and therefore the image of the box Bi under T can be approximated by the image L(Bi)
of the box Bi under the affine map L.

9Here we are actually using a fact that could be another item in the Measure Zero Theorem: if ~g : Rn → Rn is C1 and
Z ⊂ Rn has measure zero, then ~g(Z) has measure zero.
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Since Bi is a box with ~ci a corner, there are vectors ~v1, . . . , ~vn (with ~vi a scalar multiple of ~ei) such that

Bi = {~ci + s1~v1 + · · ·+ sn~vn : s1, . . . , sn ∈ [0, 1]}.

In this way we can view Bi as a translation of the parallelotope E(~v1, . . . , ~vn), so that if A is the n× n
diagonal matrix with columns ~v1, . . . , ~vn, then and Voln(Bi) = |det(A)|.

For ~u = ~ci + s1~v1 + · · ·+ sn~vn ∈ Bi, we have

L(~u) = L(~ci) +DT (~ci)(s1~v1 + · · ·+ sn~vn) = L(~ci) + s1DT (~ci)~v1 + · · ·+ snDT (~ci)~vn.

Therefore L(Bi) is a translation of the paralleltope E(DT (~ci)~v1, . . . , DT (~ci)~vn), so (by our expansion
factor results from last quarter) we have

Voln(L(Bi)) = |det(DT (~ci))||det(A)| = |det(DT (~ci))|Voln(Bi).

We can therefore put this all together to see that

�
T (D)

f(~x) dVn(~x) =
∑
i

�
T (Bi)

f(~x) dVn(~x)

≈
∑
i

�
T (Bi)

f(T (~ci)︸ ︷︷ ︸
=~xi

) dVn(~x)

=
∑
i

f(T (~ci))Voln(T (Bi))

≈
∑
i

f(T (~ci))Voln(L(Bi))

=
∑
i

f(T (~ci))|det(DT (~ci))|Voln(Bi)

= R(f(T (~u))|det(DT (~u))|,P , C).

As ‖P‖ → 0, the last expression approaches

�
D

f(T (~u))|det(DT (~u))| dVn(~u).

One can show (and here is where all of the difficult analysis happens) that as ‖P‖ → 0, the error in each
of the “≈” steps also goes to 0, so in the limit these become equalities. This gives the desired result.

Remark 17. The quantity det(DT (~u)) is called the Jacobian (determinant) of T at ~u. This is the
convention that we will follow (and it is also the convention followed by the book), but be careful with
the context, as the matrix DT (~u) of partial derivatives is also called the Jacobian of T at ~u.
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Lecture 12: More Change of Variables

Learning Objectives:

� Change variables in a multiple integral.

� Investigate the standard alternate coordinate systems in the lens of change of variables.

Example 40. Compute
x
R

y2 dA(x, y), where R ⊂ R2 is the region in the first quadrant bounded by

the hyperbolas xy = 1 and xy = 4 and the lines y = 3x and y = 2x.

The region R is sketched below.

In principle it should be possible to compute this integral by splitting R into the union of (say three)
elementary regions and applying Fubini’s Theorem, but for a simpler approach we will first make a change
of variables. We need to produce an elementary region D ⊂ R2 and a C1, injective map T : D → R2

such that T (D) = R and DT (u, v) is invertible for each (u, v) ∈ D. Note that x 6= 0 throughout R, and
therefore the points (x, y) ∈ R are characterized by the inequalities

2x ≤ y ≤ 3x and
1

x
≤ y ≤ 4

x
.

Rewriting these yield

2 ≤ y

x
≤ 3 and 1 ≤ xy ≤ 4.

This suggests that we should let u = y
x

and v = xy, and the map T : [2, 3]× [1, 4]︸ ︷︷ ︸
D

→ R that sends (u, v)

to T (u, v) = (x, y) is surjective (so that R = T (D)).
Above we expressed (u, v) = ( y

x
, xy) as a function of (x, y), and therefore the mapping (x, y) 7→

(u, v) = ( y
x
, xy) is actually the inverse of T : T−1(x, y) = (u, v). To find T we need to express (x, y) as

a function of (u, v).

70



To this end, note that (since y ≥ 0 throughout R)

uv =
y

x
xy = y2, so that y =

√
uv.

We then also have x = v
y

=
√

v
u
. Because we were able to solve for (x, y) unambiguously in terms of

(u, v), T : D → R, T (u, v) = (
√

v
u
,
√
uv) is injective as well.

Moreover, note that T is C1 on D and

det(DT (u, v)) = det

([
−
√
v

2u3/2
1

2
√
uv√

v
2
√
u

√
u

2
√
v

])
= − 1

4u
− 1

4u
= − 1

2u
6= 0

throughout D, so that DT (u, v) is invertible.
Because we can express the integrand y2 in terms of u and v as y2 = (

√
uv)2 = uv, the change of

variables theorem implies that

x
R

y2dA(x, y) =
x
D

(
√
uv)2

∣∣∣− 1

2u

∣∣∣ dA(u, v)

=

� 4

1

� 3

2

uv · 1

2u
dudv

=
1

2

� 4

1

� 3

2

v dudv

=
1

2

� 4

1

vdv

=
15

4
.

Remark 18. Note that by the chain rule, the Jacobian det(DT (u, v)) satisfies, for each (u, v) ∈ D,

DT−1(T (u, v))DT (u, v) = D(T−1 ◦ T )(u, v) = DI(u, v) = I2,

so that DT (u, v) is the inverse of the matrix DT−1(x, y) when (x, y) = T (u, v), and therefore

det(DT (u, v)) =
1

det(DT−1(x, y))
when (x, y) = T (u, v).
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In the context of the previous problem, this means that we could have just computed

det(DT−1(x, y)) = det
([− y

x2
1
x

y x

])
= −2

y

x
,

so that, using the relationship (u, v) = ( y
x
, xy),

det(DT (u, v)) =
1

−2 y
x

= − 1

2u
,

exactly as we computed above!

Remark 19. Your book uses the (fairly standard) notation

∂(x1, . . . , xn)

∂(u1, . . . , un)
notation

= det(DT (~u)),

where ~x = T (~u). Here we are thinking of (x1, . . . , xn) as the component functions of T , in the sense that

T (u1, . . . , un) = (x1(u1, . . . , un), . . . , xn(u1, . . . , un)).

With this notation, the content of the previous remark is that

∂(x1, . . . , xn)

∂(u1, . . . , un)
=
(∂(u1, . . . , un)

∂(x1, . . . , xn)

)−1

,

where the left-hand side is evaluated at ~u and the right-hand side is evaluated at T (~u).

Example 41. You will show on your homework that the Change of Variables Theorem is the missing
piece that we need to give the promised generalization of the “expansion factor” interpretation of |det(A)|
for A ∈Mn×n(R). In particular, you will prove the following result:

Suppose D is an elementary region in Rn, and that T : Rn → Rn is an invertible affine
transformation of the form T (~x) = A~x+~b. Then Voln(T (D)) = |det(A)|Voln(D).

Example 42. Compute the integral I =
x
D2
R

e−x
2−y2 dA(x, y), whereD2

R

def
= {(x, y) ∈ R2 : ‖(x, y)‖ ≤ R}

is the closed ball in R2 centered at (0, 0) with radius R > 0.

One might first attempt to approach this problem via Fubini’s Theorem, but we quickly realize that,
any way you slice it10 this will be impossible because after writing the iterated integral, one would need
to compute the antiderivative of e−x

2
(which is impossible to do using elementary functions).

However, the presence of −(x2 +y2) in the integrand and the shape of the region (determined largely
by circles centered at the origin and/or lines through the origin) suggest that this integral might be
more tractable if we made a change to polar coordinates.

Let P : R2 → R2, P (r, θ) = (r cos(θ), r sin(θ)). When r > 0, P (r, θ) represents (x, y) = P (r, θ) in
terms of its polar coordinates (r, θ) as (x(r, θ), y(r, θ)) = P (r, θ) = (r cos(θ), r sin(θ)).

10Pun intended.

72



Here, we note that D2
R is the image of the box B = [0, R] × [0, 2π] under P . P is not injective on

B, because P (r, 0) = (r, 0) = P (r, 2π) for each r ∈ [0, R], and P (0, θ) = (0, 0) for every θ ∈ [0, 2π].
However, this is allowable (for the purposes of the Change of Variables Theorem) because these three
line segments form a set of measure zero in B, the image of these line segments forms a set of measure
zero, and P is injective on the rest of B.

Note that P is C1 on R2, and that

|det(DP (r, θ))| =

∣∣∣∣∣det

([
cos(θ) −r sin(θ)
sin(θ) r cos(θ)

])∣∣∣∣∣ = |r cos2(θ) + r sin2(θ)| = |r| = r 6= 0 for r > 0.

In particular, DP (r, θ) is invertible throughout B except on the left-hand edge of B where r = 0.
Because this line segment forms a set of measure zero, this is also allowable (for the purposes of the
Change of Variables Theorem).

Because f(x, y) = e−x
2−y2 is continuous on R2 (and therefore integrable on D2

R), the Change of
Variables Theorem (and then Fubini’s Theorem) implies that

x
D2
R

f(x, y) dA(x, y) =
x

[0,R]×[0,2π]

f(r cos(θ), r sin(θ))r dA(r, θ)

=

� R

0

� 2π

0

re−r
2

dθ dr

=

� R

0

2πre−r
2

dr

=
[
− πe−r2

]R
0

= π(1− e−R2

).

Example 43. To illustrate the importance of the injectivity condition in the Change of Variables
Theorem, consider in the previous problem that it is also the case that D2

R is also the image of B′ =
[0, R] × [0, 3π] under P , but that P fails to be injective on ([0, R] × [0, π]) ∪ ([0, R] × [2π, 3π]), since
P (r, θ) = P (r, θ + 2π) for each (r, θ). If we “apply” the Change of Variables Theorem in this case we
obtain the integral

x
[0,R]×[0,3π]

f(r cos(θ), r sin(θ))r dA(r, θ) =

� R

0

� 2π

0

re−r
2

dθ dr =
3π

2
(1− e−R2

),

73



which is not what we had before. The issue here isx
[0,R]×[0,π]

f(r cos(θ), r sin(θ))r dA(r, θ) and
x

[0,R]×[2π,3π]

f(r cos(θ), r sin(θ))r dA(r, θ)

both represent x
D2
R, y≥0

f(x, y) dA(x, y),

so we are “double counting” this part of the integral.

Example 44. The previous example (combined with some single-variable calculus results) allows us to
prove the (very famous) result that

I =

� ∞
−∞

e−x
2

dx =
√
π.

To see why, define

IR
def
=

� R

−R
e−x

2

dx, R > 0.

Then lim
R→∞

IR = I. But Fubini’s Theorem also implies that

(IR)2 =
(� R

−R
e−x

2

dx
)( � R

−R
e−y

2

dy
)

=

� R

−R

� R

−R
e−x

2−y2 dydx =
x
BR

e−x
2−y2 dA(x, y),

where BR = [−R,R]× [−R,R]. Note that

D2
R ⊂ BR ⊂ D2√

2R
.
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Since f(x, y) = e−x
2−y2 > 0 for each (x, y) ∈ R2,

s
Ω
f(x, y) dA(x, y) ≥ 0 for each bounded region Ω with

∂Ω of measure zero. Then we have11

x
D2
R

e−x
2−y2 dA(x, y) ≤

x
D2
R

e−x
2−y2 dA(x, y) +

x
BR−D2

R

e−x
2−y2 dA(x, y)

=
x
BR

e−x
2−y2 dA(x, y)

≤
x
BR

e−x
2−y2 dA(x, y) +

x
D2√

2R
−BR

e−x
2−y2 dA(x, y)

=
x

D2√
2R

e−x
2−y2 dA(x, y).

Because
s
D2
R
e−x

2−y2 dA(x, y) = π(1− e−R2
), this implies that

π(1− e−R2

) ≤
(� R

−R
e−x

2

dx
)2

≤ π(1− e−2R2

),

or rather √
π(1− e−R2) ≤

� R

−R
e−x

2

dx ≤
√
π(1− e−2R2).

Since lim
R→∞

√
π(1− e−R2) =

√
π and lim

R→∞

√
π(1− e−2R2) =

√
π, the Squeeze Theorem implies that

√
π = lim

R→∞

� R

−R
e−x

2

dx =

� ∞
−∞

e−x
2

dx.

Note that we were able to compute this improper integral without needing to find an antiderivative for
e−x

2
(although we did at one point find an antiderivative for xe−x

2
, which is much easier)!

Example 45. Compute the integral I =
x
R

y dA(x, y), where R is the region bounded below by the

lines y =
√

3x and y = −x, and above by the circle x2 + y2 = 1.

We first sketch a picture of this region:

Although we could certainly do this integral in Cartesian coordinates, we would have to split up the
region. To avoid this, let’s use polar coordinates. This region is a ‘polar rectangle’ described by the

11Here, A−B def
= A ∩ (Bc) = {~x ∈ A : ~x /∈ B}.
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inequalities π
3
≤ θ ≤ 3π

4
and 0 ≤ r ≤ 1. We already know that the polar coordinate map satisfies the

hypotheses of the Change of Variables Theorem, and the integrand f(x, y) = y is continuous on R2 (and
therefore integrable on R). We therefore have

I =
x

[0,1]×[π
3
, 3π
4

]

(r sin(θ))r dA(r, θ)

=

� 3π
4

π
3

� 1

0

r sin(θ)rdrdθ

=

� 1

0

� 3π
4

π
3

r sin(θ)rdθdr

=

� 1

0

r2
(
− cos

(3π

4

)
+ cos

(π
3

))
dr

=

� 1

0

r2
(1 +

√
2

2

)
dr

=
1 +
√

2

6
.
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Lecture 13: Even More Change of Variables

Learning Objectives:

� Change variables in a multiple integral.

� Investigate the standard alternate coordinate systems in the lens of change of variables.

Today we continue our discussion of change of coordinates by doing examples in 3 dimensions. We’ll
focus on two special coordinate systems: cylindrical and spherical coordinates. Before we begin, let’s
determine the Jacobian of each of these coordinate mappings. Suppose throughout that f is integrable
on a region D∗ ⊂ R3.

We start with cylindrical coordinates, which corresponds to the mapping12

(r, θ, z) 7→ (x(r, θ, z), y(r, θ, z), z(r, θ, z)),

with
x(r, θ, z) = r cos(θ), y(r, θ, z) = r sin(θ), z(r, θ, z) = z.

This transformation is C1 and the Jacobian with respect to this transformation is

∂(x, y, z)

∂(r, θ, z)
= det

cos(θ) −r sin(θ) 0
sin(θ) r cos(θ) 0

0 0 1

 = r 6= 0 except when r = 0,

and therefore if D is an elementary region in R3 (with r ≥ 0) such that (r, θ, z) 7→ (x, y, z) is an injective
(except possibly on a set of measure zero) map of D onto D∗, we have

y
D∗

f(x, y, z) dV (x, y, z) =
y
D

f(r cos(θ), r sin(θ), z)r dV (r, θ, z).

The fact that the Jacobian of this transformation was r (which is the same as for polar coordinates) is
not surprising; after all, cylindrical coordinates in R3 is what we get when we use polar coordinates to
replace x and y (leaving z alone).

For spherical coordinates, we consider the mapping

(ρ, φ, θ) 7→ (x(ρ, φ, θ), y(ρ, φ, θ), z(ρ, φ, θ)),

with
x(ρ, φ, θ) = ρ cos(θ) sin(φ), y(ρ, φ, θ) = ρ sin(θ) sin(φ), z(ρ, φ, θ) = ρ cos(φ).

12Here, to be consistent with the notation used for both rectangular coordinates in R3 and cylindrical coordinates in
R3, we will use z to denote the third coordinate in both settings. This should not cause any confusion as long as we are
careful to consider the context!
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The Jacobian for this transformation is

∂(x, y, z)

∂(ρ, φ, θ)
= det

cos(θ) sin(φ) ρ cos(θ) cos(φ) −ρ sin(θ) sin(φ)
sin(θ) sin(φ) ρ sin(θ) cos(φ) ρ cos(θ) sin(φ)

cos(φ) −ρ sin(φ) 0


= ρ2 sin(φ) det

cos(θ) sin(φ) cos(θ) cos(φ) − sin(θ)
sin(θ) sin(φ) sin(θ) cos(φ) cos(θ)

cos(φ) − sin(φ) 0


= ρ2 sin(φ) 6= 0 except when ρ = 0 or φ = kπ, k ∈ Z,

and therefore if D is an elementary region in R3 (with ρ ≥ 0 and 0 ≤ φ ≤ π) such that (ρ, φ, θ) 7→ (x, y, z)
is an injective (except possibly on a set of measure zero) map of D onto D∗, we havey

D∗

f(x, y, z) dV (x, y, z) =
y
D

f(ρ sin(θ) sin(φ), ρ cos(θ) sin(φ), ρ cos(φ))ρ2 sin(φ) dV (ρ, φ, θ).

Here (and henceforth), when using spherical coordinates we will require that ρ ≥ 0 and 0 ≤ φ ≤ π.
When changing to polar (or cylindrical or spherical) coordinates, it is often the case that it is easier

to go directly to an iterated integral (via Fubini’s Theorem), as the highly geometric nature of the new
variables make considering the exact shape of the region in the rθ-plane (or rθz-space or ρφθ-space)
somewhat superfluous.

Example 46. Set up the integral of f(x, y, z) = x + y over the SnoCone-shaped region E, which is
bounded below by the cone z =

√
3
√
x2 + y2 and above by the sphere x2 + y2 + z2 = 4, in

� Cylindrical coordinates in the order dzdrdθ

� Cylindrical coordinates in the order drdzdθ

� Spherical coordinates in the order dρdφdθ

We want to set up
t

E
f(x, y, z)dV , where E is sketched below:

Since r and θ are the middle and outer variables, in this case the outer two integrals just describe
(in polar coordinates) the ‘shadow’ of E in the xy-plane. This shadow is the region which is between
the origin and the shadow of the intersection of the sphere and the cone. This intersection is found by
eliminating z from the two equations, which gives

3(x2 + y2) = 4− x2 − y2, or rather x2 + y2 = 1,
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the circle of radius 1 (in the xy-plane) centered at the origin. Therefore, we have 0 ≤ θ ≤ 2π and
0 ≤ r ≤ 1.

For the bounds for z, we simply note that, for each fixed r and θ, z runs from the cone z =√
3
√
x2 + y2 =

√
3r to the top half of the sphere: z =

√
4− x2 − y2 =

√
4− r2. Hence, our integral is

(after applying Fubini’s Theorem)

y
E

(x+ y) dV (x, y, z) =

� 2π

0

� 1

0

� √4−r2

√
3r

(r cos(θ) + r sin(θ))r dzdrdθ.

Let’s now set up this integral in cylindrical coordinates with respect to the order drdzdθ. Here have
0 ≤ θ ≤ 2π and that 0 ≤ z ≤ 4. For fixed θ and z, r will run from 0 (corresponding to the z axis) out
until we hit the boundary of E. Here we see that the upper bound changes depending on the value of
z. Indeed, when 0 ≤ z ≤

√
3 we have 0 ≤ r ≤ z√

3
, while if

√
3 ≤ z ≤ 2 we have 0 ≤ r ≤

√
4− z2.

Therefore, the integral can also be written as

y
E

(x+ y) dV (x, y, z) =

� 2π

0

� √3

0

� z√
3

0

(r cos(θ) + r sin(θ))r drdzdθ

+

� 2π

0

� 2

√
3

� √4−z2

0

(r cos(θ) + r sin(θ))r drdzdθ.

Now we set up this integral in spherical coordinates as well, using the order dρdφdθ. As above, we
still have 0 ≤ θ ≤ 2π. For φ, we note that, for θ fixed, φ runs from 0 until it hits the cone at φ = π

6
.

Once we fix θ and φ, we see that ρ runs from 0 (i.e. the origin) until it hits the sphere, so that 0 ≤ ρ ≤ 2.
Therefore, in spherical coordinates this integral becomes

y
E

(x+ y) dV (x, y, z) =

� 2π

0

� π
6

0

� 2

0

(ρ sin(φ) cos(θ) + ρ sin(φ) sin(θ))ρ2 sin(φ) dρdφdθ.

Example 47. Let E be the region in R3 which is bounded below by the xy-plane, and above by the
cones z =

√
x2 + y2 and z = 6 −

√
x2 + y2. Set up the integral of a continuous function f : R3 → R

over E in (a) cylindrical coordinates in the order dzdrdθ, (b) spherical coordinates in the order dρdθdφ

We sketch this region below:

(a) Here, note that we have 0 ≤ θ ≤ 2π and 0 ≤ r ≤ 6. The bounds for z are a bit trickier; when
0 ≤ r ≤ 3 (and 0 ≤ θ ≤ 2π), z runs from 0 (i.e. the xy-plane) until it hits the cone z =

√
x2 + y2 = r,

so that 0 ≤ z ≤ r. On the other hand, if 3 ≤ r ≤ 6 (and 0 ≤ θ ≤ 2π), then z runs from 0 (i.e. the
xy-plane) to the cone z = 6−

√
x2 + y2 = 6− r, so that 0 ≤ z ≤ 6− r.

79



Hence, we have

y
E

f(x, y, z)dV =

� 2π

0

� 3

0

� r

0

f(x(r, θ, z), y(r, θ, z), z(r, θ, z))r dzdrdθ

+

� 2π

0

� 6

3

� 6−r

0

f(x(r, θ, z), y(r, θ, z), z(r, θ, z))r dzdrdθ.

(b) Since the region is below the cone z =
√
x2 + y2 but above the xy-plane, one sees that π

4
≤ φ ≤ π

2
.

Also, we still have 0 ≤ θ ≤ 2π. For every fixed φ, note that ρ runs from 0 (i.e. the origin) until it hits
the cone z = 6−

√
x2 + y2. Substituting in our spherical formulas for x, y, and z yields

ρ cos(φ) = 6− ρ sin(φ), or rather ρ =
6

cos(φ) + sin(φ)
.

Therefore, we have

y
E

f(x, y, z)dV =

� π
2

π
4

� 2π

0

� 6
cos(φ)+sin(φ)

0

f(x(ρ, φ, θ), y(ρ, φ, θ), z(ρ, φ, θ))ρ2 sin(φ) dρdθdφ.

Example 48. Without resorting to explicit calculation, show that

� π/2

−π/2

� 1

0

� R

z

θr drdzdθ =

� π/2

−π/2

� π/2

π/4

� R/ sin(φ)

0

θ ρ2 sin(φ) dρdφdθ

Note that each of these two iterated integrals represent the triple integral of

f(x, y, z) = θ =


arctan( y

x
) if x > 0,

π
2

if x = 0, y > 0,

−π
2

if x = 0, y < 0

over regions in R3 with x ≥ 0 (since −π
2
≤ θ ≤ π

2
). The first integral appears to be in terms of cylindrical

coordinates, and the second appears to be in terms of spherical coordinates. We argue that the region
of integration is secretly the same for both integrals.

For the first integral, we note that the condition that −π
2
≤ θ ≤ π

2
implies that the region lies on

the side of the yz-plane where x ≥ 0. The condition that 0 ≤ z ≤ 1 implies that this region also lies
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between the xy-plane (i.e. z = 0) and the plane z = 1. Finally, the condition that z ≤ r ≤ R can
be expressed as z ≤

√
x2 + y2 ≤ R. The inequality z ≤

√
x2 + y2 indicates that the region lies below

the cone z =
√
x2 + y2, and the inequality

√
x2 + y2 ≤ R indicates that the region is enclosed by the

circular cylinder x2 + y2 = R2. We sketch this region (call it W ) below:

We can attempt to repeat this process for the second integral, but the bound ρ ≤ R/ sin(φ) appears to
be a little mysterious. Rather than reverse-engineer this bound, let’s try to represent W in spherical
coordinates directly and then compare.

First note that, since θ has the same meaning in both cylindrical and spherical coordinates, we still
have −π

2
≤ θ ≤ π

2
. For each fixed θ, it appears that φ will run from φ = π

4
(describing points that lie on

the cone z =
√
x2 + y2) to φ = π

2
(describing points in the xy-plane), so that π

4
≤ φ ≤ π

2
. For fixed θ

and φ, ρ will run from 0 (i.e. the origin) until we hit the cylinder x2 + y2 = R2. We therefore see that
the upper bound for ρ will satisfy

R2 = x2 + y2 = x2 + y2 + z2 − z2 = ρ2 − ρ2 cos2(φ) = ρ2 sin2(φ), so that ρ =
R

sin(φ)
.

Therefore we have 0 ≤ ρ ≤ R
sin(φ)

, and the resulting triple integral in spherical coordinates is exactly the
one given in the problem statement. Because these two iterated integrals represent the triple integral of
the same function over the same region in R3, they have the same value.
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Lecture 14: Curves

Learning Objectives:

� Parametrize a curve with a path.

� Interpret the derivative of a path as the vector tangent to a curve.

� Compute the length of a curve.

Now that we know how to integrate functions over regions in Rn, we shift gears to ask about integrating
over other types of subsets of Rn. For instance, can we integrate over a curve in R2 or R3? What about
a surface in R3? What about higher-dimensional analogs in Rn? The answer to these questions turns
out to be affirmative, and the key to understanding how to make sense out of such integrals lies in
parameterization. That is, we can integrate over a curve by parameterizing the curve and then using a
‘change-of-variables’-type formula to get an integral over an interval in the real line. Similarly, we will
integrate over surfaces by parameterizing them with regions in R2 and then using a formula that looks
suspiciously like ‘change-of-variables’.

We begin this process by giving some definitions.

Definition 12. A path is a continuous function ~r : I → Rn for some interval I ⊆ R. We call
C ⊂ Rn a (parametric) curve if C is a image of a path ~r : I → Rn that is injective except
possibly on a finite set. Such a path ~r is said to parametrize C, and in this case we say that C
has parametric equations

~r(t) = (x(t), y(t)) (if n = 2) or ~r(t) = (x(t), y(t), z(t)) (if n = 3),

and similarly in higher dimensions. If ~r is C1, then we call C a C1 curve. If ~r can be taken C1

such that ~r ′(t) 6= ~0 for every t ∈ I, then we say that C is smooth. If C is the union of a finite
number of smooth curves, then we call C piecewise smooth.

Last quarter, we thought of the path ~r(t) which parameterized a curve C as describing the motion
of a particle on C whose position at time t is ~r(t). This will be a useful viewpoint going forward.
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If ~r : I → Rn is differentiable at t, then the derivative is an n× 1 matrix (i.e. a column vector) just
like ~r, and we therefore use the notation

~r ′(t)
not.
= D~r(t) =


x′1(t)
x′2(t)

...
x′n(t)

 .
Thinking of ~r(t) as the position function of a particle, it is sometimes convenient to call ~v(t)

def
= ~r ′(t)

the velocity of the particle (since it describes the direction and speed of travel at time t). Indeed,
‖~r ′(t)‖ = ‖~v(t)‖ is the speed at which the particle travels at time t. Hence, unless ~v(t) = 0 (i.e. the
particle is at rest), we have

~v(t) = ‖~v(t)‖
( 1

‖~v(t)‖
~v(t)

)
= (speed)(direction).

In the same vein (and if ~r ′ is differentiable at t) then ~a(t)
def
= ~v ′(t) = ~r ′′(t) is the acceleration of the

particle at time t.

Remark 20. Note that ~v(t) = D~r(t) = D~r(t)[1], so that the velocity of a particle whose position is
given by ~r(t) is given by the image under the linear transformation D~r(t) : R1 → Rn of the vector
[1]. This ties velocity into our understanding of the derivative as a linear transformation which acts on
tangent vectors, in the sense that if ~r parametrizes a curve C, then ~r ′(t0) = D~r(t0)[1] is tangent to
the curve C at ~r(t0).

Example 49. For a ∈ R, compute parametric equations for the line tangent to the curve ~r(t) =
(at, cos(t), sin(t)) at the point ~r(3π

2
).

The tangent line to the curve contains the point ~r(3π
2

) =

[
3π
2
a

0
−1

]
and is parallel to the vector ~r ′(3π

2
) =[

a
1
0

]
. Hence, parametric equations for the line are

~L(s) = ~r
(3π

2

)
+ s~r ′

(3π

2

)
=
((3π

2
+ s
)
a, s,−1

)
.

Example 50. The term “smooth” does indeed go beyond mere “C1”, since we can have C1 curves
that have corners or curps. For an example, consider the curve C given by the equation y2 = x3. The
curve C has a cusp at (0, 0), but C is still a C1 curve because we can parametrize C with the C1 path
~r : R→ R2, ~r(t) = (t2, t3). Note that when t = 0 (which corresponds to the point ~r(0) = (0, 0) where C

has a cusp), we have ~r ′(0) =

[
0
0

]
. This illustrates how features like cusps can be accounted for by C1

paths when the derivatives of these paths are allowed to vanish at a point.

83



Example 51. Parameterize (with the counterclockwise orientation, or direction) the portion of the

ellipse
x2

4
+
y2

9
= 1 which lies in quadrants 4, 1, and 2. Also sketch the indicated path.

The path ~r(t) = (2 cos(t), 3 sin(t)), −π
2
≤ t ≤ π parameterizes the portion of ellipse in the direction

indicated. The endpoints of the path are ~r(−π
2
) = (0,−3) and ~r(π) = (−2, 0).

Note that ~x(s) = (2 cos(2s), 3 sin(2s)), −π
4
≤ s ≤ π

2
also parameterizes the same portion of ellipse in the

same direction. If we think about this as describing the motion of a particle, it seems that this particle
is moving twice as fast as the previous one. We will make this precise in a minute.

Remark 21. The notion of orientation will be made more precise later on in the course when we discuss
line integrals.

Example 52. The path ~r(t) = (sin(t), t, sin2(t)), −∞ < t < +∞ traces out a curve in R3. To determine
what this curve looks like, note that the projection of this curve in the xy-plane is all points of the form
(sin(t), t), which is exactly the graph of the equation x = sin(y):

We also notice that since z(t) = sin2(t) = (x(t))2, this curve lives on the parabolic cylinder z = x2. A
sketch of this curve is
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Let’s think of this curve as describing the motion of a particle. Since the y-coordinate of the position
increases as t increases, we see that the orientation of this curve (i.e. what direction we are traveling
in) is as pictured above (with arrows).

Arclength

The notion of ‘speed’ allows us to measure the length of a C1 path ~r : [a, b] → Rn. Note that (by
differentiability) if s, t ∈ [a, b] with s < t are close to each other, then from differentiability of ~r we
would expect that

~r(t)− ~r(s) ≈ D~r(s)[t− s], so that ‖~r(t)− ~r(s)‖ ≈ ‖~r ′(s)‖(t− s).

On the other hand, we expect that the length of the portion of C between ~r(s) and ~r(t) should be
approximately ‖~r(t) − ~r(s)‖. Therefore, if a = t0 < t1 < . . . < tm = b gives a partition P =
{[t0, t1], [t1, t2], . . . , [tm−1, tm]} of [a, b], then we would expect that the length of ~r should be

m∑
i=1

Length of ~r([ti−1, ti]) ≈
m∑
i=1

‖~r ′(ti−1)‖(ti − ti−1) =
m∑
i=1

‖~r ′(ti−1)‖Vol1([ti−1, ti])
‖P‖→0−→

� b

a

‖~r ′(t)‖ dt.
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Therefore it is reasonable to define the length of ~r to be

Length of ~r
def
=

� b

a

‖~r ′(t)‖ dt.

If ~r parametrizes a curve C, then we define the length of C to be the length of ~r. That is,

Length of C
def
=

� b

a

‖~r ′(t)‖ dt.

Remark 22. The above definition of the length of a curve should make you uneasy because, in general,
there are infinitely many different ways to parametrize a curve C. For this definition to be meaningful,
we need to make sure that the “length” we compute does not depend on the parametrization that we
use. To see this, suppose that C is a smooth C1 curve with two different parametrizations

~r : [a, b]→ Rn and ~s : [c, d]→ Rn,

each with non-vanishing derivative, related to each other13 by ~s = ~r ◦ τ , where τ : [c, d]→ [a, b] is a C1,
bijective function with τ(u) 6= 0 for each u ∈ [c, d]. Then we apply the Change of Variables Theorem
and the Chain Rule to obtain

� b

a

‖~r ′(t)‖ dt =

�
τ([c,d])

‖~r ′(t)‖ dV1(t)

=

�
[c,d]

‖~r ′(τ(u))‖|τ ′(u)| dV1(u)

=

� d

c

‖τ ′(u)~r ′(τ(u))‖ du

=

� d

c

‖D~r(τ(u))Dτ(u)‖ du

=

� d

c

‖D(~r ◦ τ)(u)‖ du

=

� d

c

‖D~s(u)‖ du

=

� d

c

‖~s ′(u)‖ du,

and therefore we obtain the same value for the length of C regardless of which C1 path with non-vanishing
derivative we use to parametrize C.

Example 53. Let’s compute the length of the arc C of the graph of y2 = x3 in R2 between (x, y) = (0, 0)
and (x, y) = (1, 1).

This curve is graphed in red below:

13Indeed, we actually must have τ = ~r−1 ◦ ~s. This map is bijective is C1, bijective, and has non-zero derivative
throughout [c, d]. The proof of this requires a bit of analysis.
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Our first step is to parameterize this portion of curve. There are many correct ways to do this, but we
will use

~r(t)
def
= (t, t

3
2 ), 0 ≤ t ≤ 1.

We therefore can write

Length of C =

� 1

0

‖~r ′(t)‖dt =

� 1

0

√
12 +

(3

2

√
t
)2

dt =

� 1

0

√
1 +

9

4
t dt =

8

27

(
1 +

9

4
t
) 3

2
∣∣∣1
0

=
13

3
2 − 8

27.

Example 54. For a ≥ 0, consider the portion of helix parameterized by ~r(t) = (at, cos(t), sin(t)),
0 ≤ t ≤ 2π. Sketch the curve, and prove that its length L(a) satisfies lim

a→+∞
(L(a) − 2πa) = 0. Given

that ‖~r(0)− ~r(2π)‖ = 2πa, discuss the geometric significance of this computation.

This curve is one revolution of a helix around the x-axis with ‘spacing’ a between coils:

We can therefore compute that the length of this curve is

L(a) =

� 2π

0

‖~r ′(t)‖dt

=

� 2π

0

√
(a)2 + (− sin(t))2 + (cos(t))2dt

=

� 2π

0

√
a2 + 1dt

= 2π
√
a2 + 1.

Therefore

lim
a→+∞

(L(a)− 2πa) = 2π lim
a→+∞

√
a2 + 1− a = 2π lim

a→+∞

1√
a2 + 1 + a

= 0.

Since 2πa is the (straight-line) distance from the starting-point of the coil to the ending-point of the
coil, this computation shows that if you stretch the coil out far enough, the arc length becomes as close
to the straight-line distance as we’d like (even though it wraps once around the cylinder y2 + z2 = 1!).
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Remark 23. If C is a smooth C1 curve in Rn and f : C → R is continuous, then the above Riemann
sum argument for arclength can be adjusted motivate the definition of the scalar line integral of f
over C as �

C

f ds
def
=

� b

a

f(~r(t))‖~r ′(t)‖ dt,

where ~r : [a, b] → Rn is a C1 path (with non-vanishing derivative) that parametrizes C. On the
homework you will explore this definition (and show that it does not depend on the path we use to
parametrize C). Here ds represents an “infinitesimal change in length” of the curve C.

Example 55. Wally the worm lives at (1, 0, 0) inside of a giant ball of cheese which has density
d(x, y, z) = x2 + y2 + z2 at (x, y, z). One day, Wally eats his way through the cheese along the he-
lix C parameterized by ~r(t) = (cos(t), sin(t), t), 0 ≤ t ≤ 4π. Much much cheese-mass does Wally eat?

Wally eats�
C

(x2 + y2 + z2)ds =

� 4π

0

(cos2(t) + sin2(t) + t2)
√

(− sin(t))2 + (cos(t))2 + 12︸ ︷︷ ︸
=‖~r ′(t)‖

dt

=
√

2

� 4π

0

1 + t2dt

=
√

2
(

4π +
64π3

3

)
units of cheese-mass. Doesn’t that sound delicious?

Example 56. Compute

�
C

yez
2

ds, where C is the curve parameterized by ~r(t) = (1, t, t2), −2 ≤ t ≤ 2.

The curve C is the portion of the parabola z = y2, −2 ≤ y ≤ 2 in the plane x = 1. We sketch this
below:

Since this curve is symmetric across the xz-plane (i.e. if (x, y, z) ∈ C, then (x,−y, z) ∈ C), and since
yez

2
is odd in y, we immediately see that �

C

yez
2

ds = 0

by symmetry. Of course, in terms of our parametrization this gives�
C

yez
2

ds =

� 2

−2

tet
4‖~r ′(t)‖ dt =

� 2

−2

tet
4√

1 + 4t2 dt,

which is the integral of an odd function over an interval of the form [−a, a] for a ≥ 0 (which is 0).
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Lecture 15: Surfaces

Learning Objectives:

� Parametrize a surface.

� Compute the normal vector to the surface.

� Extract information about a surface by analyzing the normal vector arising from a parametriza-
tion.

� Compute the surface area of a smooth surface.

The parametrization techniques and results that we discussed for (parametric) curves in Rn can be
generalized to handle (parametric) surfaces. Our interest in surfaces will be limited to surfaces in R3,
but know that one could continue to expand these ideas to more general settings. We will give an idea
of these more general settings later, once we have more intuition for what we expect to hold. Some of
the quirks in the definition we give are intended to avoid certain “degenerate” situations.

Definition 13. We call S ⊂ R3 a (parametric) surface if S is the image of a continuous function
~X : D → R3 that is injective except possibly on ∂D, where D ⊆ R2 is an elementary region
(perhaps with some of its boundary points removed). Such a function ~X is said to parametrize
S, and in this case we say that S has parametric equations

~X(s, t) = (x(s, t), y(s, t), z(s, t)).

If ~X is C1, then we call S a C1 surface.

Remark 24. We will also have a notion of smooth surface, but the definition requires slightly more
machinery than what was needed to define smooth curves. We will revisit this shortly.

Example 57. Suppose that D ⊆ R2 is an elementary region and that f : D → R is a C1 function.
Then the graph of f is a C1 surface with parametrization

~X : D → R3, ~X(x, y) = (x, y, f(x, y)).
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One can permute the variables as well. For example,

~X : {(x, z) : x2 + z2 ≤ R2, 0 ≤ x ≤ R} → R3, ~X(x, z) = (x,−
√
R2 − x2 − z2, z)

parametrizes the portion S of the sphere of radius R centered at (0, 0, 0) that lies in the region where
y ≤ 0 and x ≥ 0, thinking of this surface as the graph of y as a function of x and z.

Example 58. Alternate coordinate systems can also be useful when parametrizing surfaces. For exam-
ple, the portion of the cone z =

√
x2 + 4y2 with y ≥ 0 can be expressed in cylindrical coordinates as

the collection of (r, θ, z) with 0 ≤ r, 0 ≤ θ ≤ π, and z =
√
r2 cos2(θ) + 4r2 sin2(θ) = r

√
1 + 3 sin2(θ),

which implies that we can parametrize it as

~Y : {(r, θ) : 0 ≤ r, 0 ≤ θ ≤ π} → R3, ~Y (r, θ) = (r cos(θ), r sin(θ), r
√

1 + 3 sin2(θ)).

Note that the parametrization ~Y is actually C1, so that the cone is a C1 surface. (Don’t worry: the
cone will fail to be smooth at the point at which you think it shouldn’t be smooth.)

Example 59. Describe the surface S parametrized by

~X(s, t) = (s cos(t), s sin(t), s2), 0 ≤ s ≤ 2, 0 ≤ t ≤ π.

By inspection we see that (x(s, t))2 + (y(s, t))2 = s2 = z(s, t), so that S is a portion of the elliptic
paraboloid z = x2 + y2.

Moreover, this looks suspiciously like polar coordinates in the x and y variables (with s playing
the role of r, and t playing the role of θ). We therefore see that this is the portion of the paraboloid
z = x2 + y2 with y ≥ 0 and z ≤ 4:

Note that we need two parameters s and t to be present in order to parametrize a surface. With only
one parameter, we would just get a curve!

Example 60. Let’s parametrize the sphere S : x2 + y2 + z2 = 4.

There are many ways to parametrize a sphere, but perhaps a parametrization inspired by spherical
coordinates is the most straightforward. Note that S is described in spherical coordinates using ρ = 2,
0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π, so we can parametrize S with

~X(φ, θ) = (2 cos(θ) sin(φ), 2 sin(θ) sin(φ), 2 cos(φ)), 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π.
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Note that ~X is injective except on the boundary of the box [0, π]× [0, 2π], with the left edge of the box
being sent to the north pole (0, 0, 1), the right edge of the box being sent to the south pole (0, 0,−1),
and the top and bottom of the box both being sent to the portion of the sphere in the xz-plane where
x ≥ 0.

Example 61. Parametrize the portion of the cylinder C (whose axis of symmetry is the y-axis and
whose radius is 3) between the xy-plane and the plane y = 5.

Here we can describe the cylinder with the inequalities 0 ≤ y ≤ 5 and x2 + z2 = 32, so we use an
alteration of cylindrical coordinates (with y as the ‘vertical’ direction and the xz-plane as the ‘polar
plane’) to get

~X(s, t) = (3 cos(s), t, 3 sin(s)), 0 ≤ s ≤ 2π, 0 ≤ t ≤ 5.

Normal Vectors

We will shortly define what it means for a surface S to be smooth. The “real” definition of smoothness
is a little removed from the geometric understanding we have built up for R3, but there is an equivalent
definition that is accessible to us. This can be framed in terms of normal vectors to the surface S at a
point. Normal vectors came up last quarter when we discussed the gradient: if f : R3 → R if C1 and
satisfies ∇f(~a) 6= ~0, then the level set S = {~x : f(~x) = f(~a)} is actually a surface (at least the portion
of S near ~a), and the vector ∇f(~a) is normal (i.e. orthogonal, or perpendicular) to S at ~a. When we
have a parametrization of a surface, the parametrization itselfs gives us a way to find a normal vector
to the surface. Let’s discuss this now.
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Remark 25. Let ~X : D → R3 be a C1 parametrization of a surface S, then fix ~p = (s0, t0) ∈ D.
Let’s take a moment to discuss the following diagram:

We are interested in studying the surface S at ~X(~p). The first thing that we will do is to get two

vectors in R3, based at ~X(~p), which are tangent to S. To motivate this, we think about the vertical and
horizontal paths (which we assume have unit speed) in the st-plane that pass through ~p (pictured in

blue and purple, respectively) as being mapped by ~X to curves on S which pass through ~X(~p). In the
st-plane, the derivative of the horizontal (purple) path is ~e1 (pictured in red with a single arrow), while
the derivative of the vertical (blue) path is ~e2 (pictured in red with a double arrow). The derivative

D ~X(p) =
[
~Xs(~p) ~Xt(~p)

]
sends the vectors ~e1 and ~e2 based at ~p ∈ D to the corresponding vectors

~Xs(~p) = D ~X(~p)~e1 and ~Xt(~p) = D ~X(~p)~e2

based at ~X(~p) ∈ S, shown on S with single- and double-arrows, respectively. Since the purple and blue

curves are completely contained in S, the vectors ~Xs(~p) and ~Xt(~p) are tangent to S at ~X(~p).

As long as ~Xs(~p), ~Xt(~p) form a linearly independent set, we can obtain a normal vector N ~X(~p) to S

at ~X(~p) by simply computing the cross product14 of ~Xs(~p) and ~Xt(~p):

N ~X(~p)
def
= ~Xs(~p)× ~Xt(~p) =

ys(~p)zt(~p)− zs(~p)yt(~p)zs(~p)xt(~p)− xs(~p)zt(~p)
xs(~p)yt(~p)− ys(~p)xt(~p)

 .
The vector N ~X(~p) is called the normal vector to S at ~X(~p) arising from the parametrization
~X. Note that N ~X(~p) is orthogonal to both ~Xs(~p) and ~Xt(~p) (which form a basis for the space of vectors

tangent to S at ~X(~p)), so that N ~X(~p) is indeed normal to S at ~X(~p).

The uses of this normal vector are many. Here are some observations:

(i) We say that that S is smooth at a point , = ~X(~p) if N ~X(~p) 6= ~0. The rigorous motivation for
this definition involves more differential geometry than we have at our disposal, but for intuition
you can think that since N ~X(~p) = ~Xs(~p)× ~Xt(~p) is a continuous function of ~p, then if N ~X(~x) 6= ~0

14Here is where we are really using the fact that we are working in R3, as this construction does not work in higher
dimensions.
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at ~x = ~p then N ~X(~x) 6= ~0 for ~x near ~p, and therefore we can make a continuous assignment of
non-zero normal vectors to S near ,. If S failed to be smooth at , (perhaps if it had a corner,
or a crease, or some other “non-smooth” feature), then this should result in any assignment of
non-zero normal vectors to be discontinuous at ~p.

(ii) ‖N ~X(~p)‖ = ‖ ~Xs(~p) × ~Xt(~p)‖ gives the area of the parallelogram determined by ~Xs(~p) and ~Xt(~p)
(as shown in Exercise 3 of Homework 3 from MATH 291-2). In particular, for small a, b > 0 we
have that

~X(~s) ≈ ~X(~p) +D ~X(~p)(~s− ~p) for each ~s ∈ [s0 + a]× [t0 + b],

so that since the image of the box B = [s0 + a] × [t0 + b] under this affine approximation of ~X

is the (translated by ~X(~p)) parallelogram determined by the vectors a ~Xs(~p) and b ~Xt(~p), it should

be that we can reasonable approximate the area of the patch of S given by ~X(B) by

Vol2(E(a ~Xs(~p), b ~Xt(~p)) = ‖(a ~Xs(~p))× (b ~Xt(~p))‖
= |ab|‖ ~Xs(~p)× ~Xt(~p)‖
= ‖ ~Xs(~p)× ~Xt(~p)‖Vol2(B).

This observation forms the basis for our notion of integration over surfaces (which we will discuss
shortly).

Definition 14. A surface S ⊂ R3 is called smooth if there is a C1 parametrization ~X : D ⊂
R2 → R3 of S such that N ~X(s, t) 6= ~0 except possibly on ∂D or on (at most) finitely many other
points in D.

Remark 26. Our definitions of smooth curve and smooth surface are convenient for us and that will
capture a wide variety of examples, but know that you may see slightly different (and non-equivalent)
definitions in a higher-level course on differential geometry.
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Example 62. In the cylinder example, we had ~Xt(s, t) =
[

0
1
0

]
and ~Xs(s, t) =

[
−3 sin(t)

0
3 cos(t)

]
, so that

N ~X(s, t) =

−3 sin(t)
0

3 cos(t)

×
0

1
0

 =

−3 cos(t)
0

−3 sin(t)

 = − ~X(s, t),

so that N ~X(s, t) points “inward” (towards the y-axis) (black in the figure in that example). Note that

since N ~X(s, t) 6= ~0 for each (s, t) in the domain of ~X, the cylinder is a smooth surface.

Example 63. For the sphere example, we have

~Xφ(φ, θ) =

2 cos(θ) cos(φ)
2 sin(θ) cos(φ)
−2 sin(φ)

 and ~Xθ(φ, θ) =

−2 sin(θ) sin(φ)
2 cos(θ) sin(φ)

0

 ,
so that

N ~X(φ, θ) = ~Xφ(φ, θ)× ~Xθ(φ, θ) =

4 cos(θ) sin2(φ)
4 sin(θ) sin2(φ)
4 cos(φ) sin(φ)

 = 2 sin(φ) ~X(φ, θ).

Since 2 sin(φ) > 0 (well, = 0 at the north and south poles), we see that N ~X(φ, θ) is a positive multiple

of ~X(φ, θ), which for the sphere means that it is points “outward” (away from the origin). Note that

since N ~X(φ, θ) 6= ~0 except on the boundary of the domain of ~X, the sphere is a smooth surface.

Surface Area and Scalar Surface Integrals

By generalizing our Riemann sum argument that motivated the definition of arclength and scalar line
integrals, we are lead to the following definitions.

Definition 15. Let S be a surface with C1 parametrization ~X : D → R3 such that N ~X(~p) 6= ~0 at
all ~p ∈ D (except possibley on ∂D or at finitely many other points). Then we define the surface
area of S to be

Surface area of S
def
=
x
D

‖N ~X(s, t)‖ dA(s, t).

If f : S → R is continuous, then we define the scalar surface integral of f over S to be

x
S

f(~x) dS
def
=
x
D

f( ~X(s, t))‖N ~X(s, t)‖ dA(s, t).
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Here the notation “dS” is intended to signify an “infinitesimal change in surface area” (just as dA
represented an “infinitesimal change in area”). By giving an argument similar to those in the notes
(and homework) that arc length and scalar line integrals are well-defined (in the sense that they do not
depend on the parametrization one uses), one can show that surface area and scalar surface integrals
are also well-defined.

Example 64. Let’s compute the surface area of the sphere SR centered at (0, 0, 0) of radius R.

We need to compute
x
SR

1dS. To do this, we first parametrize the sphere with

~X(φ, θ) = (R cos(θ) sin(φ), R sin(θ) cos(φ), R cos(φ)), 0 ≤ π ≤ φ, 0 ≤ θ ≤ 2π.

We need to find ‖N ~X(φ, θ)‖ in order to compute the integral. First, note that

~Xφ(φ, θ) =

R cos(θ) cos(φ)
R sin(θ) cos(φ)
−R sin(φ)

 , ~Xθ(φ, θ) =

−R sin(θ) sin(φ)
R cos(θ) sin(φ)

0

 ,
so that

N ~X(φ, θ) = ~Xφ(φ, θ)× ~Xθ(φ, θ) =

R2 cos(θ) sin2(φ)
R2 sin(θ) sin2(φ)
R2 cos(θ) sin(φ)

 = R2 sin(φ)

cos(θ) sin(φ)
sin(θ) sin(φ)

cos(φ)

 ,
and hence

‖N ~X(φ, θ)‖ = R2 sin(φ)
√

cos2(θ) sin2(φ) + sin2(θ) sin2(φ) + cos2(φ) = R2 sin(φ).

We therefore have

x
S

1dS =

� 2π

0

� π

0

1‖N ~X(φ, θ)‖dφdθ =

� 2π

0

� π

0

R2 sin(φ)dφdθ = 4πR2,

which is the well-known formula for the surface-area of a sphere of radius R!

Example 65. Let’s compute the surface area of the right circular cone C of top radius R and height
H, given by z = H

R

√
x2 + y2, 0 < z ≤ H.

It might be best to parametrize the cone using cylindrical coordinates. That is, we write

~X(r, θ) = (r cos(θ), r sin(θ),
H

R
r), 0 < r ≤ R, 0 ≤ θ ≤ 2π.

Then we have

~Xr(r, θ) =

cos(θ)
sin(θ)
H
R

 , ~Xθ(r, θ) =

−r sin(θ)
r cos(θ)

0

 ,
so that

N ~X(r, θ) = ~Xr(r, θ)× ~Xθ(r, θ) =

−H
R
r cos(θ)

−H
R
r sin(θ)
r

 ,
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and therefore

‖N ~X(r, θ)‖ = r

√(H
R

)2

+ 1 =
r

R

√
H2 +R2.

Note that for r > 0 (i.e. for every point on C except for (0, 0, 0)), the ~k-component of N ~X is positive,
so that N ~X must be the ‘inward pointing’ normal vector:

We therefore have

Sur. Area of C =
x
C

1dS =

� 2π

0

� R

0

1‖ ~N(r, θ)‖drdθ =

√
H2 +R2

R

� 2π

0

� R

0

rdrdθ = πR
√
H2 +R2.
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Lecture 16: Vector Fields

Learning Objectives:

� Visualize vector fields.

� Analyze the flow lines of a vector fields.

� Interpret the gradient of a function as a vector field.

Today we introduce a class of object that, one might argue, vector calculus was designed to study:
vector fields. Vector fields provide a physical interpretation for differential forms, which are the natural
objects that link differentiation with integration.

Definition 16. Let Ω ⊆ Rn. A function ~F : Ω→ Rn is called a vector field on Ω.

In the past we have thought about such functions as maps from (a subset of) Rn to Rn, and therefore
as some sort of transformation of space. Now, however, we shift gears and think about such maps as
assigning to each point ~x ∈ Rn a vector ~F (~x) ∈ Rn. That is, we think of ~x as being a point in space,

and ~F (~x) as a vector based at ~x.

The physical interpretation is that ~F (~x) is a force acting at the point ~x, and therefore ~F describes
a force field that governs the flow of particles around space.

For example, if we think of space as a fluid, then ~F (~x) describes the direction and magnitude of the
flow of the fluid at the point ~x. If ~x(t) represents the path taken by some particle that is carried along

by the current, then we expect the velocity ~x ′(t) of the particle to be determined by the force ~F , in the

sense that ~x ′(t) = ~F (~x(t)).

Definition 17. Let ~F : Rn → Rn be a vector field, and let I ⊆ R be an interval. A differentiable
path ~x : I → Rn satisfying ~x ′(t) = ~F (~x(t)) at each t ∈ I is called a flow line of ~F .

Besides fluid flow, we also think of gravity as generating such a force field. There are other physical
interpretations as well, but these are the ones with which you are likely to already be familiar.

Example 66. The vector field ~F (x, y) =

[
1
−2

]
is a constant field. If this were the velocity field of some

fluid then it would describe a uniform flow, where all of the fluid flows in the same direction at the
same speed. A flow line is drawn in green. Indeed, the flow line through (a, b) with ~x(0) = (a, b) is

~x(t) = (a+ t, b− 2t), since ~x(0) = (a, b) and ~x ′(t) =

[
1
−2

]
= ~F (~x(t)).
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Example 67. On the other hand, the field ~F (x, y) = x~i+ y~j is pushes all points directly away from the
origin at a speed proportional to the distance from the origin. Since points near the origin are pushed
away from the origin, the origin is called a source for this flow. A flow line is drawn in green; note
that a particle on the flow line moves faster as it gets further away from the origin (since ~F is larger in
magnitude at points further away from the origin). Indeed, the flow line ~x that satisfies ~x(0) = (a, b) is

~x(t) = (aet, bet). To verify this, note that ~x(0) = (ae0, be0) = (a, b) and ~x ′(t) =

[
aet

bet

]
= ~F (aet, bet) =

~F (~x(t)).

If instead we looked at ~F (x, y) = −x~i − y~j, then all points are getting pulled towards the origin at a
speed proportional to the distance from the origin. Since all points near the origin are pulled towards
the origin, the origin is called a sink for this flow.

Example 68. Besides transporting, compressing, and expanding, fluids can also rotate. Indeed, the

field ~F (x, y) =

[
−y
x

]
(below left) describes a flow which rotates space in a counter-clockwise fashion

around the origin, and the speed at which they are rotated is proportional to their distance to the origin.
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We could also have ~F (x, y) =

[
y
−x

]
(below right), which is the same as the previous flow but in the

clockwise direction. A flow line for the counterclockwise flow in sketched in green. Note that every path
of the form ~x(t) = (R cos(t), R sin(t)) (for R > 0) is a flow line for ~F , since

~x ′(t) =

[
−R sin(t)
R cos(t)

]
= ~F (R cos(t), R sin(t)) = ~F (~x(t)).

Not every vector field has to be nice. For example, we can look at

~F (x, y) =
−y√
x2 + y2

~i+
x√

x2 + y2
~j,

which rotates point around the origin in a counterclockwise fashion, but always at speed 1. Thus, points
very close to the origin are rapidly spinning around the origin, while points far away from the origin are
revolving quite slowly.

Example 69. Technically, the gradient of a function is also a vector field. Indeed, the vector field

~F (x, y) =

[
−x
−y

]
is secretly ~F (x, y) = ∇f(x, y), where f(x, y) = 4− 1

2
x2 − 1

2
y2 is the downward-opening

elliptic paraboloid. Thus, we can think of ~F (x, y) as describing the (x, y)-direction in which a hiker on
the graph of z = f(x, y) should walk in order to climb uphill as quickly as possible.
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Vector fields of the type in the previous example (i.e. that are the gradients of scalar-valued functions)
are very important in calculus, and we will given them a name.

Definition 18. Let Ω ⊆ Rn, and let ~F : Ω→ Rn be a vector field on Ω. If ~F = ∇f for some C1

function f : Ω → R, then we call ~F a gradient field (or conservative field) with potential
function f .

Example 70. Not every vector field is a gradient field. For one counterexample, consider

~F (x, y, z) =

xy2

x2y
xy

 .
To see why, we note that if ~F = ∇f , then fx(x, y, z) = xy2 and fz(x, y, z) = xy, but by Clairaut’s

theorem we would have 0 = (fx)z(x, y, z) = (fz)x(x, y, z) = y, which fails to hold (for example) at
(0, 1, 0).

Example 71. One important (and perhaps) surprising point is that a vector field ~F : Ω → Rn may
have a potential function on a ball centered at each point in Ω, but may not actually have a potential
function on Ω.

The classical example of such a vector field is

~F : R2 − {(0, 0)} → R2, ~F (x, y) =
−y

x2 + y2
~i+

x

x2 + y2
~j.

We will prove later in the course that there is no function f : R2 − {(0, 0)} → R such that ∇f(x, y) =
~F (x, y) throughout R2 − {(0, 0)}. On the other hand, note that

f : {(x, y) : x > 0} → R, f(x, y) = arctan
(y
x

)
satisfies ∇f(x, y) = ~F (x, y) at each (x, y) ∈ {(x, y) : x > 0}, and therefore f is a potential function

on this set. In one of your homework problems this week, you will argue that ~F actually has potential
functions on the other open-half planes as well. The counterintuitive fact is that we just cannot “glue”
these potentials together to produce a potential function for ~F that is valid throughout R2 − {(0, 0)}.

For a somewhat deep explanation for why this is, one can show that if θ(x, y) is a (continuous) choice

of polar angle for (x, y) in a region in R2−{(0, 0)} then one can show that ∇θ(x, y) = ~F (x, y). Although

θ(x, y) might seem like a potential function for ~F on R2 − {(0, 0)}, the fact is that we cannot define
θ(x, y) continuously throughout R2 − {(0, 0)} all at once, since if we start at a point (x, y) and move
along a path that ends and (x, y) and rotates once around the origin in the counterclockwise direction,
it will be that θ will increase by 2π along this path. This observation actually plays a huge role in
complex analysis, where it is used to define (for example) various different versions of inverse functions
(like logarithms, roots, inverse trigonometric functions, etc.) to suit our purposes.

As an application of some of these ideas, let’s discuss a fun theorem involving vector fields: the Hairy
Ball Theorem.

Hairy Ball Theorem
Suppose that the surface of the earth (which, for our purposes, is the sphere x2 + y2 + z2 = 1) is

completely covered in water (here, let’s make the assumption that the water doesn’t behave differently
at different depths). Then at every point ~p on the earth the velocity of the water is given by some vector
~F (~p). For physical reasons, we can assume that ~F is continuous.
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Now, suppose a particle (a life-raft?) is floating along on the surface of the water, and its movements

are governed by ~F . The life-raft travels along some flow line ~r(t) of the vector field. Note that, since the
boat is on the surface of the earth (and therefore ‖~r(t)‖ = 1 at every time t), its velocity ~r ′(t) is always
perpendicular to its position vector ~r(t). (Indeed, this is one of your homework problems for this week!)

That is, its velocity vector is always tangent to the surface of the earth. In particular, the vector ~F (~p)
at ~p is tangent to the sphere at ~p.

One (perhaps surprising) fact is that, in the scenario that we described, there will always be a point

on the sphere at which ~F (~p) = ~0. That is, there is always at least one point on the surface of the earth
at which the velocity of the flow is ~0. This result is known as the ‘Hairy Ball Theorem’, since one can
think of the flow vectors ~F (~p) as hairs on the sphere which are tangent to the sphere (i.e. they have
been ‘combed’).

Theorem 11 (Hairy Ball). Let S ⊂ R3 be a sphere. If ~F is a continuous vector field on S which

is tangent to S at each point, then there is some point ~p on S at which ~F (~p) = ~0.

The hairy ball theorem implies that, if you have a hairy ball such as this one, where the direction
and length of the hairs are continuous and the hairs are forced to lie flat against the ball, then there
must be a bald spot. 15

15There are a ton of fun theorems like this in higher mathematics. For a course that’s loaded with them, you should
take... Algebraic Topology! (Surprised I didn’t say Real or Complex Analysis?)

101



Lecture 17: Gradient, Divergence, and Curl

Learning Objectives:

� Compute the divergence of a vector field.

� Describe the geometric meaning of divergence.

� Compute the curl of a two- or three-dimensional vector field.

� Describe the geometric meaning of curl.

� Investigate the relationship between grad, curl, and div.

� Apply Poincaré’s Lemma to determine when a vector field is conservative over a set.

Today we introduce various notions of the derivative related to vector fields. These are all special cases of
(what we will call) the exterior derivative for differential forms, but historically they arose from physical
considerations. To this end, we will adopt some language from fluid dynamics to describe certain ideas
related to these derivatives.

The Del Operator: Grad, Div, and Curl

In R2 and R3, the notions of derivative we consider can be captured (informally) described in terms of
the del operator:

∇ =


∂
∂x1
...
∂
∂xn

 .
To be clear, this is purely notation that will help us remember formulas. However, it does come in
handy for describing various types of the derivative. For example, we can write the gradient of a
function f(x, y, z) as

∇f(x, y, z) =

 ∂
∂x
∂
∂y
∂
∂z

 f(x, y, z) =

fx(x, y, z)
fy(x, y, z)
fz(x, y, z)

 .
We will sometimes also write grad(f) for ∇f .

Divergence and Incompressibility

Although it only makes sense to take the gradient of functions, we can use the del operator to define
various notions of the derivative for vector fields.

Definition 19. If Ω ⊆ Rn and ~F = (F1, . . . , Fn) : Ω → Rn is a C1 vector field on Ω, then we

define the divergence of ~F to be

div ~F (~x) = ∇ · ~F (~x)
def
=

∂F1

∂x1

(~x) + · · ·+ ∂Fn
∂xn

(~x).
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We will see that physically, if ~F describes the motion of some two- or three-dimensional fluid, the
number div ~F (~x) measures the net amount of expansion of the fluid at (~x), with positive values indicating
that the fluid is expanding a ~x, and negative values indicating that the fluid is compressing at ~x. If
div ~F (~x) = 0 at every point ~x ∈ Ω, then ~F is called incompressible.

Although it may be unclear why this is the intuition for divergence, it will become clear once we
learn the generalization of the Fundamental Theorem of Calculus that involves divergence (called the
Divergence Theorem or Gauss’s Theorem).

Example 72. Consider the uniform flow ~F (x, y) =~i−2~j. Intuitively, the fluid described by ~F is neither

expanding nor contracting at any point. Thus, we expect div ~F to be 0 at every point. Indeed, we have
div ~F (x, y) = (1)x + (−2)y = 0 at every point, as expected.

Similarly, the flow ~F (x, y) = −y~i + x~j corresponding to counterclockwise rotation of the plane

should also have div ~F (x, y) = 0 at every point, since this flow corresponds to rigidly rotating the plane
about the origin (so that there is no expansion or contraction anywhere). Indeed, we can compute that

div ~F (x, y) = (−y)x + (x)y = 0, as expected.

On the other hand, consider the flow ~F (x, y) = x~i+y~j (for which the origin was a source). This flow
pushes all of the points away from the origin, and in the process the fluid is stretching apart at each
point. Thus, we expect this vector field to have positive divergence at every point. Indeed, div ~F (x, y) =

(x)x + (y)y = 2, which agrees with our intuition. On the other hand, the flow ~F (x, y) = −x~i − y~j

(for which the origin is a sink) has div ~F (x, y) = −2, which agrees with our intuition that this field
compresses the fluid at each point (as it sends the fluid towards the origin).

Curl and Irrotationality

We can also utilize the cross-product to generate a notion of the derivative for vector fields (this time
in R3 only).

Definition 20. If Ω ⊆ R3 and if ~F = (P,Q,R) : Ω→ R3 is a C1 vector field on Ω, then we define

the curl of ~F to be

curl~F (x, y, z) = ∇× ~F (x, y, z)
def
=

∂R∂y − ∂Q
∂z

∂P
∂z
− ∂R

∂x
∂Q
∂x
− ∂P

∂y

 =
(∂R
∂y
− ∂Q

∂z

)
~i+

(∂P
∂z
− ∂R

∂x

)
~j +

(∂Q
∂x
− ∂P

∂y

)
~k.

Remark 27. It is sometimes helpful to have a notion of curl for two-dimensional vector fields as well.
If Ω ⊆ R2 and if ~F = (P,Q) : Ω→ R2 is a C1 vector field on Ω, then we define the scalar curl of ~F to
be

curl~F (x, y) =
∂Q

∂x
(x, y)− ∂P

∂y
(x, y).

The scalar curl of a two-dimensional vector field ~F (x, y) = P (x, y)~i+Q(x, y)~j can be seen as coming
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from the curl of ~̃F (x, y, z) = P (x, y)~i+Q(x, y)~j + 0~k, in the sense that

curl~F (x, y) =
∂Q

∂x
(x, y)− ∂P

∂y
(x, y)

= ~k ·
(

0~i+ 0~j +
(∂Q
∂x

(x, y)− ∂P

∂y
(x, y)

)
~k
)

= ~k · curl ~̃F (x, y, 0),

since ∂0
∂x

= 0 = ∂0
∂y

.

We will see that physically, curl~F captures how the fluid described by ~F is rotating (in the sense of
‘twisting’) at a point. The information here is encoded in a very geometric way: for a three-dimensional

vector field ~F , curl~F (x, y, z) is normal to the plane of rotation of the fluid at (x, y, z), and the length of

curl~F (x, y, z) determines the angular speed of the rotation. The direction of rotation is determined by

the direction of curl~F (x, y, z) and the right-hand-rule. That is, if the heel of your right hand sits of the
plane of rotation, and your fingers curl in the direction of the rotation, then your thumb will point in
the same direction as curl~F (x, y, z).

For two-dimensional vector fields ~F , curl~F (x, y) is a scalar quantity. If curl~F (x, y) > 0, then the rotation

of ~F at (x, y) is counterclockwise (in the xy-plane). If curl~F (x, y) < 0, then the rotation of ~F at (x, y)

is clockwise. Note that if ~̃F is the “extension” of ~F to three dimensions mentioned in Remark 27,

then curl~F (x, y) = ~k · curl ~̃F (x, y, 0). But the ~i and ~j components of curl ~̃F (x, y, 0) are zero (as noted

above), so that ~̃F (x, y, 0) is already normal to the xy-plane (which must be the plane in which any

rotation of ~F is happening at all, since ~F is a two-dimensional vector field on the xy-plane). Therefore

the ~k component of F̃ (x, y, 0)—namely curl~F (x, y)—is positive when the rotation of ~̃F at (x, y, 0) is

counterclockwise when viewed from the positive z-direction, and is negative when the rotation of ~̃F at
(x, y, 0) is clockwise when viewed from the positive z-direction.

If the fluid is not twisting at a point (x, y, z), then curl~F (x, y, z) = ~0. If curl~F (x, y, z) = ~0 at every

point, then the fluid described by ~F is called irrotational.
Again, we currently have no justification for this intuition. However, we will justify it later when we

talk about two generalizations of the Fundamental Theorem of Calculus: Green’s Theorem and Stoke’s
Theorem.
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Example 73. The constant flow ~F (x, y, z) = ~i − 2~j + 3~k does not exhibit any rotation or twisting at

any point, so we expect it to be irrotational. Indeed, we can easily compute that curl~F (x, y, z) = ~0 for
every point (x, y, z).

On the other hand, the flow ~F (x, y, z) = −y~i+x~j, which describes rotation around the z-axis, satisfies

curl~F (x, y, z) =
[

0
0
2

]
, indicating that there is twisting happening near each point in the xy-plane, and

that this twisting is counterclockwise when viewed from the positive z-axis (since curl~F (x, y, z) points
upwards at every point).

Similarly, ~F (x, y, z) = z~j−y~k, describing rotation around the x-axis, satisfies curl~F (x, y, z) =
[
−2
0
0

]
,

indicating that the twisting is counterclockwise when viewed from the negative x-axis.

Example 74. To distinguish rotation at a point (i.e. twisting) with large-scale rotation, note that
~F (x, y) = −y

x2+y2
~i + x

x2+y2
~j describes counterclockwise rotation around the origin R2 − {(0, 0)}, but you

can compute that curl~F (x, y, z) = ~0 at each point, and therefore the fluid is not twisting at any point
(even though it is rotating on the large scale!).

We just looked at simple examples here, but a general vector field may be expanding in some points,
contracting in others, and display lots of wild rotation (whirlpools, etc). The study of vector fields in
terms of their divergence and curl plays a big role in Fluid Dynamics.

Gradient, Curl, and Divergence as Differential Operators

Note that since the gradient of a function is a vector field, the curl of a vector field is a vector field, and
the divergence of a vector field is a function, there is a sensible ordering of our operations in R3 as

(functions)
grad−→ (vector fields)

curl−→ (vector fields)
div−→ (functions).

There is a curious thing that happens when one composes these operations in this way. For example, if
f : R3 → R is a C2 function, then

curl(grad(f(~x))) = curl

fx(~x)
fy(~x)
fz(~x)

 =

fzy(~x)− fyz(~x)
fxz(~x)− fzx(~x)
fyx(~x)− fxy(~x)

 = ~0

by Clairaut’s Theorem. Moreover, a similar argument shows that if ~F (~x) =

P (~x)
Q(~x)
R(~x)

 is a C2 vector field

on R3, then

div(curl(~F (~x))) = div

Ry(~x)−Qz(~x)
Pz(~x)−Rx(~x)
Qx(~x)− Py(~x)


= Ryx(~x)−Qzx(~x) + Pzy(~x)−Rxy(~x) +Qxz(~x)− Pyz(~x)

= Pzy(~x)− Pyz(~x) +Qxz(~x)−Qzx(~x) +Ryx(~x)−Rxy(~x)

= 0,

again by Clairaut’s Theorem. Therefore, we have shown that

curl(grad(f(x, y, z))) = ~0 and div(curl(~F )(x, y, z)) = ~0.
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In the two-dimensional case, we have

curl(grad(f(x, y))) =
∂2f

∂x∂y
(x, y)− ∂2f

∂y∂x
(x, y) = 0.

This is no accident, and (perhaps surprisingly) we will see that this is closely tied to the geometric fact
that a (piecewise smooth) curve that is the edge of a smooth surface does not have any endpoints, and
that a (piecewise smooth) surface that is the boundary of an elementary region does not have any edges.
We will revisit this later in the quarter!

Poincaré’s Lemma

From our observations above, if Ω ⊆ Rn (for n = 2, 3) and ~F : Ω→ Rn (n = 2, 3) is conservative (i.e. if
~F = ∇f), then we must have curl~F = curl(grad(f)) = 0 at each point. One might hope that this test

can be used in reverse: that is, one might hope that if curl~F = ~0 on a region D, then ~F is conservative
on D. Unfortunately, though, this is not always the case.

Example 75. Recall that the vector field ~F (x, y) =
−y

x2 + y2
~i +

x

x2 + y2
~j satisfies curl~F (x, y) = 0

throughout R2−{(0, 0)}, but that (for now taken for granted) there is no function f : R2−{(0, 0)} → R
with ~F = ∇f throughout R2 − {(0, 0)}. Nevertheless, as you will prove on your homework, ~F is

conservative on smaller subregions in R2 − {(0, 0)}. For example, ~F is conservative on the set {(x, y) :

x > 0}, which is the half of the plane to the right of the y-axis (indeed, ~F (x, y) = ∇
(

arctan
(
y
x

))
on

this set).

So why is ~F conservative on some smaller regions in R2 − {(0, 0)}, but not on the whole punctured
plane? This sort of bad behavior can happen on R2−{(0, 0)} because this set is not simply connected.
To say that a region D in R2 or R3 is simply-connected means two things: first, the region must be in
one piece (i.e. it must be connected). Secondly (and this is the meat of the term ‘simply connected’),
every closed curve (i.e. a curve that forms a “loop”, without endpoints) in D can be continuously shrunk
(while staying in D!) to a point16.

In this example, note that the simple closed curve x2 + y2 = 1 cannot be shrunk to a point in
R2 − {(0, 0)} without somehow passing through the missing point (0, 0), and therefore R2 − {(0, 0)} is
not simply connected. On the other hand, the open half-plane {(x, y) : x > 0} is simply connected.
In two-dimensions, simple connectedness can be roughly understood as saying that the region doesn’t
have any “holes” (in the way that R2 − {(0, 0)} has a ‘hole’ at (0, 0)). In three-dimensions, the notion
is slightly more nuanced (for example, R3−{(0, 0, 0)} is simply connected, but R3−{(0, 0, z) : z ∈ R}
is not).

As it turns out, simple connectedness is the magical missing piece that allows us to see that a vector
field is conservative17:

Theorem 12 (Poincaré’s Lemma). If ~F is a C1 vector field defined in a simply connected region

D ⊂ Rn (n = 2, 3), and if curl~F is zero at each point in D, then ~F is conservative on D.

The proof of this result is well beyond the scope of the course, but you may encounter it in a
differential geometry course.

16This is an admittedly very hand-wavy definition, but you will learn the rigorous definition of what “continuously
shrunk to a point” means (and how to work with it) in MATH 344-2: Introduction to (Algebraic) Topology!

17Technically, this is not Poincareé’s Lemma, but rather a more difficult result that one can prove using Poincaré’s
Lemma.
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Lecture 18: Differential Forms

Learning Objectives:

� Demonstrate familiarity with the basic definitions and mechanics of differential forms.

� Compute the differential of a function, and the exterior derivative of a differential form.

Our next major task in the course is to investigate various generalizations of the Fundamental Theorem
of Calculus, which relates integration to antidifferentiation. This is one of the great stories of modern
mathematics, and the story is made much more cohesive when framed in terms of differential forms. Dif-
ferential forms are, in short, the objects that we will integrate going forward. They are computationally
efficient, and come with notions of differentiation, integration, and change-of-variables.

To avoid going too far afield, we will treat differential forms as a formal construct, and make def-
initions based on this construct. However, know that there is a lot more going on here that would
be more adequately explored in the course in Differential Geometry. When possible, I will add deeper
explanations about certain aspects of differential forms.

0-forms and 1-forms

Definition 21. Let E ⊆ Rn be open.

� A 0-form on E is a function f : E → R.

� A 1-form on E is an expression ω of the form

ω = f1 dx1 + · · ·+ fn dxn, where f1, . . . , fn : E → R.

We say that ω is a C1 (or C2, or whatever adjective you wish) differential form if f1, . . . , fn
are C1 (or C2, or whatever).

Example 76. For example, ω = −y dx+ x dy is a 1-form on R2. As written, ω could also be viewed as
a 1-form on R3, with ω = −y dx+ x dy + 0 dz.

Remark 28. When writing out a differential form ω, we will often omit the dxj term if the coefficient
of dxj is the zero function. Note that this term is still technically “there”, but we are just choosing not
to write it for the sake of efficiency. For example, we can write exy dy instead of 0 dx + exy dy for the
sake of brevity.

Remark 29. You should think of the space of 1-forms as the set of all linear combinations of the symbols
dx1, . . . , dxn, where the coefficients in the linear combination are functions of ~x = (x1, . . . , xn). This
looks a lot like a vector space, but is not technically a vector space because the collection of coefficients
(the space of 0-forms) is not a field because not every 0-form has a multiplicative inverse. Instead, this
is a more general construction called a module. You do not need to know about modules in order to
work with differential forms, but it is helpful to know that the space of 1-forms is similar to a vector
space. To hammer this home, consider the following definition.
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Definition 22. Given two 1-forms

ω = f1 dx1 + · · ·+ fn dxn and η = g1 dx1 + · · ·+ gn dxn

on E ⊆ Rn, we define the 1-form ω + η as

ω + η
def
= (f1 + g1) dx1 + · · ·+ (fn + gn) dxn.

If h : E → R is a 0-form, then we define the 1-form hω as

hω
def
= hf1 dx1 + · · ·+ hfn dxn.

The Differential of a 0-Form

For each C1 function there is a very important 1-form associated to the function, called the differential
of the function, that is the ‘differential form’ version of the derivative of f .

Definition 23. If f : E → R is a C1 0-form, then the differential of f , denoted df , is the 1-form
defined by

df
def
=

∂f

∂x1

dx1 + · · ·+ ∂f

∂xn
dxn.

Example 77. For a concrete example, note that if f(x, y, z) = z2exy is a 0-form on R3, then

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz = yz2exydx+ xz2exydy + 2zexy dz.

Remark 30. Note that the differential operator is linear, in the sense that if f, g : Rn → R are two
0-forms and if k ∈ R, then

d(f + kg) =
( ∂f
∂x1

+ k
∂g

∂x1

)
dx1 + · · ·+

( ∂f
∂xn

+ k
∂g

∂xn
)dxn

=
∂f

∂x1

dx1 + · · ·+ ∂f

∂xn
dxn + k

( ∂g
∂x1

dx1 + · · ·+ ∂g

∂xn
dxn

)
= df + kdg.

k-forms and the Wedge Product

The definition of 2-forms, 3-forms, etc. relies on the wedge product for differential forms, denoted ∧.
Before we give the properties of ∧, let’s define k-forms (k ≥ 2) in terms of ∧.

Definition 24. Let E ⊆ Rn be open, and let k ≥ 2. A k-form on E is an expression of the form

n∑
i1,...,ik=1

fi1,...,ik dxi1 ∧ · · · ∧ dxik .
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Example 78. For example,

xy dx ∧ dy + 4 dy ∧ dx+ exy dx ∧ dz − 5x dz ∧ dx− sin2(z) dy ∧ dz + cos2(z) dz ∧ dy + 5 dy ∧ dy

is a 2-form on R3 (with coordinates x, y, z), and

ρ sin(θ) dρ ∧ dφ ∧ dθ + eρdθ ∧ dφ ∧ dρ

is a 3-form on R3 (with coordinates ρ, φ, θ).

Remark 31. Just as for 1-forms, you should think of the space of k-forms as formed by all linear
combinations of the basic k-forms dxi1 ∧ · · · ∧ dxik (where i1, . . . , ik each range from 1 to n). Sums of
k-forms and multiplication of a k-form by a function is defined exactly as expected: if

ω =
n∑

i1,...,ik=1

fi1,...,ik dxi1 ∧ · · · ∧ dxik and η =
n∑

i1,...,ik=1

gi1,...,ik dxi1 ∧ · · · ∧ dxik

are k-forms and if h : E → R is a function, then

ω + η
def
=

n∑
i1,...,ik=1

(fi1,...,ik + gi1,...,ik) dxi1 ∧ · · · ∧ dxik

and

hω
def
=

n∑
i1,...,ik=1

hfi1,...,ik dxi1 ∧ · · · ∧ dxik .

The wedge product ∧ allows one to multiply a k-form and an `-form to get a (k + `)-form. In
many ways it behaves exactly like one would expect from a product, but (unlike most products you are
familiar with) it is anticommutative. In particular, if ω, η are k-forms on E and α, β are `-forms on E,
if , is a m-form on E, and if f : E → R is a function then

� (Distributivity) (ω + η) ∧ α = ω ∧ α + η ∧ α and ω ∧ (α + β) = ω ∧ α + ω ∧ β.

� (Associativity) (ω ∧ α) ∧, = ω ∧ (α ∧,)

� (Homogeneity) (fω) ∧ α = f(ω ∧ α) = ω ∧ (fα)

� (Anticommutativity) dxi∧dxj = −(dxj ∧dxi). More generally, if dxi1 ∧· · ·∧dxik is obtained from
the basic k-form dxj1 ∧ · · · ∧ dxjk by swapping a single pair of variables, then dxi1 ∧ · · · ∧ dxik =
−dxj1 ∧ · · · ∧ dxjk .

These properties—especially anticommutativity—allow us to greatly simplify how we write differen-
tial forms.

Remark 32. Be careful with anticommutativity. For example, it is not necessarily the case that α∧β =
−β ∧ α for every k-form α and every `-form β. For a counterexample, note that

(dx)∧ (dy∧ dz) = (dx∧ dy)∧ dz = −(dy∧ dx)∧ dz = −dy∧ (dx∧ dz) = dy∧ (dz ∧ dx) = (dy∧ dz)∧ dx.

What is true (as you should show!) is that α ∧ β = (−1)k`β ∧ α.
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Remark 33. First, note that by anticommutativity, dxi ∧ dxi = −(dxi ∧ dxi), so that dxi ∧ dxi =
0dxi ∧ dxi. In particular, every basic k-form dxi1 ∧ · · · ∧ dxik that contains a repeated variable is
automatically the 0 k-form.

Moreover, by anticommutativity we can reorder a basic k-form dxi1 ∧ · · · ∧dxik so that dxi1 , . . . , dxik
appear in whatever order we choose (at the cost, of course, of picking up a factor of −1 for every swap
of perhaps, of introducing a factor of (−1) in the coefficient).

Example 79. For a concrete example of how this is done, we can simplify a previous example as follows:

xy dx ∧ dy + 4 dy ∧ dx︸ ︷︷ ︸
−dx∧dy

+exy dx ∧ dz︸ ︷︷ ︸
−dz∧dx

−5x dz ∧ dx− sin2(z) dy ∧ dz + cos2(z) dz ∧ dy︸ ︷︷ ︸
−dy∧dz

+ 5 dy ∧ dy︸ ︷︷ ︸
0

= (xy − 4) dx ∧ dy + (−exy − 5x) dz ∧ dx+ (− sin2(z)− cos2(z)) dy ∧ dz
= −1 dy ∧ dz + (−exy − 5x) dz ∧ dx+ (xy − 4) dx ∧ dy.

Indeed, every 2-form ω on R3 can be written in the form

ω = P dy ∧ dz +Qdz ∧ dx+Rdx ∧ dy.

Similarly, every 3-form η on R3 can be written in the form

η = f dx ∧ dy ∧ dz,

and, more generally, every n-form γ on Rn can be written in the form

γ = Gdx1 ∧ · · · ∧ dxn.

Remark 34. Note that if k > n, then every basic k-form dxi1 ∧ · · · ∧ dxik on E ⊆ Rn will have at least
one repeated variable, and therefore can be arranged to contain a term of the form dxi ∧ dxi, and is
therefore 0. For this reason, we only study k-forms on Rn for 0 ≤ k ≤ n.
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Lecture 19: More Differential Forms

Learning Objectives:

� Compute the differential of a function, and the exterior derivative of a differential form.

� Use the properties of the wedge product to manipulate differential forms.

� Related the exterior derivative to the gradient, curl, and divergence operations.

� Compute the pullback of a differential form.

� Relate integration of differential forms with the notions of integration we have seen earlier in
the course.

We start today with a concrete example of how to use the wedge product to simplify a given differential
form.

Example 80. For a concrete example of how this is done, we can simplify a previous example as follows:

xy dx ∧ dy + 4 dy ∧ dx︸ ︷︷ ︸
−dx∧dy

+exy dx ∧ dz︸ ︷︷ ︸
−dz∧dx

−5x dz ∧ dx− sin2(z) dy ∧ dz + cos2(z) dz ∧ dy︸ ︷︷ ︸
−dy∧dz

+ 5 dy ∧ dy︸ ︷︷ ︸
0

= (xy − 4) dx ∧ dy + (−exy − 5x) dz ∧ dx+ (− sin2(z)− cos2(z)) dy ∧ dz
= −1 dy ∧ dz + (−exy − 5x) dz ∧ dx+ (xy − 4) dx ∧ dy.

Indeed, every 2-form ω on R3 can be written uniquely in the form

ω = P dy ∧ dz +Qdz ∧ dx+Rdx ∧ dy.

A similar sort of “standard” representation exists for k-forms in open regions E ⊆ Rn for every n and
0 ≤ k ≤ n. For example, every 3-form η on R3 can be written uniquely in the form

η = f dx ∧ dy ∧ dz,

and, more generally, every n-form γ on Rn can be written uniquely in the form

γ = Gdx1 ∧ · · · ∧ dxn,

after manipulating the differential form using properties of the wedge product.

The Exterior Derivative

The differential of a function can be extended to give a notion of differentiation on k-forms.

Definition 25. Let E ⊆ Rn be open. For a k-form ω =
∑n

i1,...,ik=1 fi1,...,ik dxi1 ∧ · · · ∧ dxik , we
define the exterior derivative of ω, dω, to be the (k + 1)-form given by

dω
def
=

n∑
i1,...,ik=1

dfi1,...,ik ∧ dxi1 ∧ · · · ∧ dxik .
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Remark 35. The above definition is useful in practice, but it is worth noting that the operator d is
characterized by the following two properties:

� d(f dxi1 ∧ · · · ∧ dxik) = df ∧ dxi1 ∧ · · · ∧ dxik , and

� d(ω + η) = dω + dη for k-forms ω and η.

Example 81. To illustrate how to compute the exterior derivative, let’s compute dω, where ω is the
3-form on R4 given by

ω = xwz dx ∧ dy ∧ dw + 3 sin(xy) dy ∧ dz ∧ dw.

By applying the definition of the exterior derivative, we have

dω = d(xwz dx ∧ dy ∧ dw + 3 sin(xy) dy ∧ dz ∧ dw)

= d(xwz) ∧ dx ∧ dy ∧ dw + d(3 sin(xy)) ∧ dy ∧ dz ∧ dw
= (yz dx+ 0 dy + xw dz + xz dw) ∧ dx ∧ dy ∧ dw

+ (3y cos(xy) dx+ 3x cos(xy) dy + 0 dz + 0 dw) ∧ dy ∧ dz ∧ dw
= yz dx ∧ dx ∧ dy ∧ dw︸ ︷︷ ︸

0

+xw dz ∧ dx ∧ dy ∧ dw + xz dw ∧ dx ∧ dy ∧ dw︸ ︷︷ ︸
0

3y cos(xy) dx ∧ dy ∧ dz ∧ dw + 3x cos(xy) dy ∧ dy ∧ dz ∧ dw︸ ︷︷ ︸
0

= xw dz ∧ dx ∧ dy ∧ dw︸ ︷︷ ︸
=(−1)2dx∧dy∧dz∧dw

+3y cos(xy) dx ∧ dy ∧ dz ∧ dw

= (wx+ 3y cos(xy)) dx ∧ dy ∧ dz ∧ dw,

where in the last step we used anticommutativity to compute that

dz ∧ dx ∧ dy ∧ dw = −dx ∧ dz ∧ dy ∧ dw = dx ∧ dy ∧ dz ∧ dw.

Grad, Div, and Curl: Reprise

In a previous lecture I mentioned that grad, div, and curl are special instances of “the derivative” of
certain differential forms. To illustrate this, let’s look at what happens in R3. We consider the following
correspondences between differential forms and vector fields and functions.

0-Form : f ∼ Function : f

1-Form : Pdx+Qdy +Rdz ∼ Vector Field : P~i+Q~j +R~k

2-Form : Pdy ∧ dz +Qdz ∧ dx+Rdx ∧ dy ∼ Vector Field : P~i+Q~j +R~k

3-Form : f dx ∧ dy ∧ dz ∼ Function : f

With this correspondence, we see that

df = fxdx+ fydy + fzdz ∼ fx~i+ fy~j + fz~k = ∇f,

so that the 1-form df corresponds to the vector field ∇f .
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Similarly,

d(Pdx+Qdy +Rdz)

= dP ∧ dx+ dQ ∧ dy + dR ∧ dz
= (Pxdx+ Pydy + Pzdz) ∧ dx

+ (Qxdx+Qydy +Qzdz) ∧ dy
+ (Rxdx+Rydy +Rzdz) ∧ dz

= Pxdx ∧ dx+ Pydy ∧ dx+ Pzdz ∧ dx
+Qxdx ∧ dy +Qydy ∧ dy +Qzdz ∧ dy
+Rxdx ∧ dz +Rydy ∧ dz +Rzdz ∧ dz

= −Pydx ∧ dy + Pzdz ∧ dx
+Qxdx ∧ dy −Qzdy ∧ dz
−Rxdz ∧ dx+Rydy ∧ dz

= (Ry −Qz)dy ∧ dz + (Pz −Rx)dz ∧ dx+ (Qx − Py)dx ∧ dy
∼ (Ry −Qz)~i+ (Pz −Rx)~j + (Qx − Py)~k
= curl(P~i+Q~j +R~k),

so that the 2-form d(Pdx+Qdy +Rdz) corresponds to the vector field curl(P~i+Q~j +R~k).
Finally, we have (shortening the computation by ignoring the terms that become 0 by antisymmetry)

d(Pdy ∧ dz +Qdz ∧ dx+Rdx ∧ dy)

= dP ∧ dy ∧ dz + dQ ∧ dz ∧ dx+ dR ∧ dx ∧ dy
= Pxdx ∧ dy ∧ dz +Qydy ∧ dz ∧ dx+Rzdz ∧ dx ∧ dy
= Pxdx ∧ dy ∧ dz −Qydy ∧ dx ∧ dz −Rzdx ∧ dz ∧ dy
= Pxdx ∧ dy ∧ dz +Qydx ∧ dy ∧ dz +Rzdx ∧ dy ∧ dz

= (Px +Qy +Rz

)
dx ∧ dy ∧ dz

∼ Px +Qy +Rz

= div(P~i+Q~j +R~k),

so that the 3-form d(Pdy ∧ dz +Qdz ∧ dx+Rdx ∧ dy) corresponds to the function div(P~i+Q~j +R~k).

Remark 36. We have shown that if ~F : R3 → R3 is a C2 vector field on R3 and if f : R3 → R is a
C2 function on R3, then div(curl(~F )) = 0 and curl(grad(f)) = ~0. In light of the above discussion, and

setting η to be the 1-form on R3 corresponding to ~F , we have

d(dη) = 0 and d(df) = 0

as differential forms. The computations here boiled down to applications of Clairaut’s Theorem. The
somewhat surprising fact is that this is true in general: if ω is a C2 k-form on Rn, then d(dω) = 0. This
fact, often stated with the shorthand that d2 = 0, is proved on your homework.

Pullbacks of Differential Forms

Suppose that D ⊆ Rn (with coordinates (u1, . . . , un)) and E ⊆ Rm (with coordinates (x1, . . . , xm)) are
open, and that

T : D → E, T (u1, . . . , un) = (x1(u1, . . . , un), . . . , xm(u1, . . . , un))
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is a C1 map. Then recall that for a function f : E → R, we called f ◦ T : D → R the pullback of the
function f under T . This operation “pulled back” the domain of f from E to D by precomposing f
with T : D → E.

This definition can be extended to define the pullback of k-forms on E under T . Because we will
think of “pulling back” a differential form as an operation, we will introduce some fresh notation to
make computing these pullbacks slightly easier.

Definition 26. Suppose that D ⊆ Rn (with coordinates (u1, . . . , un)) and E ⊆ Rm (with coordi-
nates (x1, . . . , xm)) are open, and that

T : D → E, T (u1, . . . , un) = (x1(u1, . . . , un), . . . , xm(u1, . . . , un))

is a C1 map.

� Let f : E → R be a 0-form on E. The pullback of f by T , T ∗f , is the 0-form on D defined

by T ∗f(~u)
def
= f(T (~u)).

� Fix j = 1, . . . ,m. The pullback of the basic 1-form dxj on E, T ∗(dxj), is the 1-form on D
defined by

T ∗(dxj)
def
= d(xj(u1, . . . , un)) =

∂xj
∂u1

du1 + · · ·+ ∂xj
∂un

dun.

� Suppose that ω =
∑
fi1,...,ikdxi1 ∧ · · · ∧ dxik is a k-form on E. The pullback of ω by T ,

T ∗ω, is the k-form on D defined by

T ∗ω = T ∗

(
n∑

i1,...,ik=1

fi1,...,ikdxi1 ∧ · · · ∧ dxik

)
def
=

n∑
i1,...,ik=1

T ∗fi1,...,ik (T ∗dxi1) ∧ · · · ∧ (T ∗dxik).

The previous definition can be a little intimidating, but in practice it is very “computationally
efficient”. Here is an example.

Example 82. Compute P ∗(dx ∧ dy), where P : R2 → R2 is the map P (r, θ) = (r cos(θ), r sin(θ)).
Note that we are essentially asked to write the 2-form dx ∧ dy on R2 in terms of polar coordinates

(r, θ). We should end up with a 2-form in terms of r, θ, and dr and dθ. To this end, we have (and
omitting the terms that will be 0 because of antisymmetry)

P ∗(dx ∧ dy) = d(x(r, θ)) ∧ d(y(r, θ))

= (cos(θ)dr − r sin(θ)dθ) ∧ (sin(θ)dr + r cos(θ)dθ)

= r cos2(θ)dr ∧ dθ − r sin2(θ)dθ ∧ dr
= (r cos2(θ) + r sin2(θ))dr ∧ dθ
= r dr ∧ dθ.

This looks suspiciously like the P ∗(dA(x, y)) = r dA(r, θ) relationship that we observed when dis-
cussing change of variables. Indeed, if we didn’t simplify the partial derivatives of x and y with respect
to r and θ in the computation above, we would have that

P ∗(dx ∧ dy) = (xryθ − xθyr)dr ∧ dθ = (det(DT (r, θ)))dr ∧ dθ.
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The relationship between the pullback of a differential form and determinants seen in the last example
generalizes to higher dimensions. Indeed, you will show on your homework that if T : Rn → Rn is C1

with
T (u1, . . . , un) = (x1(u1, . . . , un), . . . , xn(u1, . . . , un)),

then
T ∗(dx1 ∧ · · · ∧ dxn) = (det(DT (u1, . . . , un)))du1 ∧ · · · ∧ dun.

Example 83. To illustrate this claim, let’s compute T ∗(dx ∧ dy ∧ dz), where T : R3 → R3 is the C1

spherical coordinate map given by

T (ρ, φ, θ) = (ρ cos(θ) sin(φ), ρ sin(θ) sin(φ), ρ cos(φ)).

According to the result from your homework, we expect that

T ∗(dx ∧ dy ∧ dz) = (det(DT (ρ, φ, θ)))dρ ∧ dφ ∧ dθ = ρ2 sin(φ) dρ ∧ dφ ∧ dθ.

To verify this, we compute (again ignoring the terms that will be 0 by antisymmetry) as

T ∗(dx ∧ dy ∧ dz) = d(ρ cos(θ) sin(φ)) ∧ d(ρ sin(θ) sin(φ)) ∧ d(ρ cos(φ))

= (cos(θ) sin(φ)dρ+ ρ cos(θ) cos(φ)dφ− ρ sin(θ) sin(φ)dθ)

∧ (sin(θ) sin(φ)dρ+ ρ sin(θ) cos(φ)dφ+ ρ cos(θ) sin(φ)dθ)

∧ (cos(φ)dρ− ρ sin(φ)dφ+ 0dθ)

= −ρ2 cos2(θ) sin3(φ)dρ ∧ dθ ∧ dφ+ ρ2 cos2(θ) cos2(φ) sin(φ)dφ ∧ dθ ∧ dρ
+ ρ2 sin2(θ) sin3(φ)dθ ∧ dρ ∧ dφ− ρ2 sin2(θ) cos2(φ) sin(φ)dθ ∧ dφ ∧ dρ

= ρ2 cos2(θ) sin3(φ)dρ ∧ dφ ∧ dθ + ρ2 cos2(θ) cos2(φ) sin(φ)dρ ∧ dφ ∧ dθ
+ ρ2 sin2(θ) sin3(φ)dρ ∧ dφ ∧ dθ + ρ2 sin2(θ) cos2(φ) sin(φ)dρ ∧ dφ ∧ dθ

=
(
ρ2 cos2(θ) sin3(φ) + ρ2 cos2(θ) cos2(φ) sin(φ)

+ ρ2 sin2(θ) sin3(φ) + ρ2 sin2(θ) cos2(φ) sin(φ)
)
dρ ∧ dφ ∧ dθ

=
(
ρ2 sin3(φ) + ρ2 cos2(φ) sin(φ)

)
dρ ∧ dφ ∧ dθ

= ρ2 sin(φ) dρ ∧ dφ ∧ dθ,

exactly as expected!

In the previous examples, we were concerned with pulling back n-forms using a map T : Rn → Rn.
More generally, we will also be interested in pulling back k-forms from Rn to Rk via a map T : Rk → Rn.
We will see specific instances of this when we discuss vector line integrals (i.e. integrals of 1-forms over
oriented curves) and vector surface integrals (i.e. integrals of 2-forms over oriented surfaces).
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Lecture 20: Integration of Differential Forms and Line Integrals

Learning Objectives:

� Relate integration of differential forms with the notions of integration we have seen earlier in
the course.

� Determine whether a parametrization of a smooth oriented curve preserves or reverses orien-
tation.

Integration of Differential Forms

As I mentioned, differential forms are “things that we can integrate”. To this end, we have the following
definition.

Definition 27. Suppose that ω = f(~x)dx1 ∧ · · · ∧ dxn is a continuous n-form on (an open set
containing) a bounded region D ⊂ Rn such that ∂D has measure zero. Then we define

�
D

ω =

�
D

f(~x)dx1 ∧ · · · ∧ dxn
def
=

�
D

f(~x) dVn(~x).

The order of the variables is important here in order to avoid any ambiguity about what the value
of the integral is.

Example 84. Let’s investigate how the Change of Variables Theorem interacts with differential forms.
If T : Rn → Rn is a C1, injective map with DT (~u) invertible that sends an elementary region D ⊂ Rn

onto a region T (D) ⊂ Rn, and if ω = f(~x)dx1 ∧ · · · ∧ dxn is a n-form on T (D), then we have
�
T (D)

ω =

�
T (D)

f(~x) dVn(~x)

=

�
D

f(T (~u))|det(DT (~u))| dVn(~u)

=

�
D

f(T (~u))|det(DT (~u))| du1 ∧ · · · ∧ dun.

The right-hand-side is not exactly the hoped-for
�
D

T ∗ω =

�
D

f(T (~u))(det(DT (~u)))du1 ∧ · · · ∧ dun.

However, as long as det(DT (~u)) is either always positive or always negative, then we can express the
change of variables theorem purely in terms of differential forms. To do this, we make a definition.

Definition 28. Suppose D ⊂ Rn and E ⊂ Rn are open, and that T : D → E is a C1, bijective
map. We say that T is orientation preserving if det(DT (~u)) > 0 for every ~u ∈ D, and
orientation reversing if det(DT (~u)) < 0 for every ~u ∈ D.
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In light of this definition, we have that�
T (D)

ω =

�
D

T ∗ω if T is orientation preserving,

and �
T (D)

ω = −
�
D

T ∗ω if T is orientation reversing.

Example 85. This phenomenon is reflected in the single-variable calculus substitution observation
where the bounds on the integral get “flipped” when you make the subsitution. That is, if x : [a, b] →
[c, d] is a C1 bijective map with x′(u) < 0 throughout [a, b], then [c, d] = x([a, b]) with x(a) = d and
x(b) = c, so that

�
T ([a,b])

f(x) dx =

� d

c

f(x) dx =

� a

b

f(x(u))x′(u) du︸ ︷︷ ︸
x∗(f(x) dx)

= −
� b

a

x∗(f(x)dx) = −
�

[a,b]

x∗(f(x) dx).

Because det(Dx(u)) = x′(u) < 0 throughout [a, b], the map x(u) is orientation reversing.

Over the next few days will will discuss how to integrate differential forms over certain subsets of
Rn (like curves and surfaces). In particular, we will integrate 1-forms over curves, and 2-forms over
surfaces. In each case, we now need to consider smooth curves and surfaces to be oriented. For smooth
curves, this means that we will need to establish which direction on the curve is “forwards” (this is done

by continuously specifying a unit tangent vector ~T at each point on the curve). For smooth surfaces, we
will need to establish which direction is “up” from the surface (this is done by continuously specifying
unit normal vectors to the surface that point in the “up” direction). More details to come!

To What End?

For the rest of the course, we will attempt to study several generalizations of the Fundamental Theorem
of Calculus. Each of these theorems can be expressed in the following form:�

E

dω =

�
∂E

ω

This is an elegant formula that requires a lot of unpacking. Here E ⊂ Rn and ∂E represents the
geometric boundary of E. This is not necessarily the same as the topological boundary that we discussed
last quarter. For example, if E ⊂ R3 is a surface, then ∂E is the curve (or union of curves) that form
the “edge” of the surface.

Example 86. As a concrete instance of this framework, consider the Fundamental Theorem of Calculus:

� b

a

f ′(x) dx = f(b)− f(a).

To view this in the framework above, we think of E = [a, b] as an interval in R oriented “forwards”, so
that the initial point of E is a and the final point of E is b. Here f ′(x)dx = df , where f is a C1 0-form
on E. Finally, f(b)− f(a) = (+1)f(b) + (−1)f(a) is the “integral” of the 0-form f over set ∂E = {a, b}
(where the +1 indicates that b is the final point of E, and the −1 indicates that a is the initial point of
E). With this framework,

� b

a

f ′(x) dx = f(b)− f(a) ⇒
�
E

df =

�
∂E

f.
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Each time we discuss one of the generalizations of the Fundamental Theorem of Calculus, we will
discuss how it fits into this framework.

Orientation of Curves

We now develop a notion of line integral in terms of the pullback of a differential form. Once we do this,
we will be able to establish an interpretation of these line integrals in terms of vector fields. Because
of this, these will be called vector line integrals to distinguish them from scalar line integrals. We will
clearly link vector line integrals to scalar line integrals, and it is there that we will see how the orientation
of the curve we are integrating over plays a role in the evaluation of the integral. Before we dive into
this, let’s remind ourselves of the definition of oriented smooth curve, and explore how orientations and
parametrizations are related.

Definition 29. Let C ⊂ Rn be a smooth curve that does not intersect itself (except possibly at

its endpoints)18. An orientation of C is a continuous choice of unit tangent vector ~T on C.

An orientation of C is intended to specify in what direction C is traced out, in the sense that if C
is determined by the motion of a particle then the unit tangent vector ~T at each point on C points in
the direction of the particle’s motion at that instant.

Example 87. Consider the portion C of the unit circle x2 + y2 = 1 with y ≥ 1√
2
, and give C the

“left-to-right” orientation.

Then the parametrization ~x(t) = (t,
√

1− t2), − 1√
2
≤ t ≤ 1√

2
parametrizes C, and

~x ′(t) =

[
1

− t√
1−t2

]
has positive x-component, and therefore points “rightward” at each point. Therefore the direction in
which ~x traces out C agrees with the orientation of C, and the unit tangent vector to C at each point
~x(t) is given by

~T (t) =
1

‖~x ′(t)‖
~x ′(t) =

1√
1 + t2

1−t2

[
1

− t√
1−t2

]
=
√

1− t2
[

1
− t√

1−t2

]
=

[√
1− t2
−t

]
.

18A curve that doesn’t intersect itself (except possible at its endpoints) is called simple. If a curve can be parametrized
by a path that starts and ends at the same point, then it is called closed.
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Because the tangent vectors induced by ~x agree with the orientation of C, we call the parametrization
~x of C orientation preserving.

On the other hand, consider the parametrization ~r(θ) = (cos(θ), sin(θ)), π
4
≤ θ ≤ 3π

4
of C. Note that

~r ′(θ) =

[
− sin(θ)
cos(θ)

]
has negative x-component for each θ ∈ [π

4
, 3π

4
], the tangent vectors induced by ~r point “leftwards” at

each point, and therefore the unit tangent vector

1

‖~r ′(θ)‖
~r ′(θ) =

1

1

[
− sin(θ)
cos(θ)

]
=

[
− sin(θ)
cos(θ)

]
is exactly the negative of the unit tangent vector specified by the orientation. Therefore we say that the
parametrization ~r of C is orientation reversing.

In particular examples, one should carefully check to ensure that a parametrization of an oriented
curve is orientation preserving.
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Lecture 21: More Line Integrals

Learning Objectives:

� Develop the notion of vector line integral via the pullback of a differential 1-form.

� Explore the basic properties and interpretations of vector line integrals.

Just as scalar line integrals were defined in terms of a “change of variables” type formula (which we now
recognize as a sort of pullback), integration of 1-forms and (their interpretation as) vector line integrals
are also defined in terms of pullbacks. We start by defining the integral of a 1-form.

Definition 30. Let E ⊆ Rn be an open set and ω a continuous 1-form on E, and suppose that C is
a smooth oriented curve in E. Let ~x : [a, b]→ C be an orientation-preserving C1 parametrization
of C with ~x ′(t) 6= ~0 for each t ∈ [a, b]. Then we define the integral of ω over C to be

�
C

ω
def
=

�
[a,b]

~x∗ω.

For example, if n = 3, ω = Pdx+Qdy +Rdz, and ~x(t) = (x(t), y(t), z(t)), then

�
C

ω =

�
C

Pdx+Qdy +Rdz

=

� b

a

(
P (~x(t))x′(t)dt+Q(~x(t))y′(t)dt+R(~x(t))z′(t)dt

)
=

� b

a

(P (~x(t))x′(t) +Q(~x(t))y′(t) +R(~x(t))z′(t))dt.

The result is a single-variable integral, and can therefore be approached using techniques from single-
variable calculus.

To link this approach with vector fields, consider that integration of Pdx+Qdy+Rdz over C should
somehow correspond to a type of “vector line integral” of ~F = P~i+Q~j +R~k over C. But the integrand
of the pullback is exactly ~F (~x(t)) · ~x ′(t). Indeed, if we take this reasoning a few steps further we can
have
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�
C

ω =

� b

a

(P (~x(t))x′(t) +Q(~x(t))y′(t) +R(~x(t))z′(t))dt

=

� b

a

~F (~x(t)) · ~x ′(t) dt

=

� b

a

~F (~x(t)) ·
( 1

‖~x ′(t)‖
~x ′(t)

)
︸ ︷︷ ︸

=~T (~x(t))

‖~x ′(t)‖ dt

=

� b

a

~F (~x(t)) · ~T (~x(t))‖~x ′(t)‖ dt

=

�
C

~F · ~T ds,

so that the integral of the 1-form ω = Pdx + Qdy + Rdz over C is equal to the scalar line integral
of the function ~F · ~T over C, where ~F = P~i + Q~j + R~k and ~T is the unit tangent vector at each point
of C that is specified by the orientation.

This same reasoning can be extended to curves (and vector fields) in Rn, n = 2, 3, 4, . . ., which leads
us to make the following definition.

Definition 31. Let E ⊆ Rn be open and ~F : E → Rn a continuous vector field on E, and suppose
that C is a smooth oriented curve in E. We define the vector line integral of ~F over C to be

�
C

~F · d~s def
=

�
C

~F · ~T ds.

Remark 37. To summarize, for an oriented smooth curve C in Rn and a smooth orientation-preserving
parametrization ~x : [a, b]→ C of C, we have the following correspondence:

Example 88. Let C be the unit circle x2 + y2 = 1, oriented counterclockwise. Compute

�
C

~F · d~s,
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where ~F = −y
x2+y2

~i+ x
x2+y2

~j.

To accomplish this, we parametrize C with ~x(t) = (cos(t), sin(t)), 0 ≤ t ≤ 2π. Note that since

~x′(t) =

[
− sin(t)
cos(t)

]
is the counterclockwise rotation of ~x(t) = (cos(t), sin(t)) by π

2
radians, ~x (t)′ does indeed point in the

counterclockwise direction, and therefore ~x is orientation-preserving. Moreover, since ‖~x ′(t)‖ = 1 at

each t, we have ~x ′(t) = ~T (t). Therefore we have

�
C

~F · d~s =

� 2π

0

~F (cos(t), sin(t)) ·
[
− sin(t)
cos(t)

]
dt

=

� 2π

0

( − sin(t)

sin2(t) + cos2(t)
(− sin(t)) +

cos(t)

sin2(t) + cos2(t)
cos(t)

)
dt

=

� 2π

0

1 dt

= 2π.

Remark 38. If the smooth curve C (with its orientation) are specified by a parametrization ~x, then it
is sometimes customary to simply write (for brevity)�

~x

~F · d~s notation
=

�
C

~F · d~s.

Remark 39. Note that if ~r : [c, d]→ C is an orientation-reversing parametrization and if ~x : [a, b]→ C
is an orientation-preserving orientation, then if u ∈ [c, d] and t ∈ [a, b] satisfy ~r(u) = ~x(t), then the unit
tangent vectors to C arising from ~r and ~x at this point satisfy

1

‖~r ′(u)‖
~r ′(u) = − 1

‖~x ′(t)‖
~x ′(t) = −~T (~x(t)) = −~T (~r(u)),

so that �
~r

~F · d~s =

� d

c

~F (~r(u)) · ~r′(u) du = −
� d

c

~F (~r(u)) · ~T (~r(u))‖~r′(u)‖ du = −
�
C

~F · d~s.

Therefore, if you accidentally parametrize an oriented curve in the incorrect direction while computing
a vector line integral, then the value of the integral will be off by a factor of −1!

Remark 40. Note that since scalar line integrals are well-defined (i.e. they do not depend on the
parametrization we choose), the vector line integral�

C

~F · d~s =

�
C

~F · ~T ds

is also well-defined. If ω is the 1-form corresponding to ~F , then because we have�
C

ω =

�
C

~F · d~s

whenever we use an orientation-preserving parametrization of C, it is also the case that integrals of
1-forms do not depend on which orientation-preserving parametrization of the oriented curve we use.
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Physical Interpretations

Remark 41. The �
C

~F · d~s =

�
C

~F · ~T ds =

� b

a

~F (~x(t)) · ~x ′(t) dt

allows us a physical interpretation of the meaning of the vector line integral of the vector field ~F over
the oriented curve ~C, where ~x : [a, b]→ C is an orientation-preserving parametrization. Because we can

think of ~F as a force field, and interpret ~x ′(t) as the velocity of a particle tracing out C in the direction

specified by the orientation, then we can interpret ~F (~x(t)) · ~x ′(t) as a measurement of the work being

done on the particle by ~F when the particle is located at ~x(t). Therefore, the integral above can be

interpreted as the total amount of work done by ~F on a particle traversing C.

Remark 42. When ~F is interpreted as the velocity field of a fluid, then one can also interpret ~F · ~T as
a measurement of how much of the fluid flow at a point on C is “in the direction of ~T”. Therefore,

�
C

~F · d~s =

�
C

~F · ~T ds

can be interpreted as a net measurement of how much fluid flow over C is “in the direction of the
orientation of C”. If this quantity is positive, then (on balance) more fluid flow is happening “with”
rather than “against” the motion of a particle traversing C. If the quantity is negative, then the opposite
interpretation holds.

When C is a closed curve, then the integral above is called the circulation of ~F along the oriented
closed curve C.

Remark 43. To see this interpretation of vector line integral as circulation in action, consider the
example where C is the counterclockwise-oriented unit circle and ~F = −y

x2+y2
~i + x

x2+y2
~j. Note that the

vector field ~F describes the motion of a fluid that is rotating (counterclockwise) around the origin along
circles centered at the origin. Therefore our computation that

�
C

~F · d~s = 2π

agrees with our intuition that the fluid describe by ~F is (on balance) flowing “with” the oriented curve
C rather than “against” the orientation of C.

If −C denotes19 the unit circle with the clockwise orientation, then we would have

�
−C

~F · d~s = −2π < 0,

which would indicate that now the fluid flows (on balance) “against” the orientation of −C rather that
“with” the orientation of C.

19Given an oriented curve C, it is common to write −C for the curve C with reversed orientation.
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Lecture 22: The Fundamental Theorem of Line Integrals

Learning Objectives:

� Integrate vector fields and functions over piecewise-smooth oriented curves.

� Use the Fundamental Theorem of Line Integrals to evaluate the line integrals of conservative
fields.

Piecewise-Smooth Curves

Remark 44. Going forward, we will need to integrate vector fields over curves that arise as the geometric
boundaries of regions in R2 or surfaces in R3. It will be too restrictive to limit ourselves to smooth curves,
but with almost no additional effort we can extend our definitions to handle the case where a curve is
piecewise smooth, which simply means that it consists of a finite union of smooth curves laid end-to-end.
Here is a definition.

Definition 32. Say a piecewise-smooth curve C ⊂ Rn is oriented if there are smooth oriented
curves C1, . . . , Ck such that C = C1 ∪ · · · ∪ Ck, and where the ending point of Ci is the starting
point of Ci+1 for each 1 ≤ i ≤ k − 1. The orientation on C is taken on each Ci to be the
orientation on Ci (but might be undefined at each of the endpoints of Ci), and we call the starting
point of C1 and the ending point of Ck the starting and ending points of C, respectively.

Remark 45. Note that if C = C1 ∪ · · · ∪ Ck is a oriented piecewise-smooth curve, then we can reverse
the orientation on C by reversing the orientation on each of C1, . . . , Ck. Using − to denote a curve with
its orientation reversed, this would mean that −C = (−Ck) ∪ · · · ∪ (−C1).

We define integration (including vector line integrals, scalar line integrals, and arc length) on piece-
wise smooth curves in terms of a sum of integrals over each smooth portion of the curve.

Remark 46. If C ⊂ Rn is an oriented piecewise-smooth curve with C = C1∪· · ·∪Ck, and if ~F : Rn → Rn

is continuous on an open set containing C, then we define the vector line integral of ~F over C to be
�
C

~F · d~s def
=

�
C1

~F · d~s+ · · ·+
�
Ck

~F · d~s.

We define integrals of 1-forms over C and scalar line integrals over C similarly.
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Example 89. Let ~F : R2 → R2 be the vector field ~F = 2xy2ex
2y2~i + (2x2yex

2y2 + cos(y))~j, and let
C be the oriented piecewise-smooth curve consisting of the line segment starting at (0, 0) and ending
at (2, 0), followed by the portion of the circle x2 + y2 = 4 connecting (2, 0) to (

√
2,−
√

2) (oriented
counterclockwise, so this is 7/8 of a circle), followed by the line segment starting at (

√
2,−
√

2) and
ending at (0, 0).

We write C = C1 ∪ C2 ∪ C3, where C1 is the line segment from (0, 0) to (2, 0), C2 is the portion of the
circle, and C3 is the line segment from (

√
2,−
√

2) to (0, 0). We can parametrize each of these smooth
curves with

~r1(t) = (t, 0), 0 ≤ t ≤ 2,

~r2(t) = (2 cos(t), 2 sin(t)), 0 ≤ t ≤ 7π

4
,

~r3(t) = (
√

2− t, t−
√

2), 0 ≤ t ≤
√

2.

We can therefore write�
C

~F · d~s =

�
C1

~F · d~s+

�
C2

~F · d~s+

�
C3

~F · d~s

=

� 2

0

~F (~r1(t)) · ~r1
′(t) dt+

� 7π/4

0

~F (~r2(t)) · ~r2
′(t) dt+

� √2

0

~F (~r3(t)) · ~r3
′(t) dt

= (an unholy mess).

Rather than evaluate (an unholy mess) right now, let’s try to find a more elegant way of computing the
integral than brute-force computation. First, note that since20

curl~F = (2x2yex
2y2 + cos(y))x − (2xy2ex

2y2)y = 4xyex
2y2 + 4x3y3ex

2y2 − 4xyex
2y2 − 4x3y3ex

2y2 = 0

throughout (the simply connected set) R2, ~F is conservative on R2 by Poincaré’s Lemma. That is, there

is a function f : R2 → R with ∇f = ~F .
To find f , note that we must have fx(x, y) = 2xy2ex

2y2 so that, taking an antiderivative in x, we
must have f(x, y) = ex

2y2 + C(y) where C(y) is some function that does not depend on x, but might
depend on y. But then we should have

2x2yex
2y2 + cos(y) = fy(x, y) = 2x2yex

2y2 + C ′(y),

20Here we use the scalar curl, since ~F is a 2-dimensional vector field.
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so that C ′(y) = cos(y), and therefore C(y) = sin(y) + k for some constant k. In other words, the
potential function f must have the form f(x, y) = ex

2y2 + sin(y) + k for a constant k. Taking k = 0 for
simplicity, we see that

∇f = ∇(ex
2y2 + sin(y)) = ~F

as desired.
Because ∇f = ~F , the potential function f is a sort of antiderivative of ~F . In single-variable calculus,

the Fundamental Theorem of Calculus allows us to compute the integrals of continuous functions in
terms of an antiderivative of the function. We might hope that something analogous holds for line
integrals, and in searching for such a result we arrive at our first generalization of the Fundamental
Theorem of Calculus.

Theorem 13 (The Fundamental Theorem of Line Integrals). Let U ⊆ Rn be open, f : U → R be
C1, and let C ⊂ U be an oriented piecewise-smooth curve with starting point ~a and ending point
~b. Then �

C

∇f · d~s = f(~b)− f(~a).

For differential forms, this becomes (writing the geometric boundary of C as ∂C = {~b,~a})
�
C

df =

�
∂C

f

where we define

�
∂C

f
def
= f(~b)− f(~a).

Proof. First assume that C is smooth with orientation-preserving parametrization ~r : [a, b]→ Rn. Then
we have (by the Chain Rule and the Fundamental Theorem of Calculus)

�
C

∇f · d~s =

� b

a

∇f(~r(t)) · ~r ′(t) dt

=

� b

a

Df(~r(t))D~r(t) dt

=

� b

a

(f ◦ ~r)′(t) dt

= f(~r(b))− f(~r(a))

= f(~b)− f(~a).

If C = C1 ∪ · · · ∪Ck is piecewise smooth, then denote by ~ai and ~bi the starting and ending points of Ci,
and note that ~a1 = ~a, ~bk = ~b, and ~bi = ~ai+1 for each i = 1, . . . , k − 1. Therefore we have (by the result
for smooth curves)�

C

∇f · d~s =

�
Ck

∇f · d~s+ · · ·+
�
C1

∇f · d~s

= f(~bk)−f(~ak) + f(~bk−1)︸ ︷︷ ︸
=0

−f(~ak−1) + f(~bk−2)︸ ︷︷ ︸
=0

− · · ·−f(~a2) + f(~b1)︸ ︷︷ ︸
=0

−f(~a1)

= f(~b)− f(~a).
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Example 90. Going back to our example above, we note that since ~F = ∇f on R2, where f(x, y) =
ex

2y2 +sin(y), and since the staring point of C and the ending point of C are both (0, 0), the Fundamental
Theorem of Line Integrals gives

�
C

~F · d~s =

�
C

∇f · d~s = f(0, 0)− f(0, 0) = 0.

This is sooooooo much easier than explicitly computing what we labeled (an unholy mess)!
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Lecture 23: Conservative Vector Fields and Green’s Theorem

Learning Objectives:

� Wield several equivalent characterizations of conservative fields.

� Frame Green’s Theorem in terms of vector fields and differential forms.

� Apply Green’s Theorem to interchange line integrals in R2 with double integrals.

The previous example generalizes as follows.

Corollary 1. Let U ⊆ Rn be open. If ~F : U → Rn is continuous and conservative on U , then

�
C

~F · d~s = 0

for every oriented piecewise-smooth closed curve C in U .

Here the notation

�
C

~F · d~s indicates that we are integrating ~F over a closed curve.

Proof. Let f : U → R be a potential function for ~F on U , and let C be a piecewise-smooth oriented
closed curve in U . Let ~a denote the starting point of C (which is also the ending point of C because C
is closed). Then the Fundamental Theorem of Line Integrals gives

�
C

~F · d~s =

�
C

∇f · d~s = f(~a)− f(~a) = 0.

Perhaps surprisingly, the converse of the previous corollary also holds: If ~F : U → Rn is a continuous
vector field on U and if

�
C
~F · d~s = 0 for every piecewise-smooth oriented closed curve C in U , then ~F

is conservative on U . These conditions are also equivalent to the statement that the line integral of a
conservative vector field depends only on the starting and ending points of the curve, and not on the
curve itself. (To capture this, we say that conservative vector fields have path-independent line integrals.)
These conditions characterize conservative vectors fields, and we collect them in a theorem21.

21Here, connected just means that the set is in “one piece”. A crucial fact from topology is that in a connected open
subset of Rn, every pair of points can be joined by a smooth curve.
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Theorem 14 (Conservative Vector Fields). Let U ⊆ Rn be open and connected. If ~F : U → Rn

is continuous, then the following statement are equivalent.

(a) ~F is conservative on U .

(b)

�
C

~F · d~s = 0 for every oriented piecewise-smooth closed curve C in U .

(c) ~F has path-independent line integrals in U . That is, if C1, C2 are any two oriented
piecewise-smooth curves with the same starting and ending points, then

�
C1

~F · d~s =

�
C2

~F · d~s.

Proof. We will prove that (a) ⇒ (b) ⇒ (c) ⇒ (a).
The implication (a) ⇒ (b) was exactly the content of the previous corollary.
Let’s now show that (b)⇒ (c). Suppose that (b) holds, and that C1, C2 are any two piecewise-smooth

oriented curves with the same starting and ending points. Let −C2 denote the piecewise-smooth curve
C2 but with the orientation reversed. Then the starting point of C1 is the ending point of −C2, and the
ending point of C1 is the starting point of −C2, and therefore C = C1 ∪ (−C2) is a piecewise-smooth
closed curve.

By assumption (b),

0 =

�
C

~F · d~s =

�
C1

~F · d~s+

�
−C2

~F · d~s =

�
C1

~F · d~s−
�
C2

~F · d~s,

so that

�
C1

~F · d~s =

�
C2

~F · d~s. This proves (c).

The proof that (c) ⇒ (a) is accomplished by defining an explicit potential function f for ~F . The
proof of the general case is no more difficult (but certainly more notationally intense) than the proof of
the special case where n = 2 and U = R2, so we will give the proof in that special case. That is we will
give the proof in the case where ~F = P~i+Q~j is defined on all of R2. To simplify notation a bit, we will
prove the result using the differential form version of ~F , Pdx+Qdy. Most of the proof will be in your
homework, but here is the idea (and part of the proof). Suppose that (c) holds. Define f : R2 → R as

f(x, y)
def
=

�
C

Pdx+Qdy,

where C is any piecewise-smooth oriented curve in R2 that starts at (0, 0) and ends at (x, y). The

assumption that ~F has path-independent line integrals ensures that the value of the integral does not
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depend on C, and therefore f(x, y) is well-defined. The key to showing that the partial derivatives of
f at (x, y) exist is to make a “useful choice” of path C connecting (0, 0) with (x, y). We’ll show that
fx(x, y) = P (x, y), and on your homework you will show that fy(x, y) = Q(x, y). In both cases, we will
need the part of the Fundamental Theorem of Calculus that involves differentiating integrals.

Choose C to be the piecewise-smooth oriented curve consisting first of the oriented line segment C1

starting at (0, 0) and ending at (0, y), followed by the oriented line segment C2 starting at (0, y) and
ending at (x, y). Then we can parametrize C1 and C2 (respectively) with

~r1(t) = (0, ty), 0 ≤ t ≤ 1, ~r2(t) = (tx, y), 0 ≤ t ≤ 1.

It follows that

f(x, y) =

�
C

Pdx+Qdy

=

�
C1

Pdx+Qdy +

�
C2

Pdx+Qdy

=

� 1

0

~F (~r1(t)) · ~r1
′(t) dt+

� 1

0

~F (~r2(t)) · ~r2
′(t) dt

=

� 1

0

Q(0, ty)y dt+

� 1

0

P (tx, y)x dt

=

� y

0

Q(0, u) du+

� x

0

P (u, y) du,

where in the last line we made the substitutions u = ty and u = tx in (respectively) the first and second

integrals. Note that

� y

0

Q(0, t) dt is constant in x, and that the function P (t, y) (of t) is continuous on

[0, x]. Therefore the Fundamental Theorem of Calculus implies that f(x, y) is differentiable with respect
to x and

fx(x, y) = 0 + P (x, y) = P (x, y).

You will complete the argument by computing fy(x, y) on your homework.

Example 91. Recall that we showed that the vector field ~F = −y
x2+y2

~i+ x
x2+y2

~j satisfies

�
C

~F · d~s = 2π,

where C is the unit circle x2+y2 = 1 oriented counterclockwise. Because ~F is continuous on R2−{(0, 0)},
the Conservative Vector Fields Theorem then implies that ~F is not conservative on R2−{(0, 0)}. That

is, there is no C1 function f : R2 − {(0, 0)} → R with ∇f = ~F on R2 − {(0, 0)}! However, on your
homework you will show that if (say) we remove the positive x-axis from R2−{(0, 0)}, then it is possible

to find a potential for ~F on this (slightly smaller) set. Therefore, in the statement that “~F is conservative

on U”, the set U can sometimes play just as important a role as ~F !

Example 92. Compute

�
C

(1 − 2y + 2xex
2

y2)dx + (2yex
2

+ 2x)dy, where C is the piecewise-smooth

oriented curve consisting of the line segment (4, 0) to (0, 0), followed by the line segment connecting
(0, 0) to (0,−2).
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A quick test tells us that this vector field is not conservative, since

(2yex
2

+ 2x)x − (1− 2y + 2xex
2

y2)y = 4xyex
2

+ 2− (−2 + 4xyex
2

) = 4 6= 0.

However, the vector field is almost conservative. After all, if the −2y and 2x weren’t there, then we
would have gotten 0 above!

Therefore, we might try splitting the vector field ~F to get

~F (x, y) = [(1 + 2xex
2

y2)~i+ 2yex
2~j] + (−2y~i+ 2x~j).

Note that the first part is conservative over R2, since R2 is simply connected and

curl[(1 + 2xex
2

y2)~i+ 2yex
2~j] = 0

at every point (x, y) ∈ R2.
Therefore, we know that this first part has a potential function. In this case, we can run through

our antidifferentiation argument to get

(1 + 2xex
2

y2)~i+ 2yex
2~j = ∇(x+ y2ex

2

),

and therefore�
C

(1− 2y + 2xex
2

y2)dx+ (2yex
2

+ 2x)dy =

�
C

∇(x+ y2ex
2

) · d~s+

�
C

−2ydx+ 2xdy

= (0 + (−2)2e02 − (4− 02e42))︸ ︷︷ ︸
=0

+

�
C

−2ydx+ 2xdy

= −
� 4

0

−2(0) + 2x(0)dy −
� 0

−2

−2y(0) + 2(0)dy

= 0.

In the penultimate line, we split C into its two segments, changed the orientation of each (hence the
− sign in front of the integrals), and then parametrized them using ~r1(x) = (x, 0) for 0 ≤ x ≤ 4 and
~r2(y) = (0, y) for −2 ≤ y ≤ 0.

Green’s Theorem

We have now proved one generalization of the Fundamental Theorem of Calculus of the form
�
C

df =

�
∂C

f,

where f is a 0-form (so df is a 1-form) and C is a “one-dimensional manifold” (i.e. a curve) (so that ∂C
is a “zero-dimensional manifold” (i.e. a set of points)). For our next generalization (known as Green’s
Theorem), we will go ‘up a dimension’ and look for formula of the type

x
D

dω =

�
∂D

ω,

where D ⊂ R2 is a region whose boundary ∂D consists of piecewise-smooth curves, and where ω is a
1-form (so that dω is a 2-form).
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To flesh out what we need to prove, let’s note that if ω = Pdx+Qdy, then we would need that

�
∂D

Pdx+Qdy =
x
D

d(Pdx+Qdy) =
x
D

(Qx − Py) dx ∧ dy =
x
D

(Qx − Py) dA(x, y).

Note that if ~F = P~i+Q~j is the vector-field represented by ω = Pdx+Qdy, then dω = curl(~F ) dx ∧ dy
(where curl(~F ) is the scalar curl of ~F ). The orientation of the curves that comprise ∂D is crucial here,
as getting the incorrect orientation should cause us to be off by a factor of −1. It is not obvious what
this orientation should be right now, but we will see in the proof that there is exactly one possible choice
of orientation that is reasonable.
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Lecture 24: More Green’s Theorem

Learning Objectives:

� Apply Green’s Theorem to interchange line integrals in R2 with double integrals.

Last time we finished class by motivating the structure of Green’s Theorem in terms of differential forms.
We discussed that Green’s Theorem should have the formx

D

curl~F (x, y) dA(x, y) =

�
∂D

~F · d~s ∼
x
D

dω =

�
∂D

ω,

where
~F = P~i+Q~j ∼ Pdx+Qdy = ω

and
curl~F (x, y) = Qx(x, y)− Py(x, y) ∼ (Qx − Py) dx ∧ dy = d(Pdx+Qdy).

Here is the formal statement.

Theorem 15 (Green’s Theorem). Let D ⊂ R2 a bounded region such that ∂D consists of a
finite union of closed piecewise-smooth curves C1, . . . Ck, where each Cj is oriented so that, while

traveling along Cj, the region D is “on the left”. If ~F = P~i + Q~j is a C1 vector field on an open
set U ⊂ R2 with D ⊂ U , then

x
D

curl~F (x, y) dA(x, y) =

�
∂D

~F · d~s def
=

�
C1

~F · d~s+ · · ·+
�
Ck

~F · d~s.

In terms of differential forms, this can be expressed as

x
D

(Qx − Py) dx ∧ dy =
x
D

d(Pdx+Qdy) =

�
∂D

Pdx+Qdy.

Proof. The proof of Green’s Theorem has two main steps. First, we establish the theorem in the special
case where D is an elementary region that can be written in both forms

D
(i)
= {(x, y) : c ≤ y ≤ d, α(y) ≤ x ≤ β(y)}
(ii)
= {(x, y) : a ≤ x ≤ b, γ(x) ≤ y ≤ δ(x)},

where α, β, γ, δ are continuous, (piecewise) C1 functions.
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The second step is to show that a general region D that satisfies the hypotheses of the theorem can
be split into a finite number of these special elementary regions, and that when we split up

s
D

(Qx −
Py) dA(x, y) into a sum of integrals of these regions, apply the special case to each piece, and then add
up the resulting line integrals, we obtain the expected integral over ∂D. The details of this second part
are very technical (of the type that belong in a course in real analysis), but we will give an argument in
a concrete example to show how the process works in general.
Step 1: Proof when D has form (i) and (ii). To make the details of the proof easier to write

down, let’s assume that α, β, γ, δ are actually C1 functions. We split up
s
D

curl~F (x, y) dA(x, y) using
the linearity of the integral, and then apply Fubini’s Theorem differently in each piece to obtain

x
D

curl(~F )(x, y) dA(x, y)

=
x
D

Qx(x, y) dA(x, y) +
x
D

−Py(x, y) dA(x, y)

=

� d

c

� β(y)

α(y)

Qx(x, y) dxdy +

� b

a

� δ(x)

γ(x)

−Py(x, y) dydx

=

� d

c

[
Q(x, y)

]β(y)

α(y)
dy +

� b

a

[
− P (x, y)

]δ(x)

γ(x)
dx

=

� d

c

(Q(β(y), y)−Q(α(y), y)) dy +

� b

a

(P (x, γ(x))− P (x, δ(x))) dx

=

� d

c

Q(β(y), y) dy −
� d

c

Q(α(y), y)) dy +

� b

a

(P (x, γ(x)) dx−
� b

a

P (x, δ(x))) dx

On the other hand, consider that (using representation (i) of D) we can represent ∂D = A1 ∪ (−LT ) ∪
(−A2) ∪ LB, where A1 and A2 are the (piecewise-smooth) curves parametrized by

~r1(y) = (β(y), y), c ≤ y ≤ d and ~r2(y) = (α(y), y), c ≤ y ≤ d,

and LT and LB are the (possibly absent if α(c) = β(c) or α(d) = β(d)) line segments parametrized by

~̀
T (t) = (t, d), α(d) ≤ t ≤ β(d), ~̀

B(t) = (t, c), α(c) ≤ t ≤ β(c).

134



In terms of these parametrizations, we have

� d

c

Q(β(y), y) dy =

� d

c

(Q(β(y), y)~j) · (β′(y)~i+ 1~j) dy =

� d

c

(Q(~r1(y))~i) · ~r1
′(y) dy =

�
A1

(Q~j) · d~s

and, similarly,

−
� d

c

Q(α(y), y) dy = −
�
A2

(Q~j) · d~s =

�
−A2

(Q~j) · d~s.

Since (Q(~̀T (t))~j) · ~̀T ′(t) = (Q(~̀T (t))~j) ·~i = 0 for all t,
�
LT

(Q~j) · d~s = 0. Similarly,
�
LB

(Q~j) · d~s = 0.
Therefore the first pair of integrals can be written as

� d

c

Q(β(y), y) dy −
� d

c

Q(α(y), y)) dy

=

�
A1

(Q~j) · d~s+

�
−LT

(Q~j) · d~s︸ ︷︷ ︸
0

+

�
−A2

(Q~j) · d~s+

�
LB

(Q~j) · d~s︸ ︷︷ ︸
0

=

�
∂D

(Q~j) · d~s.

Repeating this argument using representation (ii) of D, and representing ∂D = B1∪LR∪(−B2)∪(−LL),
where B1 and B2 are curves parametrized by

~p1(x) = (x, γ(x)), a ≤ x ≤ b and ~p2(x) = (x, δ(x)), a ≤ x ≤ b

and LR and LL are the (possibly absent if γ(a) = δ(a) or γ(b) = δ(b)) line segments parametrized by

~̀
R(t) = (b, t), γ(b) ≤ t ≤ δ(b), ~̀

L(t) = (a, t), γ(a) ≤ t ≤ δ(a),

leads to� b

a

(P (x, γ(x)) dx−
� b

a

P (x,δ(x))) dx

=

�
B1

(P~i) · d~s+

�
LR

(P~i) · d~s︸ ︷︷ ︸
0

−
�
B2

(P~i) · d~s−
�
LL

(P~i) · d~s︸ ︷︷ ︸
0

=

�
B1

(P~i) · d~s+

�
LR

(P~i) · d~s+

�
−B2

(P~i) · d~s+

�
−LL

(P~i) · d~s

=

�
∂D

(P~i) · d~s.
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Therefore we have

x
D

curl~F (x, y) dA(x, y) =

�
∂D

(Q~j) · d~s+

�
∂D

(P~i) · d~s =

�
∂D

(P~i+Q~j) · d~s,

where the piecewise-smooth closed curve ∂D is parametrized so that D is “on the left” when traversing
∂D (in this special case, this means that ∂D is parametrized in the counter-clockwise direction).

Step 2: Illustration of how to handle general regions D. One can show that every D satisfying
the hypotheses of Green’s Theorem can be split up into a finite number of regions that satisfy the
hypotheses of Step 1. For example, the region D that is enclosed by the circle x2 + y2 = 4 and lies
exterior to the triangle with vertices (±1, 0) and (0, 1) can be split into D = D1 ∪D2 ∪D3 as follows:

With the oriented curves labeled in the picture above, we have (applying the special case to each of D1,
D2, and D3),

x
D

curl~F (x, y) dA =
x
D1

curl~F (x, y) dA+
x
D2

curl~F (x, y) dA+
x
D3

curl~F (x, y) dA

=

�
∂D1

~F · d~s+

�
∂D2

~F · d~s+

�
∂D3

~F · d~s

=

�
C1

~F · d~s+

�
C2

~F · d~s+

�
C3

~F · d~s+

�
C4

~F · d~s

+

�
C5

~F · d~s+

�
C6

~F · d~s+

�
C7

~F · d~s+

�
−C4

~F · d~s︸ ︷︷ ︸
−

�
C4

~F ·d~s

+

�
C8

~F · d~s+

�
−C6

~F · d~s︸ ︷︷ ︸
−

�
C6

~F ·d~s

+

�
C9

~F · d~s+

�
−C2

~F · d~s︸ ︷︷ ︸
−

�
C2

~F ·d~s

=

�
C1

~F · d~s+

�
C8

~F · d~s+

�
C7

~F · d~s+

�
C3

~F · d~s+

�
C5

~F · d~s+

�
C9

~F · d~s

=

�
C1∪C8∪C7

~F · d~s+

�
C3∪C5∪C9

~F · d~s

=

�
∂D

~F · d~s.
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Note that the portion of ∂D that consists of the circle x2 + y2 = 4 is parametrized in the counterclock-
wise direction, and the portion of ∂D that consists of the triangle with vertices (±1, 0) and (0, 1) is
parametrized in the clockwise direction. In each case, the region D is “on the left” as one traverses the
curve. Note that all of the terms in our computation that arose from integration along curves that were
not part of ∂D canceled out.

Remark 47. For a physical interpretation of Green’s Theorem, we must turn to scalar curl.
Recall that the line integral

�
∂D
Pdx+Qdy measures the circulation of the vector field ~F = P~i+Q~j

around the boundary of D (with positive circulation corresponding to ‘net positive rotation’ along ∂D

in the direction of orientation). On the other hand, curl~F (x, y) = Qx(x, y) − Py(x, y) measures the

counterclockwise “twisting” of ~F at the point (x, y) (with negative values giving clockwise twisting).
Therefore the conclusion �

∂D

~F · d~s =
x
D

curl(~F ) dA

or Green’s Theorem indicates that we can detect the total net amount of “counterclockwise twisting” of
~F throughout D (measured by the double integral) by computing the net “counterclockwise rotation”

of ~F along the ∂D.

Remark 48. The physical interpretation of Green’s Theorem in the previous remark assumes our
intuition for what the (scalar) curl of ~F = P~i+Q~j means. In particular, while we used our “intuition”

that the scalar curl curl~F (x, y) = Qy(x, y)− Px(x, y) of a C1 vector field ~F = P~i+Q~j on R2 somehow

represents the “rotation” or “twisting” of ~F at a point, we can actually use Green’s Theorem to justify
this intuition. By Exercise 4 on Homework 4 (and Green’s Theorem) we have (at a point (x0, y0) ∈ R2),

curl~F (x0, y0) = lim
r→0+

1

πr2

x
Br(x0,y0)

curl~F (x, y) dA(x, y) = lim
r→0+

1

πr2

�
Cr

~F · d~s,

where Cr is the circle (x − x0)2 + (y − y0)2 = r2 oriented in the counterclockwise direction. Therefore

curl~F (x0, y0) does indeed measure “infinitesimal counterclockwise rotation” of ~F at (x0, y0).

Applications and Examples

Example 93. Let C1 be the circle x2 + y2 = 16, and C2 be the boundary of the region in the first
quadrant which is enclosed by x2 + y2 = 1 and bounded above by x = y. Here we assume that C1 and
C2 are both oriented in the counterclockwise direction. Compute�

C1

−ydx+ xdy −
�
C2

−ydx+ xdy.
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To do this, let D be the region between the two curves. Then the boundary of D consists of C1 and
C2, but in order to apply Green’s Theorem we need C2 oriented in the clockwise direction, and for the
difference above to be a sum. We can kill both birds with one stone by reversing the orientation of C2

(and thereby picking up an additional factor of −1 in front of the second integral):�
C1

−ydx+ xdy −
�
C2

−ydx+ xdy

=

�
C1

−ydx+ xdy +

�
−C2

−ydx+ xdy

=

�
∂D

−ydx+ xdy

=
x
D

[(x)x − (−y)y]dA(x, y)

=
x
D

2 dA(x, y)

= 2Area(D),

where we applied Green’s theorem in the antepenultimate step. Since D is merely the disc x2 + y2 ≤ 16
with 1

8
of the disc x2 + y2 ≤ 1 removed, we can compute this last integral to be�

∂D

−ydx+ xdy = 2Area(D) = 2(π42 − 1

8
π12) =

127π

4
.

As the last line of the previous example suggests, there is nothing special about the region D. Indeed,
Green’s theorem immediately gives us the very interesting result that the area of a region can be found
by computing a line integral over the boundary!

Corollary 2. If D ⊂ R2 is a region satisfying the hypotheses of Green’s Theorem, and if each
piecewise-smooth closed curve forming ∂D is oriented so that D is on the left, then

Area(D) =
1

2

�
∂D

−ydx+ xdy.

Example 94 (Closing off a curve). Let C be the oriented piecewise-smooth curve consisting of the piece
of the parabola y = x2 connecting (0, 0) to (−2, 4), followed by the line segment connecting (−2, 4) to
(4, 4). Compute �

C

(y2 − x3 + x2ex cos(x))dx− y2ey cos(y)dy.
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This problem seems intractible, since we have very little hope of computing any antiderivatives involving
the terms x2ex cos(x) and y2ey cos(y). Indeed, if we use the parameterization (x, y) = (x, 4), −2 ≤ x ≤ 4
for the line segment, then that piece of the line integral is

� 4

−2

16− x3 + x2ex cos(x)dx,

which we have absolutely no hope of evaluating!
To get around this, let’s ‘close off’ this curve with the line segment C̃ connecting (4, 4) to (0, 0):

Our integral then becomes

�
C

(y2 − x3 + x2ex cos(x))dx− y2ey cos(y)dy

=

�
C

(y2 − x3 + x2ex cos(x))dx− y2ey cos(y)dy +

�
C̃

(y2 − x3 + x2ex cos(x))dx− y2ey cos(y)dy

−
�
C̃

(y2 − x3 + x2ex cos(x))dx− y2ey cos(y)dy

=

�
C+C̃

(y2 − x3 + x2ex cos(x))dx− y2ey cos(y)dy +

�
−C̃

(y2 − x3 + x2ex cos(x))dx− y2ey cos(y)dy,

where in the last step we reversed the orientation of the second integral, replacing C̃ with −C̃ (and
thereby canceling the −1 in front of the integral).

The simple closed curve C + C̃ is the boundary of the region D pictured. Its orientation does not
allow us to directly apply Green’s Theorem, but if we change the orientation of the curve we will have
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what we need. Indeed,
�
C+C̃

(y2 − x3 + x2ex cos(x))dx− y2ey cos(y)dy

= −
�
−(C+C̃)

(y2 − x3 + x2ex cos(x))dx− y2ey cos(y)dy

= −
�

bD

(y2 − x3 + x2ex cos(x))dx− y2ey cos(y)dy

= −
x
D

[(−y2ey cos(y))x − (y2 − x3 + x2ex cos(x))y]dA(x, y)

= −
x
D

−2ydA(x, y)

=

� 4

0

� y

−√y
2ydxdy

=

� 4

0

2y2 + 2y
3
2dy

=
256

15
.

To evaluate our ‘leftover’ line integral, let’s parameterize −C̃ (the line segment connecting (0, 0) to
(4, 4)) with (x, y) = (t, t), 0 ≤ t ≤ 4. We therefore have

�
−C̃

(y2 − x3 + x2ex cos(x))dx− y2ey cos(y)dy =

� 4

0

(t2 − t3 + t2et cos(t))dt− t2et cos(t)dt

=

� 4

0

t2 − t3dt =
64

3
− 64 = −128

3
.

In total, �
C

(y2 − x3 + x2ex cos(x))dx− y2ey cos(y)dy =
256

15
− 128

3
= −128

5
.

Example 95 (Replacing a Path). For the vector field ~F = −y
x2+y2

~i+ x
x2+y2

~j (which is C1 at every point

except for (0, 0)), we compute

�
C

~F · d~s, where C is the curve pictured below:
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This curve is rather wild, and we would therefore like to try to apply Green’s Theorem (to avoid
parametrizing such a monster!). However, because the vector field is not C1 (or even defined!) at (0, 0)
(which lies in the region enclosed by C), we are not able to apply Green’s Theorem. However, if we
could apply Green’s Theorem, then the integrand of the double integral would be (except at (0, 0))

curl~F (x, y) =
( x

x2 + y2

)
x
−
( −y
x2 + y2

)
y

=
y2 − x2

(x2 + y2)2
− y2 − x2

(x2 + y2)2
= 0.

Let’s pause and remind ourselves that the reason why we wanted to apply Green’s Theorem was
to avoid computing the line integral of ~F around the curve C. One great corollary of the well-known
maxim

Ask and ye shall receive, seek and ye shall find.

is

If ye ask but do not receive, and seek but do not find, then ask for less and seek harder.

In other words, it may be that we can get by with a bit less here. After all, if C̃ is the unit circle
x2 + y2 = 1, then computing the integral of ~F along C̃ is relatively straightforward (since C̃ is ‘nice’,
and the terms x2 + y2 in the vector field will just get replaced by 1 when we parametrize)!

Therefore, let’s think of D as being the region between C and C̃:

We would like to apply Green’s Theorem to D, but we first have to decide on an the correct orientation
for C̃. From the picture, it is clear that we need to give C̃ the clockwise orientation (so that D is ‘on
the left’).

Therefore, we will repeat our technique from the previous example to write
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�
C

~F · d~s =

�
C

~F · d~s+

�
C̃

~F · d~s︸ ︷︷ ︸
=
�
∂D

~F ·d~s

−
�
C̃

~F · d~s

=
x
D

curl~F (x, y) dA(x, y)−
�
C̃

~F · d~s

=
x
D

0 dA(x, y)−
�
C̃

~F · d~s

= −
�
C̃

~F · d~s

=

�
−C̃

~F · d~s.

Since −C̃ is just the circle x2 + y2 = 1 oriented in the counterclockwise direction, we know from
Example 88 that �

C

~F · d~s =

�
−C̃

~F · d~s = 2π.
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Lecture 25: Vector Surface Integrals

Learning Objectives:

� Describe a compatible orientation of a piecewise-smooth surface in R3.

� Motivate the notion of vector surface integral in terms of pullbacks of differential forms.

� Interpret vector surface integrals in terms of flux.

� Examine the effects of orientation on the value of a vector surface integral.

� Compute a vector surface integral.

As we develop a notion of integration for vector fields over surfaces, let’s recall (and build on) some
definitions.

Oriented Smooth and Piecewise-Smooth Surfaces

Definition 33. An orientation of a smooth surface S ⊂ R3 is a continuous (except at possibly
finitely many point) choice of unit normal vectors ~n on S.

If S is a smooth oriented surface, then we say a parametrization ~X(s, t) of S is orientation-
preserving if N ~X points in the same direction as ~n (except possibly at finitely many points on

S). If N ~X points in the opposite direction as ~n, then we say that ~X is orientation-reversing.

The orientation of a smooth surface designates which direction is “up” from the surface.

Example 96. Note that the upper half S of the cone z2 = x2 + y2 is technically a smooth surface,
despite having a ‘sharp point’ at (0, 0, 0). To see why, consider the parametrization

~X((x2 + y2)x, (x2 + y2)y, (x2 + y2)3/2), (x, y) ∈ R2.

One can show that

N ~X(x, y) =

−3x(x2 + y2)3/2

−3y(x2 + y2)3/2

3(x2 + y2)2

 , so ‖N ~X(x, y)‖ = 3
√

2(x2 + y2)2 6= 0

for every (x, y) ∈ R2 except (x, y) = (0, 0).
Note also that since the k-component of the vector N ~X(x, y) is positive, N ~X(x, y) points “upwards”

at each point (at an angle, of course). If we had oriented S with “upward pointing” normal vectors, then
~X would be an orientation-preserving parametrization. If we had oriented S with “downward-pointing”
normal vectors, then ~X would be an orientation-reversing parametrization.

We also have a notion of piecewise-smooth oriented surface. The definition is slightly more compli-
cated than that of piecewise-smooth curve, but we will simplify one key detail of the definition to make
it more manageable.
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Definition 34. A surface S is piecewise-smooth if there are smooth oriented surfaces S1, . . . , Sk
such that

(i) S = S1 ∪ · · · ∪ Sk

(ii) Any two of S1, . . . , Sk intersect only possibly on their geometric boundaries.

(iii) The surfaces S1, . . . , Sk are oriented compatibly: When Si ∩ Sj is a curve, near any ~p ∈
Si ∩ Sj the normal vectors ~ni and ~nj of Si and Sj each point towards the “same side” of
Si ∪ Sj.

The orientation on S is taken on each Si to be the orientation on Si (but might be undefined
when the surfaces S1, . . . , Sk intersect). The (geometric) boundary of S consists of the portions
of the boundaries of S1, . . . , Sk that do not overlap.

Remark 49. Note that if S = S1∪· · ·∪Sk is an oriented piecewise-smooth surface, then we can reverse
the orientation on S by reversing the orientation on each of S1, . . . , Sk. Using − to denote a surface
with its orientation reversed, this would mean that −S = (−S1) ∪ · · · ∪ (−Sk).

Vector Surface Integrals

Suppose that S ⊆ R3 is a smooth oriented surface with unit normal vector ~n, and that ~F is a continuous
vector field defined on an open set E ⊆ R3 containing S. In order to determine what should be the
‘natural’ definition for the “vector surface integral” of ~F over S, we again turn to differential forms.
Recall that we considered ~F as equivalent to the 2-form ω given by

~F = P~i+Q~j +R~k ∼ ω = P dy ∧ dz +Qdz ∧ dx+Rdx ∧ dy.
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The “vector surface integral” of ~F over S should agree with the integral of ω over S, which we define in
terms of an orientation-preserving parametrization

~X : D → S, ~X(x(s, t), y(s, t), z(s, t))

(where D ⊆ R2 is an elementary region) as
x
S

ω
def
=
x
D

~X∗ω. (Note that this is exactly what we did

for integrals of 1-forms over oriented curves, but now for 2-forms over oriented surfaces.) Then, using a
computation you performed in Discussion 5, we have

x
S

ω
def
=
x
D

~X∗ω

=
x
D

(
P ( ~X(s, t))(yszt − zsyt) +Q( ~X(s, t))(zsxt − xszt) +R( ~X(s, t))(xsyt − ysxt)

)
ds ∧ dt

=
x
D

(
~F ( ~X(s, t)) ·N ~X(s, t)

)
ds ∧ dt

=
x
D

~F ( ~X(s, t)) ·N ~X(s, t) dA(s, t)

=
x
D

~F ( ~X(s, t)) ·
( 1

‖N ~X(s, t)‖
N ~X(s, t)

)
︸ ︷︷ ︸

=~n( ~X(s,t))

‖N ~X(s, t)‖ dA(s, t)

=
x
S

~F · ~n dS.

In other words,
s
S
ω can be viewed as the scalar surface integral of ~F ·~n over S, where ~n is the unit

normal vector that gives the orientation of S. Therefore we make the following definition.

Definition 35. Let ~F be a continuous vector field on an open set E ⊆ R3, and suppose that S is
a smooth oriented surface in E with unit normal vectors ~n. Then we define the vector surface
integral of ~F over S to be x

S

~F · d~S def
=
x
S

~F · ~n dS.

If S = S1 ∪ · · · ∪ Sk is a piecewise-smooth oriented surface, then we define

x
S

~F · d~S def
=
x
S1

~F · d~S + · · ·+
x
Sk

~F · d~S.

Remark 50. The notation ·d~S is an abbreviation of ·~n dS.

Remark 51. The physical interpretation of a vector surface integral
s
S
~F · d~S is quite nice. Suppose

that ~F represents the flow of a fluid. At a point ~p ∈ S, ~F (~p) ·~n(~p) is a scalar that represents the “amount

of ~F in the direction of ~n”. Indeed, to justify this note that

proj~n(~p)
~F (~p) = (~F (~p) · ~n(~p))~n(~p)

since ~n(~p) is a unit vector.
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In other words, ~F (~p) · ~n(~p) represents a measurement of flux (or flow) of ~F through S at ~p (in the
direction given by the orientation of S). When we compute the scalar surface integral

x
S

~F · ~n dS,

we are computing the total (net) flux of ~F through S (in the direction given by the orientation of
S).

Remark 52. To summarize, for an oriented smooth surface S in R3 and a smooth orientation-preserving
parametrization ~X : D → S of S, we have the following correspondence:

Remark 53. Note that if S is an orientated smooth surface and ~F a continuous vector field on S, then
if ~X : D → S is an orientation-reversing parametrization we have ~n( ~X(s, t)) = − 1

‖N ~X
(s,t)‖N ~X(s, t) at

each point, so that
x
D

~F ( ~X(s, t)) ·N ~X(s, t) dA(s, t) = −
x
D

~F ( ~X(s, t)) · (−N ~X(s, t)) dA(s, t)

= −
x
D

(
~F ( ~X(s, t)) · ~n( ~X(s, t))

)
‖N ~X(s, t)‖ dA(s, t)

= −
x
S

~F · ~n dS

= −
x
S

~F · d~S.
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In other words, using an orientation-reversing parametrization of S will result in your final answer
being off by a factor of −1. Or, put another way, reversing the orientation of S multiplies the vector
line integral of ~F over S by a factor of −1 (just as for vector line integrals)! Or, put a third way, by

reversing the orientation of S we are reversing the direction in which we are measuring the flux of ~F
through S (and therefore we should end up with the same total net flux, but multiplied by −1).

Examples

Example 97. Let S be the portion of the plane 3x+2y+2z = 6 in the first octant, oriented downward,
and let ~F = 4x~i + x~j + x~k. Without evaluating the integral, determine whether

s
S
~F · d~S is positive,

negative, or 0.

We sketch the surface below:

Note that at each point on S, x > 0, and therefore ~F points ‘up’ from the surface. Hence, ~F · ~n < 0
at each point (except on the edge where x = 0), and therefore

s
S
~F · d~S < 0.

Example 98. Compute
s
S
~F · d~S from the previous example.

Let’s use the following parametrization:

~X(x, y) =
(
x, y, 3− y − 3

2
x
)
, 0 ≤ x ≤ 2, 0 ≤ y ≤ 3− 3

2
x.

For this parametrization,

~Xx(x, y) =

 1
0
−3

2

 and ~Xy(x, y) =

 0
1
−1

 , so that ~N(x, y) =

3
2

1
1

 .
Note that since the z-coodinate of this vector is positive, this is actually the upward -pointing normal
vector to S, which means that we have actually parametrized −S instead of S! No worry; we will just
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switch the orientation of the surface S (at the cost of a −1 in front of the integral):

x
S

~F · d~S = −
x
−S

~F · d~S

= −
� 2

0

� 3− 3
2
x

0

4x
x
x

 ·
3

2

1
1

 dydx
= −

� 2

0

� 3− 3
2
x

0

8xdydx

=

� 2

0

−24x+ 12x2dx

= −12x2 + 4x3
∣∣∣2
0

= −16.

Example 99. Let ~F = y~i − x~j + zx3y2~k, and let S be the portion of the cone z =
√
z2 + y2 where

1 ≤ z ≤ 2, oriented “inward/upward”. Compute
x
S

(curl~F ) · d~S.

Let’s parametrize the cone with

~X(r, θ) = (r cos(θ), r sin(θ), r), 1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π.

For this parametrization, we have

~Xr(r, θ) =

cos(θ)
sin(θ)

1

 and ~Xθ(r, θ) =

−r sin(θ)
r cos(θ)

0

 , so that N ~X(r, θ) =

−r cos(θ)
−r sin(θ)

r

 .
This normal vector points in the correct direction, so ~X is an orientation-preserving parametrization of
S and there is no need to correct.

After computing curl~F = 2zx3y~i− 3zx2y2~j − 2~k, we have

x
S

(curl~F ) · d~S =

� 2

1

� 2π

0

 2r5 cos3(θ) sin(θ)
−3r5 cos2(θ) sin2(θ)

−2

 ·N ~X(r, θ)dθdr

=

� 2

1

� 2π

0

(
3r6 cos2(θ) sin3(θ)− 2r6 cos4(θ) sin(θ)− 2r

)
dθdr

=

� 2

1

[
3r6
(cos3(θ)

3
− cos5(θ)

5

)
+

2

5
r6 cos5(θ)− 2rθ

∣∣∣2π
0
dr

=

� 2

1

−4πrdr = −6π.
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Lecture 26: Stokes’ Theorem

Learning Objectives:

� Apply Stokes’ Theorem to relate vector surface integrals with vector line integrals.

Now that we have a notion of vector surface integral, the final two generalizations of the Fundamental
Theorem of Calculus that we will discuss are in reach. The first, Stokes’ Theorem, is essentially for
surfaces in R3 what Green’s Theorem was for regions in R2. Because the (geometric) boundary of a
surface consists of curves, we expect Stokes’ Theorem to relate vector surface integrals with vector line
integrals. In terms of differential forms, Stokes’ Theorem should be

x
S

dω =

�
∂S

ω

where ω = Pdx + Qdy + Rdz is a 1-form. But we’ve seen that if ~F = P~i + Q~j + R~k is the vector field
associated with the 1-form ω, then curl~F is the vector field associated with the 2-form

dω = (Ry −Qz) dy ∧ dz + (Pz −Rx) dz ∧ dx+ (Qx − Py) dx ∧ dy.

Therefore, in terms of vector fields, Stokes’ Theorem should have the form

x
S

curl~F · d~S =

�
∂S

~F · d~s.

Of course, it still isn’t obvious what should be the orientation of ∂S. As with Green’s Theorem, though,
the correct orientation of ∂S falls out in the proof.

Theorem 16 (Stokes’ Theorem). Let S ⊂ R3 be an oriented piecewise-smooth surface such that
∂S consists of a finite union of closed piecewise-smooth curves C1, . . . , Ck, where each Cj is oriented
so that, while traveling along Cj, the surface S is “on the left” when viewed from “above” (where

“up” at each point is the direction specified by the orientation of S). If ~F = P~i + Q~j + R~k is a
C1 vector field on an open set U ⊆ R3 with S ⊂ U , then

x
S

curl~F · d~S =

�
∂S

~F · d~s =

�
C1

~F · d~s+ · · ·+
�
Ck

~F · d~s.

In terms of differential forms, this can be expressed as

x
S

(Ry −Qz) dy ∧ dz + (Pz −Rx) dz ∧ dx+ (Qx − Py) dx ∧ dy =

�
∂S

Pdx+Qdy +Rdz.

Sketch of Proof of Stokes’ Theorem. The proof of Stokes’ Theorem very similar to that of Green’s The-
orem, but is slightly easier because we can actually use Green’s Theorem to prove it.
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For the first step (and this involves some analysis), we break S into a finite number of smooth
surfaces such that each can be viewed as a graph of one variable as a function of the other two. (E.g. a
piece of S has the form (x, g(x, z), z) for (x, z) in some region of the xz-plane.) Each piece will require
a different representation, and we can even ensure that the boundary of each piece consists of a single
piecewise-smooth closed curve.

Next, we prove Stoke’s Theorem for each piece of surface constructed in the first step. You will
actually do prove this step on your homework! Ultimately, the proof of this involves parametrizing the
vector surface and vector line integrals, and noting that the results are related to each other via Green’s
Theorem.

The final step is to “piece the results back together”. The sum of the vector surface integrals of
curl~F over the pieces of S will give

s
S

curl~F ·d~S, and one can show (using a “splitting and cancellation”

argument of the type used in Green’s Theorem) that the sum of the vector line integrals of ~F over the

boundaries of the pieces of S will give
�
∂S
~F · d~s.

Remark 54. The physical interpretation of Stokes’ Theorem is very similar to the physical interpreta-
tion of Green’s Theorem. That is, the integral on the right-hand-side of

x
S

curl~F · d~S =

�
∂S

~F · d~s

measures the circulation of ~F around ∂S in the direction that ∂S is oriented (i.e. so that S is “on the
left” when viewed from “above”, where “above” is the direction that the normal to S points).

On the other hand, curl~F · ~n measures how much of curl~F points in the direction of ~n. Because
the magnitude of curl~F measures “twisting at a point” in the plane perpendicular to curl~F , curl~F · ~n
measures the “twisting at a point” on S that is tangent to S. Therefore Stokes’ Theorem is a way to
compare the total net twisting of ~F on S with the circulation of ~F around ∂S.

Remark 55. Our intuition above for what curl~F means can actually be justified using Stokes’ Theorem.
Indeed, if ~F = P~i+Q~j+R~k is a C1 vector field on R3, and curl~F (x0, y0, z0) 6= ~0, then let Sr denote the

surface consisting of points (x, y, z) on the plane through (x0, y0, z0) that is normal to curl~F (x0, y0, z0),
such that (x − x0)2 + (y − y0)2 + (z − z0)2 ≤ r2. Orient Sr so that the unit normal vectors ~n point in

the same direction as curl~F (x0, y0, z0). Then one can show that

‖curl~F (x0, y0, z0)‖ = lim
r→0+

1

πr2

�
∂Sr

~F · d~s,

where the circle ∂Sr is oriented so that, when viewed from “above” (i.e. from the direction of curl~F (x0, y0, z0)),
Sr is “on the left”.

Remark 56. Here is an equivalent way to characterize the orientation of the Cj required by Stokes’
Theorem.

If one picks a point ~p ∈ S and draws the unit normal vector ~n to S at ~p, then one can think of a small
disc at the base of ~n (i.e. in S) rotating counterclockwise when viewed from the positive ~n direction.
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This little spinning disc will determine the orientation of each piece of ∂S; we merely choose a point ~p
near the boundary, and give that piece of boundary the orientation that it receives from the spinning
disc, as shown in the above picture.

Remark 57. The orientation of ∂S that described in the statement of Stokes’ Theorem is sometimes
referred to as the orientation of ∂S that is induced by the orientation of S.

Example 100. For each of the following two surfaces S, describe the orientation of each piece of ∂S
which is compatible with the orientation of S.

In the first picture, the cylinder with outward-pointing normal vector, the boundary is composed of
two circles. In order to be oriented compatibly with S, the top circle must be oriented clockwise (when
viewed from above). The bottom circle, however, must be oriented counterclockwise (when viewed from
above).

In the second picture, the portion of the sphere with inward-pointing normal vector, we see that
the boundary circle must be parametrized clockwise (when viewed from above) in order to have the
orientation compatible with that of S.

Example 101. Let ~F = y~i − x~j + zx3y2~k, and let S be the portion of the cone z =
√
x2 + y2 where

1 ≤ z ≤ 2, oriented “inward/upward”. Compute
x
S

(curl~F ) · d~S using Stokes’ Theorem.

(Note that we’ve already solved this problem directly without Stokes’ Theorem, and while doable
the problem became quite messy near the end.) The boundary of this surface consists of the circles C2:
x2 + y2 = 4, z = 2 and C1: x2 + y2 = 1, z = 1. Since the cone has upward-pointing normal vector, we
see that we should orient C2 counterclockwise and orient C1 clockwise (both when viewed from above
on the positive z-axis).
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We parametrize C2 with
~r2(θ) = (2 cos(θ), 2 sin(θ), 2), 0 ≤ θ ≤ 2π

and parametrize −C1 with
~r1(θ) = (cos(θ), sin(θ), 1), 0 ≤ θ ≤ 2π,

and apply Stokes’ Theorem to get

x
S

(curl~F ) · d~S =

�
∂S

~F · d~S

=

�
C2

~F · d~s+

�
C1

~F · d~s

=

�
C2

~F · d~s−
�
−C1

~F · d~s

=

� 2π

0

 2 sin(θ)
−2 cos(θ)
whatever

 ·
−2 sin(θ)

2 cos(θ)
0

 dθ − � 2π

0

 sin(θ)
− cos(θ)
whatever

 ·
− sin(θ)

cos(θ)
0

 dθ
=

� 2π

0

−4dθ +

� 2π

0

1dθ

= −6π.

Much easier!

152



Lecture 27: More Stokes’ Theorem

Learning Objectives:

� Apply Stokes’ Theorem to relate vector surface integrals with vector line integrals.

� Investigate deeper application of Stokes’ Theorem, such as replacing one surface integral with
another or seeing what happens in the case of closed surfaces.

We start with an example that we started, but did not complete, last time.

Example 102. Let ~F = y~i − x~j + zx3y2~k, and let S be the portion of the cone z =
√
x2 + y2 where

1 ≤ z ≤ 2, oriented “inward/upward”. Compute
x
S

(curl~F ) · d~S using Stokes’ Theorem.

(Note that we’ve already solved this problem directly without Stokes’ Theorem, and while doable
the problem became quite messy near the end.) The boundary of this surface consists of the circles C2:
x2 + y2 = 4, z = 2 and C1: x2 + y2 = 1, z = 1. Since the cone has upward-pointing normal vector, we
see that we should orient C2 counterclockwise and orient C1 clockwise (both when viewed from above
on the positive z-axis).

We parametrize C2 with
~r2(θ) = (2 cos(θ), 2 sin(θ), 2), 0 ≤ θ ≤ 2π

and parametrize −C1 with
~r1(θ) = (cos(θ), sin(θ), 1), 0 ≤ θ ≤ 2π,

and apply Stokes’ Theorem to getx
S

(curl~F ) · d~S =

�
∂S

~F · d~S =

�
C2

~F · d~s+

�
C1

~F · d~s

=

�
C2

~F · d~s−
�
−C1

~F · d~s

=

� 2π

0

 2 sin(θ)
−2 cos(θ)
whatever

 ·
−2 sin(θ)

2 cos(θ)
0

 dθ − � 2π

0

 sin(θ)
− cos(θ)
whatever

 ·
− sin(θ)

cos(θ)
0

 dθ
=

� 2π

0

−4dθ +

� 2π

0

1dθ

= −6π.
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Much easier!

Example 103. Let T be the triangle in R3 with vertices (2, 0, 0), (0, 3, 0), (0, 0, 3), oriented clockwise

when viewed from above. Compute
�
T
~F · d~s, where ~F (x, y, z) = (4yz, 2 + y2ey, 4z sin(x)).

We sketch T below. As we see, T is the boundary of the portion S of the plane 3x+ 2y + 2z = 6 in
the first octant from Example 97.

We would like to apply Stokes’ Theorem to the line integral in order to get
s
S
(curl~F ) · d~S. Before we

can do this, though, we need to first figure out what will be the appropriate orientation for S, given
the orientation of bS. By inspecting the orientation of T , we see that S must be given the downward
orientation. Using the parametrization from last time,

~X(x, y) = (x, y, 3− y − 3

2
x), 0 ≤ x ≤ 2, 0 ≤ y ≤ 3− 3

2
x, N ~X(x, y) =

3
2

1
1

 ,
(which is orientation-reversing since its positive ~k-component implies that it points upward, which is
the opposite of what we want) we have

�
T

~F · d~s =

�
∂S

~F · d~s

=
x
S

(curl~F ) · d~S = −
x
−S

(curl~F ) · d~S

= −
� 2

0

� 3− 3
2
x

0

curl~F
(
x, y, 3− y − 3

2
x
)
·N ~X(x, y)dydx

= −
� 2

0

� 3− 3
2
x

0

 0
4y − 4(3− y − 3

2
x) cos(x)

−4(3− y − 3
2
x)

 ·
3

2

1
1

 dydx
=

� 2

0

� 3− 3
2
x

0

−4y + 4
(

3− y − 3

2
x
)

cos(x) + 4
(

3− y − 3

2
x
)
dydx

=

� 2

0

� 3− 3
2
x

0

−8y + 12 cos(x)− 4y cos(x)− 6x cos(x) + 12− 6xdydx

= 18− 9 sin(2).

Example 104. Let’s compute
s
S
(curl~F ) · d~S, where S is the unit sphere x2 + y2 + z2 = 1 (with the

outward orientation) and ~F = cos(exyz)~i+ sin(xyz + ez)~j + (x2 + 1)zy~k.
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We would like to apply Stokes’ Theorem here, but something seems a little fishy: the sphere S has
no (geometric) boundary! Something very interesting will happen here, but for now let’s just split the
sphere into two pieces: the upper hemisphere S1 and the lower hemisphere S2.

The boundary of each is the unit circle x2 +y2 = 1 in the xy-plane. However, the orientation of the circle
which is compatible with the orientation of S1 (counterclockwise when viewed from above) is different
than that which is compatible with the orientation of S2 (counterclockwise when viewed from below).

Therefore, if C is the circle x2 + y2 = 1, z = 0 oriented counterclockwise when viewed from above,
we have x

S

(curl~F ) · d~S =
x
S1

(curl~F ) · d~S +
x
S2

(curl~F ) · d~S

=

�
C

~F · d~s+

�
−C

~F · d~s

= 0.

Unlike many of the integrals where we get 0, there is no ‘symmetry’ going on in the previous example.
The important thing here was that S is a closed surface, meaning that the geometric boundary of S is
empty. That is, ∂S = ∅. By abstracting the argument used in the previous example one can show that

Theorem 17. If S ⊂ R3 is an oriented, closed, piecewise-smooth surface and if ~F is a C1 vector
field defined on an open set U ⊆ R3 containing S, then

x
S

(curl~F ) · d~S = 0.

Remark 58. Note how closely related this is to the theorem about conservative vector fields, which
said that

�
C
∇f · d~s = 0 as long as C is a closed curve. Indeed, this is just the ‘2-dimensional version’

of the conservative vector field result!

After learning Gauss’s theorem, we will discuss this theorem again (with a new interpretation). For
now, let’s see an application.

Example 105. Let S be the (outward oriented) surface formed by the portion of the cylinder x2 +y2 =

1, |z| ≤ 1, together with the upper half of the sphere x2 + y2 + (z − 1)2 = 1. Compute
x
S

(curl~F ) · d~S,

where ~F = (x3 − y3)esin(πz)~i+ (x3 + sin(z2 − 1))~j + exy
2
z cos(x2 + yz)~k.

We sketch the surface S below:
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The boundary of S is the circle x2+y2 = 1, z = −1. Let C be this circle, oriented in the counterclockwise
direction when viewed from above. We will illustrate two different (but very similar) ways to use Stokes’
theorem to replace the surface S with a different surface that has the same boundary.

To do this, let S̃ denote the disc x2 + y2 ≤ 1 in the plane z = −1, oriented upward. Then C is
also the boundary of S̃, and the orientations of C and S̃ are compatible. Hence, by applying Stokes’
Theorem twice, x

S

(curl~F ) · d~S =

�
C

~F · d~s =
x
S̃

(curl~F ) · d~S.

Alternatively, we could ‘cap off’ the surface S with −S̃ (i.e. the surface S̃ but with the opposite
orientation as S̃. That is, S ∪ (−S̃) is a closed, oriented (outward) piecewise-smooth surface. Therefore,
by the previous theorem,

x
S

(curl~F ) · d~S =
x
S

(curl~F ) · d~S +
x
−S̃

(curl~F ) · d~S +
x
S̃

(curl~F ) · d~S

= 0 +
x
S̃

(curl~F ) · d~S =
x
S̃

(curl~F ) · d~S.

At any rate, we need only compute
x
S̃

(curl~F ) · d~S. To do this, we use the parametrization

~X(r, θ) = (r cos(θ), r sin(θ),−1), 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π.

For this parametrization, we have ~N(r, θ) = r~k (which agrees with the orientation of S̃), so that

x
S

(curl~F ) · d~S =
x
S̃

(curl~F ) · d~S

=
x
S̃

 Garbage
More Garbage
3x2 + 3y2esin(πz)

 · d~S
=

� 1

0

� 2π

0

 Garbage
More Garbage

3r2

 · (r~k)dθdr

=

� 1

0

� 2π

0

3r3dθdr

=
3π

2
.

The first method illustrated in the above example can be generalized as follows.
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Theorem 18. If S1, S2 ⊂ R3 are oriented, piecewise-smooth surfaces with common boundary C,
where the orientation of C is (simultaneously) the orientation induced by the orientations both
S1 and S2, then x

S1

(curl~F ) · d~S =
x
S2

(curl~F ) · d~S

for any C1 vector field ~F defined on (an open set containing) both S1 and S2.

Both of these theorems can be quite useful! Be on the lookout for applications of them (i.e. whenever
you have to integrate over some nasty surface).

157



Lecture 28: Gauss’s Theorem

Learning Objectives:

� Apply Gauss’s Theorem to relate vector surface integrals with vector line integrals.

� Investigate deeper applications of Gauss’s Theorem, such as replacing one surface integral with
another.

We now discuss our very last result in the course, which is also a generalization of the Fundamental
Theorem of Calculus. Our final result will be for a region E ⊂ R3 such that ∂E consists of closed
piecewise-smooth surfaces, and will have the formy

E

dω =
x
∂E

ω,

where ω = P dy ∧ dz +Qdz ∧ dx+Rdx ∧ dy is a C1 2-form. But we have seen that

dω = (Px +Qy +Rz) dx ∧ dy ∧ dz.

In other words, if ~F = P~i+Q~j +R~k is the C1 vector field corresponding to ω, then the function div ~F
corresponds to dω. Our theorem, due to Gauss, is stated below.

Theorem 19 (Gauss’s Theorem). Let E ⊆ R3 be a region whose boundary ∂E consists of a
finite union of closed piecewise-smooth surfaces S1, . . . , Sk, where each Sj is oriented with normal

vectors that point “out of” E. If ~F = P~i + Q~j + R~k is a C1 vector field on an open set U ⊆ R3

with E ⊆ U , then

y
E

div ~FdV (x, y, z) =
{
∂E

~F · d~S def
=
{
S1

~F · d~S + · · ·+
{
Sk

~F · d~S.

In terms of differential forms this can be expressed as

y
E

(Px +Qy +Rz) dx ∧ dy ∧ dz =
x
∂E

P dy ∧ dz +Qdz ∧ dx+Rdx ∧ dy.

Here,
v

denotes that the integral is over a (collection of) closed surface(s), and has no additional
meaning.

Remark 59. One important thing to note is that the orientation ‘outward’ is determined relative to
the region E. For example, if E is the region in R3 defined by 1 ≤ x2 + y2 + z2 ≤ 4, then ∂E consists of
two spheres, S1 : x2 + y2 + z2 = 1 and S2 : x2 + y2 + z2 = 4. If we wanted to apply Gauss’s Theorem to
a triple integral over E, then we would need to orient each of these spheres so that their normal vectors
point away from E. That is, S2 is given the normal vector that points away from (0, 0, 0), but S1 must
be given the normal vector that points towards (0, 0, 0).

As always, if the orientation of S is incorrect (i.e. if the normal vector points into the region E),
or if we accidentally produce an orientation-reversing parametrization of S, then we can change the
orientation at the cost of a minus sign. We’ll see an example of this shortly.
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Remark 60. The physical intuition for Gauss’s Theorem is as follows. If ~F describes the flow of some
fluid in R3, then the integral over ∂E measures the net amount of fluid flowing outward through the
boundary of E (with negative values representing flow into E). On the other hand, div ~F (~p) measures
the amount of expansion (or contraction, if negative) of the fluid at ~p, so the triple integral over E
measures the net amount of expansion (and contraction, which contributes negatively to the value of
the integral) of the fluid inside of E. In other words, Gauss’s theorem relates the net expansion of the
fluid within E to the amount of fluid that flows outward through ∂E. For this reason, Gauss’s Theorem
is also called the Divergence Theorem.

Remark 61. Just as Green’s and Stokes’ Theorems allowed us to justify our understanding of the
physical meaning of curl, Gauss’s Theorem justifies our understanding of divergence as a measure of
expansion or contraction of a fluid. Indeed, if ~F is a C1 vector field on R3, then div ~F (~x) is a continuous
function on R3, and therefore by Exercise 4 in Homework 4 we have, for each ~x0 ∈ R3 we have

div ~F (~x0) = lim
r→0+

1

Vol3(Br(~x0))

y
Br(~x0)

div ~F (~x) dV3(~x) = lim
r→0+

1

Vol3(Br(~x0))

x
∂Br(~x0)

~F · d~S

by Gauss’s Theorem, where the sphere ∂Br(~x0) is oriented with “outward-pointing” normals.

Therefore we have that div ~F (~x0) is a measurement of “net infinitesimal flux” out of a sphere centered

at ~x0. When div ~F (~x0) > 0 then more fluid is flowing out of this sphere than into it, so it must be that

the fluid described by ~F is “expanding” at ~x0. If div ~F (~x0) < 0, then this fluid must be “contracting”
at ~x0.

Example 106. Let S be the piecewise-smooth oriented surface consisting of the portion of the paraboloid
x = y2 + z2 between the yz-plane and the plane x = 3, with ‘inward pointing’ orientation, together
with the portion of the plane x = 3 with orientation −~i (i.e. orientation pointing towards the yz-plane).

Compute
s
S
~F · d~S, where ~F = (2xz2 + x3, 3xz, 2zy2).

We sketch the surface S below:

Note that S is the boundary of the region E bounded between the paraboloid x = y2 + z2 and the plane
x = 3. We would therefore like to apply Gauss’s Theorem. However, the orientation of S points towards
E, not away from it! The fix is easy: we can replace S with −S (i.e. S with the opposite orientation)
at the expense of a negative sign. Therefore, we apply Gauss’s Theorem to get

x
S

~F · d~S = −
x
−S

~F · d~S = −
{
∂E

~F · d~S = −
y
E

div ~FdV = −
y
E

(3x2 + 2y2 + 2z2)dV (x, y, z).

To evaluate this last integral, we’ll use an adaptation of cylindrical coordinates:

(x, y, z) = (x, r cos(θ), r sin(θ)), 0 ≤ r ≤
√

3, 0 ≤ θ ≤ 2π, r2 ≤ x ≤ 3.
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The Jacobian of this change of variables is

∣∣∣∂(x, y, z)

∂(x, r, θ)

∣∣∣ =

∣∣∣∣∣∣det

1 0 0
0 cos(θ) −r sin(θ)
0 sin(θ) r cos(θ)

∣∣∣∣∣∣ = r,

so that x
S

~F · d~S = −
y
E

(3x2 + 2y2 + 2z2)dV (x, y, z)

= −
� 2π

0

� √3

0

� 3

r2
(3x2 + 2r2)rdxdrdθ

= −
� 2π

0

� √3

0

(−r7 − 2r5 + 6r3 + 27r)drdθ

= −
� 2π

0

(
− 81

8
− 9 +

27

2
+

81

2

)
dθ

= −279π

4
.

Example 107. Let S be the boundary of the box [0, 1] × [0, 1] × [0, 1], except for the face on the

xz-plane, and give S the ‘outward’ orientation (i.e. ‘away from (1
2
, 1

2
, 1

2
)’). Compute

s
S
~F · d~S, where

~F = (2xy, x2z2, 3z + x sin(y)).

Because S is not closed, we cannot directly apply Gauss’s Theorem. However, the prospect of computing
five different surface integrals seems particularly tedius (even though they are not really that bad)! We
will therefore reintroduce our trick of ‘closing off’ the surface S so that we can apply Gauss’s Theorem.

To this end, let S̃ be the square (x, 0, z), 0 ≤ x ≤ 1, 0 ≤ z ≤ 1, oriented so that its normal vector
is −~j.
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Then S ∪ S̃ is a closed surface, and is the boundary of the unit cube E = [0, 1] × [0, 1] × [0, 1] with
outward pointing normal vector. We can therefore apply Gauss’s theorem to this closed surface. That
is, we have x

S

~F · d~S =
x
S

~F · d~S +
x
S̃

~F · d~S︸ ︷︷ ︸{
∂E

~F · d~S

−
x
S̃

~F · d~S

=
y
E

div ~FdV −
x
S̃

~F · d~S.

We evaluate the triple integral using our old friend Fubini:

y
E

div ~FdV =
y
E

(2y + 0 + 3)dV (x, y, z) =

� 1

0

� 1

0

� 1

0

(2y + 3)dxdzdy =

� 1

0

(2y + 3)dy = 4.

For the integral over S̃, we use the fact that ~n = −~j to write

x
S̃

~F · d~S =
x
S̃

~F · (−~j)dS =
x
S̃

−x2z2dS =

� 1

0

� 1

0

−x2z2dxdz = −1

9
.

In summary, x
S

~F · d~S = 4 +
1

9
=

37

9
.

Example 108. Let S be the (outward-oriented) surface formed by the portion of the cylinder x2+y2 = 1
below the plane z = 1 and above the plane z = x− 1, together with the bottom ‘shorn disc’ x2 + y2 ≤
1, z = x− 1. Let ~G = (2y, x, 14z2 − xy) and ~F = (0, x2ez−x − 2

3
xy3, x+ x2y2). Compute

x
S

(curl~G+ ~F ) · d~S.
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Since div ~F 6= 0, we cannot hope to write ~F = curl ~̃F for some vector field ~̃F (and thereby apply Stokes’
Theorem to the entire integral). However, we can split the integral into two pieces

x
S

(curl~G+ ~F ) · d~S =
x
S

(curl~G) · d~S +
x
S

~F · d~S,

and deal with each piece separately.
For the first piece, let’s apply Stokes’ Theorem. The boundary of S is the circle x2 + y2 = 1 in the

plane z = 1. Let C be this circle, oriented clockwise when viewed from above. Then the orientation of
C is compatible with that of S, so by parametrizing C with (x, y, z) = (cos(t),− sin(t), 1), 0 ≤ t ≤ 2π,
we have

x
S

(curl~G) · d~S =

�
C

~G · d~s

=

� 2π

0

 −2 sin(t)
cos(t)

14(1)2 + sin(t) cos(t)

 ·
− sin(t)
− cos(t)

0

 dt
=

� 2π

0

2 sin2(t)− cos2(t)dt

=

� 2π

0

1

2
− 3

2
cos(2t)dt

= π.

For the second piece we’d like to apply Gauss’s Theorem. However, because S is not closed, we need
to ‘cap it off’ by adding in the missing piece. Let S̃ be the portion of the plane z = 1 which is inside of
the cylinder x2 + y2 = 1. In order for the orientation of S̃ to be consistent with that of S, we must give
S̃ the upward-pointing orientation. Therefore, if E is the region of R3 bounded by S and S̃, then the
boundary S ∪ S̃ of E is oriented outward, allowing us to apply Gauss’s Theorem. That is,

x
S

~F · d~S =
x
S∪S̃

~F · d~S −
x
S̃

~F · d~S

=
y
W

div ~FdV −
x
S̃

~F · d~S

=
y
W

−2xy2dV (x, y, z)−
x
S̃

~F · d~S.
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To evaluate the triple integral, we use cylindrical coordinates with z as the (inner)-variable:

y
W

−2xy2dV (x, y, z) =

� 1

0

� 2π

0

� 1

r cos(θ)−1

−2r4 cos(θ) sin2(θ)dzdθdr

=

� 1

0

� 2π

0

(−4r4 cos(θ) sin2(θ) + 2r5 cos2(θ) sin2(θ))dθdr

=

� 1

0

� 2π

0

(−4r4 cos(θ) sin2(θ) +
1

2
r5 sin2(2θ))dθdr

=

� 1

0

� 2π

0

(−4r4 cos(θ) sin2(θ) +
1

4
r5 − 1

4
r5 cos(4θ))dθdr

=

� 1

0

[
− 4

3
r4 sin3(θ) +

1

4
r5θ − 1

16
r5 sin(4θ)

∣∣∣∣∣
2π

0

dr

=

� 1

0

π

2
r5dr

=
π

12
.

For the surface integral, we use the fact that ~n = ~k at each point of S̃ to first write

x
S̃

~F · d~S =
x
S̃

(x+ x2y2)dS =
x
S̃

x2y2dS,

where we used the fact that x is an odd function in x and S̃ is symmetric with respect to the yz-plane.
To compute this last integral, we just use polar coordinates in the plane:

x
S̃

x2y2dS =

� 2π

0

� 1

0

r5 sin2(θ) cos2(θ)drdθ

=
1

6

� 2π

0

sin2(θ) cos2(θ)dθ

=
1

48

� 2π

0

1− cos(4θ)dθ

=
π

24
.

Putting all of these together,

x
S

(curl~G+ ~F ) · d~S = π +
π

12
− π

24
=

25π

24
.
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