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Elliott Yoon 3 Conditional Probability and Independence

1 Combinatorial Analysis

If an experiment consists of two events A and B, there are n outcomes in event A and m outcomes in event
B, then there are nm possible outcomes of the experiment. This is called the multiplication principle.

There are n! = n(n− 1)· · · 3 · 2 · 1 possible linear orderings of n items, where 0! = 1. The number of ways
to choose a subgroup of size i from a set of size n (called the binomial coefficient is(

n

i

)
=

n!

(n− i)!i!

when 0 ≤ i ≤ n, and is 0 otherwise.

For n1, . . . , nr summing to n, the number of divisions of n items into r distinct disjoint subgroups of sizes
n1, n2, . . . , nr is (

n

n1, n2, . . . , nr

)
=

n!

n1!n2!· · ·nr!
.

2 Axioms of Probability

For each event A of the sample space S, we suppose that the probability of A, P (A) is defined such that

1. 0 ≤ P (A) ≤ 1,

2. P (S) = 1,

3. For mutually exclusive events Ai, i ≥ 1,

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai).

Theorem 2.1 (Inclusion-exclusion)

For events A,B,
P (A ∪B) = P (A) + P (B)− P (AB)

which can be generalized to give

P

(
n⋃

i=1

Ai

)
=

n∑
i=1

P (Ai)−
∑∑

i<j

P (AiAj) +
∑∑∑

i<j<k

P (AiAjAk +· · ·+ (−1)n+1P (A1· · ·An).

3 Conditional Probability and Independence

Definition 3.1. For events E and F , the conditional probability of E given F has occurred is

P (E|F ) =
P (EF )

P (F )
.
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Elliott Yoon 4 Random Variables

Theorem 3.2 (Multiplication Rule)

For events E1, . . . , En:

P (E1, E2· · ·En) = P (E1)P (E2|E1)· · ·P (En|E1· · ·En−1).

Remark 3.3. An important identity is

P (E) = P (E|F )P (F ) + P (E|F c)P (F c),

which can be used to compute P (E) by conditioning on whether F occurs.

Theorem 3.4 (Bayes’s Formula)

If Fi, i = 1, . . . , n are mutually exclusive events whose union is the entire sample space, then

P (Fj |E) =
P (E|fj)P (Fj)∑n
i=1 P (E|Fi)P (Fi)

.

Definition 3.5. We say E and F are independent if P (EF ) = P (E)P (F ).

Remark 3.6. This is equivalent to P (E|F ) = P (E) and P (F |E) = P (F ).

The events E1, . . . , En are independent if, for any subset Ei1 , . . . , Eir of them,

P (Ei1 , . . . , Eir ) = P (Ei1 · · ·P (Eir ).

4 Random Variables

Definition 4.1. A real-valued function defined on the outcome of a probability experiment is called a random
variable.

If X is a random variable, the distribution function F (x) of X is defined

F (x) = P{X ≤ x}.

A random variable whose set of possible values is either finite or countably infinite is called discrete, with
probability mass function

p(x) = P{X = x}.
The expected value (or mean) of X is

E[X] =
∑

x:p(x)>0

xp(x).

Theorem 4.2

E[g(X)] =
∑

x:p(x)>0

g(x)p(x).

Definition 4.3. The variance of a random variable X is defined by

Var(X) = E[(X − E[X]2] = E[X2]− (E[X])2.
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4.1 Important Probability Distributions

Definition 4.4. The binomial random variable can be interpreted as being the number of successes that
occur when n independent trials, each of which has probability of success p, are performed. It has probability
mass function

p(i) =

(
n

i

)
pi(1− p)n−i i = 0, . . . , n

and mean and variance
E[X] = np Var(X) = np(1− p).

Remark 4.5. If X is a binomial random variable,

E[X2] = np[(n− 1)p+ 1].

Definition 4.6. The Poissson random variable with parameter λ can be used to approximate binomial
random variables, where λ = np. It has probability mass function (giving probability p(X) of X successes):

p(x) =
e−λλx

x!
x ≥ 0

and mean and variance
E[X] = Var(X) = λ.

Remark 4.7. If X is a Poisson random variable,

E[X2] = λ(λ+ 1).

Definition 4.8. The geometric random variable represents the number of independent trials of probability
p it takes for the first success. Its probability mass function is

p(i) = p(1− p)i−1 i = 1, 2, . . .

and has mean and variance

E[X] =
1

p
Var(X) =

1− p

p2
.

Remark 4.9. If X is a geometric random variable,

E[X2] =
q + 1

p2
.

4.2 Alone. He’s just like me!

Theorem 4.10 (Mean of the sum is the sum of the means)

E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi].
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5 Continuous Random Variables

Definition 5.1. A random variable X is continuous if there is a nonnegative function f , called the probability
density function of X, such that for any set B:

P{X ∈ B)} =

∫
B

f(x) dx.

If X is continuous, its distribution function F is differentiable and

d

dx
F (x) = f(x).

The expected value of a continuous random variable X is defined by

E[X] =

∫ ∞

−∞
xf(x) dx.

Theorem 5.2

For any function g,

E[g(x)] =

∫ ∞

−∞
g(x)f(x) dx.

Remark 5.3. Just like in the discrete case, the variance of X is defined to be

Var(X) = E[(X − E[X])2] = E[X2]− (E[X])2.

5.1 Important Probability Distributions

Definition 5.4. A random variable X is said to be uniform over the interval (a, b) if its probability density
function is given by

f(x) =

{
1

b−a a ≤ x ≤ b

0 otherwise.

It has mean and variance

E[X] =
a+ b

2
Var(X) =

(b− a)2

12
.

Definition 5.5. A random variable X is said to be normal with parameters µ, σ2 if its probability density
function is given by

f(x) =
1√
2πσ

e−(x−µ)2/2σ2

−∞ < x < ∞.

It has mean and variance
E[X] = µ Var(X) = σ2.

If X is normal with mean µ and variance σ2, then Z, defined by

Z =
X − µ

σ

is normal with mean 0 and variance 1.
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Remark 5.6. When n is large, the probability distribution function of a binomial random variable with
parameters n and p can be approximated by that of a normal variable with mean µ = np and variance
σ2 = np(1− p).

Definition 5.7. An exponential random variable with parameter λ has probability density function of the
form

f(x) =

{
λe−λx x ≥ 0

0 otherwise

with mean and variance

E[X] =
1

λ
Var(X) =

1

λ2
.

An exponential random variable X intuitively represents the time it takes for the first success in a collection
of independent events. See this stack exchange post for a more solid intuition.

Remark 5.8. The exponential random variable is the only random variable that is memoryless, meaning that
for s, t > 0

P{X > s+ t|X > t} = P{X > s}.
If X represents the life of an item, then the memoryless property states that, for any t, the remaining life of a
t-year-old item has the same probability distribution as the life a new item.

Definition 5.9. Let X be a nonnegative continuous random variable with distribution function F and
density function f . The function

λ(t) =
f(t)

1− F (t)
t ≥ 0

is called the hazard rate (or failure rate) of F . Notice that if X is exponential with parameter λ, then
λ(t) = λ. In fact, the exponential distribution uniquely has constant hazard rate.

Definition 5.10. A random variable is said to have gamma distribution with parameters α and λ if its
probability density function is equal to

f(x) =
λe−λx(λx)α−1

Γ(α)
x ≥ 0

and 0 otherwise. Note that the gamma function Γ(α) is defined by

Γ(α) =

∫ ∞

0

e−xxα−1 dx.

The mean and variance of a gamma random variable are

E[X] =
α

λ
Var(X) =

α

λ2
.

Whereas exponential random variables represent the time it takes for the first occurrence of a given event,
the gamma random variable represents the time it takes for the α-th occurrence.
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6 Jointly Distributed Random Variables

Definition 6.1. The joint cumulative probability distribution function of the pair of random variables X
and Y is defined by

F (x, y) = P{X ≤ x, Y ≤ y} −∞ < x, y < ∞.

To find the individual probability distribution functions of X and Y , use

FX(x) = lim
y→∞

F (x, y) FY (y) = lim
x→∞

F (x, y).

• If X,Y are both discrete random variables, then their joint probability mass function is defined by

p(i, j) = P{X = i, Y = j}.

The individual mass functions are

P{X = i} =
∑
j

p(i, j) P{Y = j} =
∑
i

p(i, j).

• The random variablesX,Y are jointly continuous if there is a function f(x, y), called the joint probability
density function such that for any two dimensional set C,

P{(X,Y ) ∈ C} =

∫∫
C

f(x, y) dx dy.

Theorem 6.2 (Marginal Density Functions)

If X,Y are jointly continuous, they are individually continuous with (marginal) density functions

fX(x) =

∫ ∞

−∞
f(x, y) dy fY (y) =

∫ ∞

−∞
f(x, y) dx.

Theorem 6.3 (Independence of Jointly Continuous Random Variables)

Random variables X and Y are independent if for all sets A,B,

P{X ∈ A, Y ∈ B} = P{X ∈ A}P{Y ∈ B}

This holds generally for X1, . . . , Xn.

Remark 6.4. IF the joint distribution function (or joint probability mass function in the discrete case) factors
into a part depending only on x and a part depending only on y, then X and Y are independent

Theorem 6.5 (Convolutions)

If X,Y are independent continuous random variables, then the distribution function of their sum can be
obtained as follows:

FX+Y (a) =

∫ ∞

−∞
FX(a− y)fY (y) dy.
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Remark 6.6. This follows from

FX+Y (a) =

∫∫
X+Y ≤a

f(x, y) dx dy =

∫ ∞

−∞

∫ a−y

−∞
fX(x)fY (y) dx dy =

∫ ∞

−∞
FX(a− y)fY (y) dy.

6.1 Sums of Specific Distribution

Theorem 6.7

If Xi, i = 1, . . . , n are independent..

1. normal random variables with respective parameters µi and σ2
i , then

∑n
i=1 Xi is normal with

parameters
∑n

i=1 µi and
∑n

i=1 σ
2
i .

2. Poisson random variables with respective parameter λi, then
∑n

i=1 Si is Poisson with parameter∑n
i=1 λi.

6.2 Conditional Probability

Definition 6.8. If X,Y are discrete random variables, then the conditional probability mass function of X
given that Y = y is defined by

P{X = x|Y = y} =
p(x, y)

pY (y)

where p is their joint probability mass function.

Definition 6.9. If X,Y are independent continuous random variables, then the conditional probability
density function of X given that Y = y is defined by

fX|Y (x|y) =
f(x, y)

fY (y)
.

7 Properties of Expectation

If X and Y have a joint probability mass function p(x, y), then

E[g(X,Y )] =
∑
y

∑
x

g(x, y)p(x, y)

whereas if they have joint density function f(x, y), then

E[g(X,Y )] =

∫ ∞

−∞

∫ ∞

−∞
g(x, y)f(x, y) dx dy.

Corollary 7.1

It follows immediately then that
E[X + Y ] = E[X] + E[Y ]

and, more generally,

E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi].
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Definition 7.2. The covariance between random variables X and Y is

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ].

Remark 7.3. A useful identity is

Cov

(
n∑

i=1

Xi,

m∑
j=1

Yj

)
=

n∑
i=1

m∑
j=1

Cov(Xi, Yj)

Definition 7.4. The correlation between X and Y , denoted ρ(X,Y ) is defined by

ρ(X,Y ) =
Cov(X,Y )√
Var(X)Var(Y )

.

7.1 Conditional Expectation

Definition 7.5. • If X,Y are jointly discrete random variables, then the conditional expected value of
X, given that Y = y, is

E[X|Y = y] =
∑
x

xP{X = x|Y = y}.

• If X,Y are jointly continuous random variables, then

E[X|Y = y] =

∫ ∞

−∞
xfX|Y (x|y) dx

where fX|Y (x|y) = f(x,y)
fY (y) is the conditional probability of X given that Y = y.

Remark 7.6. Conditional expectations satisfy all the properties of ordinary expectations.

Theorem 7.7

Let E[X|Y ] denote the function of Y whose value at Y = y is E[X|Y = y]. Then

E[X] = E[E[X|Y ]].

1. For discrete random variables,

E[X] =
∑
y

E[X|Y = y]P{Y = y}

2. For continuous random variables,

E[X] =

∫ ∞

−∞
E[X|Y = y]fY (y) dy

We can use these equations to obtain E[X] by first ”conditioning” on the value of some other random
variable Y . Also, for any event A, P (A) = E[IA], where IA is 1 if A occurs and 0 otherwise, so we can
use these equations to compute probabilities.
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Definition 7.8. The conditional variance of X, given Y = y, is defined

Var(X|Y = y) = E[(X − E[X|Y = y])2|Y = y].

Letting Var(X|Y ) be the function of Y whose value at Y = y is Var(X|Y = y),

Var(X) = E[Var(X|Y )] + Var(E[X|Y ]).

7.2 Moment Generating Functions

Definition 7.9. The moment generating function of X is defined as

M(t) = E[etX ].

The moments of X, i.e. E[X], E[X2], . . . , E[Xn], are obtained by successively differentiating M(t) and then
evaluating the resulting quantity at t = 0. Specifically, we have

E[Xn] =
dn

dtn
M(t)

∣∣∣∣
t=0

n = 1, 2, . . .

Remark 7.10. Two useful results arise from moment generating functions:

1. The MGF uniquely determines the distribution function of the random variable, and

2. The MGF of the sum of independent random variables is equal to the product of their moment generating
functions.

8 Limit Theorems

8.1 Probability Bounds

Using the following two theorems, we can derive bounds on probabilities when only the mean (or both the
mean and the variance) are known.

Theorem 8.1 (Markov’s Inequality)

If X is a random variable that takes only non-negative values, then for any a > 0,

P{X ≥ a} ≤ E[X]

a
.

Theorem 8.2 (Chebyshev’s Inequality)

If X is a random variable with finite mean µ and variance σ2, then, for any value k > 0,

P{|X − µ| ≥ k} ≤ σ2

k2
.

8.2 The Big Kahunas
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Theorem 8.3 (The Weak Law of Large Numbers)

Let X1, X2, . . . , be a sequence of independent and identically distributed random variables, each having
finite mean E[Xi] = µ. Then, for any ϵ > 0,

P

{∣∣∣∣X1 +· · ·+Xn

n
− µ

∣∣∣∣ ≥ ϵ

}
→ 0 as n → ∞.

Remark 8.4. This requires only that the random variables in the sequence have a finite mean µ. It states that,
with probability 1, the average of the first n of them will converge to µ as n goes to infinity.

This implies that if A is any specified event of an experiement for which independent replications are
performed, then the limiting proportion of experiments whose outcomes are in A will, with probability 1, equal
P (A).

After all this dum dum probability hoo-hah, we get to the real deal:

Theorem 8.5 (The Central Limit Theorem)

Let X1, X2, . . . be a sequence of independent and identically distributed random variables, each having
mean µ and variance σ2. Then the distribution of

X1 +· · ·+Xn − nµ

σ
√
n

tends to the standard normal as n → ∞. That is, for −∞ < a < ∞,

P

{
X1 +· · ·+Xn − nµ

σ
√
n

≤ a

}
→ 1√

2π

∫ a

−∞
e−x2/2 dx as n → ∞.

Remark 8.6. This says that if the random variables have a finite mean µ and a finite variance σ2, then the
distribution of the sum of the first n of them is, for large n, approximately that of a normal random variable
with mean nµ and variance nσ2.
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