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Elliott Yoon 1 The Real and Complex Numbers

1 The Real and Complex Numbers

Prototypical example for this section: R is an ordered field with the least-upper-bound property and subfield Q.

Definition 1.1. Let S be any set.

• If x is a member of S, we write x ∈ S. Otherwise, we write x ̸∈ S.

• The set without any elements is called the empty set, often written as ∅.

• If A and B are sets and every element of A is an element of B, we say that A is a subset of B and
write A ⊂ B or B ⊃ A.

• If A ⊂ B and B ⊂ A, we write A = B.

Definition 1.2. Let S be a set. An order on S is a relation, <, with the following two properties:

1. If x, y ∈ S, then exactly one of the statements is true:

x < y, x = y, y < x

2. If x, y, z ∈ S, if x < y, and y < z, then x < z. This is called transitivity.

It’s then natural to define an ordered set to be a set S in which an order is defined.

Example 1.3 (Ordered Sets)

• Q is an ordered set if r < s is defined to mean that s− r is a positive rational number.

• C is not ordered.

Definition 1.4. Suppose S is ordered and E ⊂ S. E is bounded above if there exists a β ∈ S such that
x ≤ β for every x ∈ E. We call β an upper bound of E.

Furthermore, if any element γ < β is not an upper bound of E, we call β the least upper bound or
supremum of E and write β = supE. (The greatest lower bound, or infimum of E is defined similarly).

Example 1.5 (Upper and Lower Bounds)

1. Let A be the set of all positive rationals p such that p2 < 2 and B be the set of all positive rationals
q such that q2 > 2. The upper bounds of A are exactly the elements of B. Since B contains no
smallest element, A does not have a least upper bound.

2. Let E1 be the set of all r ∈ Q with r < 0. Let E2 be the set of all r ∈ Q with r ≤ 0. Then

supE1 = supE2 = 0,

and notice 0 ̸∈ E1, 0 ∈ E2.

3. Let E = {1/n | n ∈ N}. Then supE = 1 ∈ E but inf E = 0 ̸∈ E.

Definition 1.6. Let S be an ordered set. If any nonempty and bounded above E ⊂ S has a least upper
bound in S, then S is said to have the Least Upper Bound Property
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Example 1.7 (Least Upper Bound Property)

1. Q does not have the Least Upper Bound Property (Example 1.5.1)

2. R does have the Least Upper Bound Property.

Theorem 1.8

Suppose S is an ordered set with the Least Upper Bound Property, B ⊂ S, B ̸= ∅, and B is bounded
below. Let L be the set of all lower bounds of B. Then

α = supL = inf B

exists in S.

Definition 1.9. A set F with two operations, called addition and multiplication, is called a field if the
following ”field axioms” are satisfied:

1. Axioms for Addition

(a) Closure: x ∈ F, y ∈ F ⇒ x+ y ∈ F .

(b) Commutativity: x+ y = y + x for all x, y ∈ F .

(c) Associativity: (x+ y) + z = x+ (y + z) for all x, y, z ∈ F .

(d) Identity: F contains an element 0 such that 0 + x = x for every x ∈ F .

(e) Inverse: For every x ∈ F there exists a −x ∈ F such that x+(-x)=0.

2. Axioms for Multiplication

(a) Closure: x ∈ F, y ∈ F ⇒ xy ∈ F ;;;;;;.

(b) Commutativity: xy = yx for all x, y ∈ F .

(c) Associativity: x(yz) = (xy)z for all x, y, z ∈ F .

(d) Identity: F contains an element 1 ̸= 0 such that 1x = x for every x ∈ F .

(e) Inverse; For every nonzero x ∈ F , there exists an element 1/x ∈ F such that x · (1/x) = 1.

3. The Distributive Law
x(y + z) = xy + xz

holds for all x, y, z ∈ F .

Example 1.10 (Fields)

1. The set of rationals Q is a field with customary operations.

2. The set of integers Z is not a field with standard addition and multiplication. (Why?)

Proposition 1.11 (The axioms for addition imply the following statements)

1. If x+ y = x+ z, then y = z.

2. If x+ y = x then y = 0.

3. If x+ y = 0, then y = −x.

4. −(−x) = x.
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Naturally, similar statements arise from the multiplication axioms.

Proposition 1.12 (The axioms for multiplication imply the following statements)

1. If x ̸= 0 and xy = xz, then y = z.

2. If x ̸= 0 and xy = x, then y = 1.

3. If x ̸= 0 and xy = 1, then y = 1/x.

4. If x ̸= 0, then 1/(1/x) = x.

Furthermore, we can formulate statements about the combined behavior of addition and multiplica-
tion.

Proposition 1.13 (The field axioms imply the following statements, for any x, y, z ∈ F )

1. 0x=0

2. If x ̸= 0 and y ̸= 0, then xy ̸= 0.

3. (−x)y = −(xy) = x(−y).

4. (−x)(−y) = xy.

Definition 1.14. An ordered field is a field F which is also an ordered set, such that

1. If x, y, z ∈ F and y < z, then x+ y < x+ z.

2. If x, y ∈ F and x, y > 0, then xy > 0.

Example 1.15 (Ordered Fields)

1. Q is an ordered field.

2. C is not an ordered field with the usual notions of addition and multiplication. But it can be
ordered if we get creative. Consider

(a+ bi) ≤ (c+ di) ⇐⇒ (a < c) ∨ [(a = c) ∧ (b ≤ d)]

All the familiar rules of working with inequalities apply in every ordered field:

Proposition 1.16 (The following statements are true in every ordered field.)

1. If x > 0, then −x < 0 (and vice versa).

2. If x > 0 and y < z, then xy < xz.

3. If x < 0 and y < z, then xy > xz.

4. If x ̸= 0 then x2 > 0. In particular, 1 > 0.

5. If 0 < x < y, then 0 < 1/y < 1/x.
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1.1 The Real Field

The following existence theorem is the core of this entire chapter:

Theorem 1.17 (The Existence of R)
There exists an ordered field R which has the least-upper-bound property. Moreover, R contains Q as a
subfield.

In other words, Q ⊂ R and the operations of addition and multiplication in R also apply to Q.

Theorem 1.18 (The Archimedian Principle and Density of Q)

1. If x, y ∈ R, and x > 0, then there exists a positive integer n ∈ N+ such that

nx > y.

2. If x, y ∈ R and x < y, then there exists a rational p ∈ Q such that x < p < y.

Remark 1.19. To prove (1), consider the set {nx | n ∈ ⋉} and suppose that it’s bounded above by y. It has a
supremum α. (Why?) A contradiction arises when considering α − x. To prove (2), use (1) on y − x > 0 to
obtain a n ∈ N such that n(y − x) > 1. Then use (1) again to obtain m1,m2 ∈ N such that −m2 < nx < m1.
Then there exists an m ∈ N such that m− 1 ≤ nx < m. Combining existing inequalities and noting n > 0, we
get x < m

n
< y.

We can now prove the existence of nth roots of positive real numbers.

Theorem 1.20

For every real x > 0 and every integer n > 0, there exists exactly one positive real y such that yn = x.
This number y is written as n

√
x or x1/n.

Remark 1.21. 0 < y1 < y2 implies yn
1 < yn2 , so the constraint of there being at most one y is clear. Consider

the set E = {t ∈ R | tn < x}. Notice E is nonempty since ( x
1+x

)n ≤ x
1+x

< x. Thus, y = supE exists. Use the

inequality bn − an < (b− a)nbn−1 that holds when 0 < a < b to show yn < x and yn > x lead to contradictions.

Corollary 1.22

If a and b are positive real numbers and n is a positive integer, then

(ab)1/n = a1/nb1/n.

1.2 The Extended Real Numbers

Definition 1.23. The extended real number system consists of the real field R and two symbols: +∞ and
−∞, with original order of R preserved and

−∞ < x < +∞

defined for every x ∈ R.
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It is customary to make the following conventions:

1. If x ∈ R, then
x+∞ = +∞, x−∞ = −∞,

x

+∞
=

x

−∞
= 0.

2. If x > 0, then x · (+∞) = +∞, x · (−∞) = −∞.

3. If x < 0, then x · (+∞) = −∞, x · (−∞) = +∞.

1.3 The Complex Field

Definition 1.24. A complex number is an ordered pair (a, b) of real numbers. Note that (a, b) and (b, a)
are distinct if a ̸= b. If x = (a, b), y = (c, d) are two complex numbers, note that x = y if, and only if, a = c
and b = d. We define

x+ y = (a+ c, b+ d)

xy = (ac− bd, ad+ bc)

Theorem 1.25

The complex numbers are a field, with (0, 0) and (1, 0) in the role of 0 and 1. Notice (a, 0)+(b, 0) = (a+b, 0)
and (a, 0)(b, 0) = (ab, 0).

The last result leads to the customary way of representing a complex number (a, b) as a+ bi.

Definition 1.26. We define
i = (0, 1)

Theorem 1.27

1. i2 = −1

2. If a, b ∈ R, then (a, b) = a+ bi

Definition 1.28. If z = a+ bi ∈ C, then the conjugate of z is z̄ = a− bi. The real and imaginary parts of z
are often written

a = ℜ(z), b = ℑ(z)

Theorem 1.29

If z, w ∈ C, then

1. z + w = z̄ + w̄,

2. zw = z̄ · w̄,

3. z + z̄ = 2ℜ(z), z − z̄ = 2ℑ(z),

4. zz̄ is real and positive (except when z = 0).
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We can now associate with complex (and real!) numbers a notion of size, known formally as the absolute
value.

Definition 1.30. If z ∈ C, then its absolute value, |z|, is the defined to be |z| =
√
zz̄.

Remark 1.31. Note that if x ∈ R, then x̄ = x, so |x| =
√
x2. Thus

|x| =

{
x x ≥ 0

−x x < 0

Theorem 1.32

Let z, w ∈ C. Then

1. |z| > 0 unless z = 0, |0| = 0m

2. |z̄| = |z|,

3. |zw| = |z||w|,

4. |ℜ(z)| ≤ |z|,

5. |z + w| ≤ |z|+ |w|. (This is known as the triangle inequality.)

Some quick notation: If x1, . . . , xn ∈ C, we write

x1 + x2 +· · ·+ xn =

n∑
j=1

xj .

We will find the following inequality to be very important, in foresight of future chapters:

Theorem 1.33 (Cauchy-Schwartz Inequality)

If a1, . . . , an, b1, . . . , bn ∈ C, then ∣∣∣∣∣∣
n∑

j=1

ajbj

∣∣∣∣∣∣ ≤
n∑

j=1

|aj |2
n∑

j=1

|bj |2.

Remark 1.34. To prove, let A =
∑

|aj |2, B =
∑

|bj |2, and C =
∑

ajbj . Assume B > 0 since the B = 0 case is
trivial. Show that

∑
|Baj − Cbj |2 = B(AB − |C|2). Then AB − |C|2 ≥ 0.
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1.4 The Euclidean Space

Definition 1.35. For k ∈ N, let Rk to be the set of all ordered k-tuples

x⃗ = (x1, x2, . . . , xk),

where x1, . . . , xk are called the coordinates of x⃗. The elements of Rk are called points or vectors. If α ∈ R
and y⃗ = (y1, . . . , yk), we defined

x⃗+ y⃗ = (x1 + y1, . . . , xk + yk),

αx⃗ = (αx1, . . . , αxk)

so x⃗+ y⃗ ∈ Rk and αx⃗ ∈ Rk.

These operations of vector addition and scalar multiplication with a vector make Rk into a vector space
over R. We define the inner product of x⃗ and y⃗ by

x⃗ · y⃗ =
k∑

i=1

xiyi

and the norm of x⃗ by

|x⃗| = (x⃗ · x⃗)1/2 =

(
k∑

i=1

x2
i

)1/2

The structure of Rk with inner product and norm is called euclidean k-space.

Theorem 1.36

Suppose x⃗, y⃗, z⃗ ∈ Rk, α ∈ R. Then

1. |x⃗| ≥ 0;

2. |x⃗| = 0 if, and only if, x⃗ = 0⃗;

3. |αx⃗| = |α||x⃗|;

4. |x⃗ · y⃗| ≤ |x⃗||y⃗|;

5. |x⃗+ y⃗| ≤ |x⃗|+ |y⃗|;

6. |x⃗− z⃗| ≤ |x⃗− y⃗|+ |y⃗ − z⃗|.

Remark 1.37. (a),(b),(c) are obvious, and (d) immediately follows from Cauchy-Schwartz. It follows from (d)
that |x⃗+ y⃗|2 = (|x⃗+ y⃗|)2, proving (e). Finally, (f) immediately follows from (e).
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2 Basic Topology

Prototypical example for this section: Sets are not doors! Also, a set in R is compact if, and only if, it is
closed and bounded.

2.1 Finite, Countable, and Uncountable Sets

Definition 2.1. Consider two sets A,B, where each element x ∈ A has an associated element of B, denoted
f(x). Then we say f is a function (or mapping) from A to B, written

f : A → B.

We call A the domain, B the codomain, and the set f(A) = {f(x) | x ∈ A} the range of f .

Example 2.2

1. f(x) = x2 is a function from R to R with domain R, codomain R, and range [0,∞).

2. Let f(x) = x for all x ∈ A. Then f (called the identity mapping) is a function from with domain
A and range A. Note that we don’t know the codomain of f based on what’s given.

3. The Direchlet function is a type of indicator function defined as

f(x) =

{
1 x ∈ Q
0 x ̸∈ Q

Definition 2.3. Let f : A → B be a mapping. If E ⊂ A, we call f(E) to be the image of E under f . Clearly,
f(A) ⊂ B, and if f(A) = B, we say f maps A onto B.

If E ⊂ B, the inverse image of E under f is the set f−1(E) of all x ∈ A such that f(x) ∈ E. If y ∈ B,
then f−1(y) is the set of all x ∈ A such that f(x) = y. If for each y ∈ B, f−1 consists of at most element of
A, we call f a one-to-one mapping of A into B. In other words, f is one-to-one (or injective) if f(x1) ̸= f(x2)
whenever x1 ̸= x2, x1, x2 ∈ A.

Example 2.4

1. The identity function f(x) = x is one-to-one and onto.

2. f(x) = |x| is onto R+, but not one-to-one.

3. The logistic function S(x) = 1
1+e−x is one-to-one, but not onto. (Fun fact: it’s a sigmoid curve!)

Definition 2.5. If there exists an injective mapping of A onto B, we say A and B are in 1-1 correspondence,
or that they have the same cardinal number, or that they are equivalent; and write A ∼ B. This relation has
the following properties:

1. Reflexive: A ∼ A,

2. Symmetric: If A ∼ B, then B ∼ A,

3. Transitive: If A ∼ B and B ∼ C, then A ∼ C.

Any relation with these three properties is called an equivalence relation.
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Definition 2.6. For any n ∈ N, let Jn be the set {1, 2, . . . , n}. We say

1. A is finite if A ∼ Jn for some n. (Note that {∅} is finite.)

2. A is infinite if A is not finite.

3. A is countable if A ∼ N.

4. A is uncountable if A is neither finite nor countable.

5. A is at most countable if A is finite or countable.

For two finite sets A and B, A ∼ B if, and only if, A and B have the same number of elements.

Example 2.7

The set of all integers Z is countable. (For the wary reader, consider the function

f(n) =

{
n
2 (n even),

−n−1
2 (n odd)

which sets up 1-1 correspondence between Z and N.

Remark 2.8. It’s obvious, then, that a finite set cannot be equivalent to any of its proper subsets. However, it
is possible with infinite sets (we just showed this very case in Example 2.7). This leads to another definition of
infinite sets: a set A is infinite if A is equivalent to one of its proper subsets.

Definition 2.9. A function f with domain N is called a sequence, often written {xn} if f(n) = xn. If A is a
set and if xn ∈ A for all n ∈ N, then {xn} is a sequence in A, or a sequence of elements in A. Notice that
every countable set can be seen as the range of a sequence of distinct terms.

Theorem 2.10

Every infinite subset of a countable set A is countable.

Definition 2.11. Let A and Ω be sets, and suppose that with each element α of A there is an associated
subset of Ω, denoted Eα. The union of the sets Eα is defined to be the set S such that x ∈ S if, and only if,
x ∈ Eα for at least one α ∈ A. This is notated by

S =
⋃
α∈A

Eα.

If A consists of the integers 1, 2, . . . , n, we write

S =

n⋃
i=1

Ei = E1 ∪· · · ∪ En.

If A = N, we notate the countable union as follows:

S =

∞⋃
i=1

Ei.

The intersection of the sets Eα is defined to be the set P such that x ∈ P if, and only if, x ∈ Eα for every
α ∈ A. We notate similarly with

P =
⋂
α∈A

Eα

9
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or

P =

n⋂
i=1

Ei = E1 ∩ E2 ∩· · · ∩ En

or

P =

∞⋂
i=1

Ei.

If A ∩B ̸= ∅, we say that A and B intersect; otherwise they are disjoint.

Example 2.12

Suppose E1 = {1, 2, 3} and E2 = {2, 3, 4}. Then E1 ∪ E2 = {1, 2, 3, 4} and E1 ∩ E2 = {2, 3}.

Let A = {x ∈ R | 0 < x ≤ 1}. For every x ∈ A, let Ex = {y ∈ R | 0 < y < x}. Then

1. Ex ⊂ Ez if, and only if, 0 < x ≤ z ≤ 1;

2.
⋃

x∈A Ex = E1;

3.
⋂

x∈A Ex = ∅.

Remark 2.13. Unions and intersections behavior very similarly to sums and products. Naturally, the commuta-
tive and associative laws hold:

A ∪B = B ∪A A ∩B = B ∩A

(A ∪B) ∪ C = A ∪ (B ∪ C) (A ∩B) ∩ C = A ∩ (B ∩ C)

The distributive law also holds:
A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

Finally, the following relations hold:

1. A ⊂ A ∪B,

2. A ∩B ⊂ A,

3. A ∪ ∅ = A, A ∩ ∅ = ∅,
4. If A ⊂ B, then A ∪B = B, A ∩B = A

Theorem 2.14

The countable union of countable sets is countable.

Remark 2.15. To prove this, consider the countable union S =
⋃∞

n=1 En, and let every countable set En be a ar-
ranged in a sequence {xnk}. Then we can arrange the elements of S in a sequence: x11, x21, x12, x31, x22, x13, x41, x32, x23, x14, . . . .
(See Rudin pg. 29)

Corollary 2.16

If A is at most countable and for every α ∈ A, Bα is at most countable. Then T =
⋃

α∈A Bα is at most
countable.
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Theorem 2.17

Let A be a countable set. The set of all n-tuples {(a1, . . . , an) | ak ∈ A} is countable.

Applying this theorem with n = 2 gives an important result:

Corollary 2.18

The set of rational numbers Q is countable.

Theorem 2.19

The set A of all sequences whose elements are 0 and 1 is uncountable.

Remark 2.20. To prove, take a countable subset E of A, where E is a set of sequences {s1, s2, . . . }. Then
construct a sequence s as follows: the nth term of s is 1 if the nth term of sn is 0, and vice versa. Then s differs
from every element of E in at least one place so s ̸∈ E. Clearly, s ∈ A so E is a proper subset of A. Thus every
countable subset of A is proper, so A is uncountable.

This type of argument is known as Cantor’s digaonal process; for sequences s1, s2, . . . are placed in an array,
it’s the elements on the diagonal involved in the construction of a new sequence.

A direct corollary is that the real numbers R are uncountable (via the binary representation of real numbers).

2.2 Metric Spaces

Definition 2.21. Let X be a set (whose elements we call points) is said to be a metric space if there exists
a real-valued distance function, or metric, such that for any p, q ∈ X:

1. d(p, q) > 0 if p ̸= q; d(p, p) = 0;

2. d(p, q) = d(q, p);

3. d(p, q) ≤ d(p, r) + d(r, q) for any r ∈ X.

Example 2.22 (Metric Spaces)

1. The euclidean spaces Rk, especially R (the real line) and R2 (the complex plane), are metric spaces
with the euclidean distance defined by

d(x⃗, y⃗) = |x⃗− y⃗| (x⃗, y⃗ ∈ Rk)

2. The discrete metric is defined as

d(p, q) =

{
1 p = q

0 p ̸= q

3. Subsets of Rk are metric spaces.

11
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Example 2.23 (Lp spaces)

An important example of metric spaces (that we’ll see in later chapters) are the Lp spaces. For any real
number p ≥ 1, define Lp to be the set of all (say, real-valued) functions

Lp = {f : A → R |
∫
A

|f(x)|p dx < ∞}

We define the Lp norm to be

∥f∥p =

(∫
A

|f(x)|p dx

)1/p

.

And a distance function

dp(f, g) = ∥f − g∥ =

(∫
A

|f(x)− g(x)|p dx

)1/p

It can be shown that Lp is a metric, as long as functions that are almost equal are treated as equal (thus
having distance 0). It turns out that the Lp spaces have many nice properties:

• They are complete (see chapter 3).

• They are vector spaces.

• They have an inner product, a notion of orthogonality, and Cauchy-Schwartz holds for L2.

Definition 2.24. In R, we have open intervals (called segments):

(a, b) = {x ∈ R | a < x < b};

closed intervals (called intervals):
[a, b] = {x ∈ R | a ≤ x ≤ b};

and half-open intervals: [a, b) and (a, b]. If ai < bi for i = 1, . . . , k, a k-cell is the set of all points

{x⃗ = (x1, . . . , xk) ∈ Rk | ai ≤ xi ≤ bi (1 ≤ i ≤ k)}.

A 1-cell is an interval, a 2-cell a rectangle, and so on. If x⃗ ∈ Rk and r > 0, the open (or closed) ball B
centered at x⃗ with radius r is defined to be the set

Br(x⃗) = {y⃗ ∈ Rk : |y⃗ − x⃗| < r (or |y⃗ − x⃗| ≤ r)}

A set E ⊂ Rk is convex if λx⃗+ (1− λ)y⃗ ∈ E whenever x⃗, y⃗ ∈ E and 0 < λ < 1.

Example 2.25 (Balls are convex!)

If |y⃗ − x⃗| < r, |z⃗ − x⃗| < r, and 0 < λ < 1, we have

|λy⃗ + (1− λ)z⃗ − x⃗| = |λ(y⃗ − x⃗) + (1− λ)(z⃗ − x⃗)|
≤ λ|y⃗ − x⃗|+ (1− λ)|z⃗ − x⃗|
< λr + (1− λ)r

= r

A similar argument shows that closed balls and k-cells are convex.
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Definition 2.26. This one’s a doozy: Let X be a metric space with all points and sets below elements and
subsets of X.

1. A neighborhood Nr of p is the set consisting of all q such that d(p, q) < r for some radius r > 0.

2. A point p is a limit point of the set E if every neighborhood of p contains a point q ≠ p that is an
element of E.

3. A point p in E is called an isolated point if p is not a limit point of E.

4. The set E is closed if it contains all its limit points.

5. A point p is an interior point if p has a neighborhood N ⊂ E.

6. The set E is open if every point of E is an interior point.

7. The complement of E, Ec, is the set of all points p ∈ X such that p ̸∈ E.

8. A closed set E is perfect if every point of E is a limit point of E.

9. E is bounded if there exists some real number M and a point q ∈ X such that d(p, q) < M for all
p ∈ E. Note that q need not be in E!

10. E is dense in X if every point of X is either a limit point of E, a point of E (or both!)

Theorem 2.27

Every neighborhood is an open set.

Remark 2.28. This follows from the Triangle Inequality. Let E = Nr(p) and note that for any q ∈ E, d(p, q) < r
is equivalent to saying d(p, q) = r − h for some h > 0. We use this h as the radius of some neighborhood of
q ∈ E.

Theorem 2.29

If p is a limit point of E, then every neighborhood of p contains infinitely many points of E.

Remark 2.30. If we suppose there is some neighborhood N of p with only finitely many points of E, we
can pick and choose from that list of points (we’ll call it q1, . . . , qn). A contradiction arises when we pick
r = min1≤m≤n d(p, qm) to be the radius of Nr(p).

Corollary 2.31

A finite set has no limit points.

Theorem 2.32 (DeMorgan)

Let {Eα} be a colletion of sets Eα. Then(⋃
α

Eα

)c

=
⋂
α

(Ec
α).

13
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Remark 2.33. When proving equality of two sets A = B, it’s often the cases that a proof proceeds by showing
A ⊂ B and then B ⊂ A. Thus the proof of this theorem consists of showing that if x ∈

(⋃
α Eα

)c
, then

x ∈
⋂

α(E
c
α) and vice versa.

Theorem 2.34

A set is open if, and only if, its complement is closed.

Remark 2.35. Note that a set can be both open and closed at the same time (∅ and R are the typical examples).

Corollary 2.36

A set is closed if, and only if, its complement is open.

It now seems natural to think about what happens when you take unions and intersections of sets.

Theorem 2.37

1. The arbitrary union of open sets
⋃

α Eα is open.

2. The arbitrary intersection of closed sets
⋂

α Eα is closed.

3. The finite intersection of open sets
⋂n

i=1 Ei is open.

4. The finite union of closed sets
⋃n

i=1 Ei is closed.

Example 2.38 (Unions and Intersections of Closed and Open Sets)

Notice that (3) and (4) only apply to the finite intersection and union.

1. For any n ∈ N, the open interval (−1/n, 1/n) is open. However, we know that the intersection (by
A.P.)

∞⋂
i=1

(−1/n, 1/n) = {0},

is not open.

2. Similarly, the singletons are closed, so each point 1/n is closed, where n ∈ N. However, the set

{ 1
n
| n ∈ N}

has limit point 0, which is not in the set.

Definition 2.39. Let X be a metric space and E ⊂ X. We denote the set of limit points of E by E′, and
define the closure of E to be E = E ∪ E′.

Obviously, the closure of a set contains the set itself and it seems natural that the closure of a set must be
closed itself.

14
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Theorem 2.40

If X is a metric space and E ⊂ X, then

1. E is closed.

2. E = E if, and only if, E is closed.

3. E ⊂ F for every closed set F ⊃ E.

By (1) and (3), the closure of E is the smallest closed set containing E.

Remark 2.41. The proofs of (2) and (3) are trivial, but it is worth noting that Rudin proves (1) by showing
that the complement of E is open. This approach can be very useful when showing a set is closed.

Theorem 2.42

Let E be a nonempty set of real numbers that is bounded above. Let y = supE. Then y ∈ E; thus
y ∈ E if E is closed.

So far, the notions of open and closed exist in a global sense (in say, a metric space X). But now consider
the case when E ⊂ Y ⊂ X. We know that subspaces of metric spaces are themselves metric spaces, so Y is
also a metric space.

Now, say E is open in X. From the definition of a set being open, for every p ∈ E, there exists some real
number r > 0 such that a neighborhood around p of radius r is completely contained in E, i.e. d(p, q) < r
implies q ∈ E.

It seems perfectly reasonable to now consider the case when E is open in Y , but not necessarily in X. We
say E is open relative to Y if for every p ∈ E, there exists some r > 0 such that d(p, q) < r implies p ∈ Y .

Example 2.43

1. The open interval (a, b), where a, b ∈ R, a < b is open relative to R, but not open in R2.

2. The half-open interval (0, 1] is open relative to [−1, 1] but not open in R.

From these examples, another way of thinking about relative openness seems to creep around the cor-
ner..

Theorem 2.44

Suppose Y ⊂ X. A subset E ⊂ Y is open relative to Y if, and only if, there exists some set G ⊂ X that
is open in X such that

E = Y ∩G.

Remark 2.45. To prove the forward direction, we use the definition of relative openness to obtain a rp for every
point p ∈ E, let Vp = {q ∈ X | d(p, q) < rp} and let G be the union of open neighborhoods G =

⋃
p Vp. We then

show that E ⊂ Y ∩G and Y ∩G ⊂ E. The backwards direction just consists of checking the conditions from
the definition of relative openness of a set.

15
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2.3 Compactness

Definition 2.46. Let E be a subset of a metric space X. An open cover of E is a collection {Gα} of open
subsets of X such that

E ⊂
⋃
α

Gα.

Definition 2.47. A subset K of a metric space X is said to be compact if every open cover of K has a
finite subcover.

In other words, if {Gα} is an open cover of K, there are finitely many indices i1, . . . , in such that

n⋃
j=1

Gij ⊃ K.

We have seen so far that the notions of open and closed depend on the space in which a set is embedded.
However, as we’ll soon see, compactness works differently; compactness depends only on the set itself, not
any embedding space.

Theorem 2.48

Suppose K ⊂ Y ⊂ X. Then K is compact relative to X if, and only if, K is compact relative to Y
(where a set being relatively compact has a similar definition to it being relatively open).

Remark 2.49. By this theorem, we are able to regard compact spaces in their own right without further context.

Theorem 2.50

Compact spaces are closed.

Remark 2.51. The proof of this theorem proceeds by showing the complement of a compact space is open. Let
K be compact, p ∈ Kc, and q ∈ K. Let Vq and Wq be neighborhoods of p and q, respectively, each with radius
less than 1

2
d(p, q). Now, because K is compact, there exist q1, . . . , qn such that

⋃n
i=1 Wqi is an open cover of K.

Now, consider the neighborhoods {Vqi}, where each Vqi is a neighborhood of p with radius less than d(p, qi).
Then

⋂n
i=1 Vqi ⊂ Kc is a neighborhood of p contained entirely in Kc. So p is an interior point and thus Kc is

open. (See Figure 1)

Theorem 2.52

Closed subsets of compact sets are compact.

Remark 2.53. Let E be a closed subset of a compact space K. Note: K being closed is a necessary condition!
Let {Vα} be an open cover of F . Since F c is open, it follows that {Vα} ∪ F c is an open cover of K. Since K is
compact, we can obtain a finite subcover

⋃n
j=1 Vij ∪F c of K. Since every element of F is obviously not in F c, it

follows that
⋃n

j=1 Vij is an open cover of F .

Corollary 2.54

If F is closed and K compact, then F ∩K is compact.

We will now begin to build machinery that is not only useful in its right, but also works to formulate a very
important result of this chapter.
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Figure 1: Compact sets are closed.

Theorem 2.55 (Finite Intersection Theorem)

If {Kα} is a collection of compact subsets of a metric space X such that any intersection of finitely
many elements of {Kα} is nonempty, then the arbitrary intersection

⋂
α Kα is also nonempty.

Remark 2.56. To prove, fix a member K1 of Kα and for each Kα, let Gα = Kc
α. Assume, for sake of

contradiction, that no single point of K1 belongs to every Kα. Then the collection {Gα} forms an open cover of
the compact set K1, so we can find a finite subcover {Gαi}ni=1 of K1. But this means

K1 ∩Kα1 ∩· · · ∩Kαn

is empty, a contradiction!

Corollary 2.57 (Nested Intersection Theorem)

If {Kn} is a sequence of nonempty compact sets such that Kn ⊃ Kn+1 for n = 1, 2, . . . , then
⋂∞

i=1 Ki is
nonempty.

Theorem 2.58

Every infinite subset of a compact set K has a limit point in K.

Remark 2.59. To prove, suppose that E ⊂ K does not have any limit points in itself. Then every point in E
has a neighborhood with exactly one element in E. The collection of those neighborhoods is an open cover for
E, but obviously does not have a finite subcover.

17
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Theorem 2.60 (Lemmas for Heine-Borel)

1. If {In} is a sequence of (closed) intervals in R such that In ⊃ in+1 for n = 1, 2, . . . , then
⋂∞

n=1 In
is not empty.

2. Let k ∈ N. If {In} is a sequence of k-cells such that In ⊃ in+1 for n = 1, 2, . . . , then
⋂∞

n=1 In ̸= ∅.

3. Every k-cell is compact.

Theorem 2.61 (Heine-Borel Theorem)

Let E in Rk. Then the following are equivalent:

1. E is closed and bounded.

2. E is compact.

3. Every infinite subset of E has a limit point in E.

Remark 2.62. It should be noted that (2) and (3) are equivalent in every metric space, but (1) does not, in
general, imply (2) and (3).

Theorem 2.63 (Weierstrass)

Every bounded infinite subset of Rk has a limit point in Rk.

Remark 2.64. If E is a bounded infinite subset of Rk, then it is an infinite subset of a k-cell, which is compact.
Thus E has a limit point in that k-cell.

2.4 Perfect Sets

Theorem 2.65

Every nonempty perfect set in Rk is uncountable.

Remark 2.66. The perfect set P has limit points, and is thus infinite. If P were to be countable, we can
enumerate the points x1, x2, . . . and inductively construct the following sequence of neighborhoods {Vn}:

1. V1 is any neighborhood of x1.

2. Suppose Vn was constructed so that Vn ∩ P ≠ ∅. Every point of P is a limit point, so there exists a
neighborhood Vn+1 such that

(a) Vn+1 ⊂ Vn,

(b) xn ̸∈ Vn,

(c) Vn+1 ∩ P ̸= ∅.

3. We can continue with our construction, as (c) satisfies the induction hypothesis.

Let Kn = Vn ∩ P . Vn is closed and bounded, thus compact. By our construction, xn ̸∈ Vn+1, so there does not
exist a point p ∈ K such that p ∈

⋂∞
n=1 Kn. But Kn ⊂ P , so the intersection

⋂∞
n=1 is empty. But each Kn is

nonempty by (c) and Kn ⊃ Kn+1 by (a), so we have a contradiction with Corollary 2.57.
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Corollary 2.67

Every open and closed interval in R is uncountable. In particular, the set of all real numbers is
uncountable.

Example 2.68 (The Cantor Set)

We will construct a perfect set in R that does not contain any open intervals:

1. Let E0 = [0, 1] and remove the segment ( 13 ,
2
3 ). Then let

E1 =

[
0,

1

3

]
∪
[
2

3
, 1

]
.

2. Remove the middle thirds of these intervals, and let E2 be the union[
0,

1

9

]
∪
[
2

9
,
3

9

]
∪
[
6

9
,
7

9

]
∪
[
8

9
, 1

]
.

3. We continue this construction to obtain a sequence of compact sets En such that

(a) E1 ⊃ E2 ⊃ E3 ⊃· · ·
(b) En is the union of 2−n intervals, each of length 3−n.

The set P =
⋃∞

n=1 En is called the Cantor Set; P is clearly compact, and nonempty by the Finite
Intersection Theorem.

• Notice that (
3k + 1

3m
,
3k + 2

3m

)
∩ P = ∅,

where k,m ∈ N. Notice that every open interval (α, β) contains a segment of the form
(
3k+1
3m , 3k+2

3m

)
with 3−m < β−α

6 , so P does not contain any open intervals.

• To show P is perfect, let x ∈ P , S be any neighborhood of X and In the interval of En containing
x. We can choose n large enough that In ⊂ S (remember that In gets smaller as n increases), and
let xn be the endpoint of In such that x ̸= xn. We know from the construction of P that xn ∈ P ,
and thus x is a limit point of P !

An interesting property of the Cantor set is that it is an example of an uncountable set that has measure
zero.

2.5 Connected Sets

Definition 2.69. Two subsets A,B of a metric space X are separated if both

A ∩B = ∅ and A ∩B = ∅.

A set E ⊂ X is connected if E is not a union of two nonempty separated sets.
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Remark 2.70. Obviously, separated sets are disjoint, but not every pair of disjoint set is separated! An
illustrative example is as follows: [0, 1] and (1, 2) are not separated since 1 is a limit point of (1, 2), but (0, 1)
and (1, 2) are separated.

Theorem 2.71

A subset E of R is connected if, and only if, for any x, y ∈ E with x < z < y, it must follow that z ∈ E.
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3 Sequences and Series

Prototypical example for this section: Alternative harmonic series. What about it?

3.1 Convergent Sequences

Definition 3.1. A sequence {pn} in a metric space X is said to converge to a point p if for every ϵ > 0,
there exists a N ∈ N such that d(pn, p) < ϵ for all n ≥ N .

In this case, we also say p is the limit of {pn}, pn → p, or limn→∞ pn = p.

If {pn} does not converge, it is said to diverge.

Remark 3.2. The notion of convergence is dependent on the embedding space of the sequence. For example,
{1/n | n ∈ N} converges in R but not (0,∞).

The set of all point {pn} is called the range of {pn}. If the range is bounded, was say the sequence itself is
bounded.

Example 3.3

1. If sn = 1/n, then limn→∞ sn = 0. The range is infinite, and the sequence is bounded.

2. If sn = n2, then the sequence {sn} is unbounded, is divergent, and has infinite range.

3. If sn = 1 + (−1)n

n , the sequence converges to 1, is bounded, and has infinite range.

4. If sn = in, the sequence {sn} is divergent, is bounded, and has finite range.

5. If sn = 1, then {sn} converges to 1, is bounded, and has finite range.

Theorem 3.4

Let {pn} be a sequence in a metric space X.

1. Tail phenomenon: {pn} converges to p ∈ X if, and only if, every neighborhood of p contains pn
for all but finitely many n.

2. Uniqueness of limits: If p, p′ ∈ X, and if {pn} converges to p and p′, then p′ = p.

3. Convergent sequences are bounded: If {pn} converges, then {pn} is bounded.

4. Limit points are the limit of a sequence: If E ⊂ X and if p is a limit point of E, then there
is a sequence {pn} in E such that p = limn→∞ pn.

Remark 3.5. The proofs proceed as follows:

1. If pn → p, then a neighborhood around p of radius r contains all but at most N elements of {pn}.
Assuming the converse, then given some ϵ > 0, we know the neighborhood of radius ϵ contains all but
finitely many n elements of pn, so we choose N ≥ n.

2. For all ϵ > 0, there exists N1, N2 ∈ N such that d(pn, p1) <
ϵ
2
and d(pn, p2) <

ϵ
2
. So

d(p1, p2) ≤ d(p1, pn) + d(pn, p2) <
ϵ

2
+

ϵ

2
= ϵ.
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3. We know that there existsN ∈ N such that d(pn, p) < 1 for all n ≥ N . Letting r = max{1, d(p1, p), . . . , d(pN , p)},
we have that d(pn, p) < r for all n ∈ N.

4. For every n ∈ N, there is a point pn ∈ E such that d(pn, p) <
1
n
. Given ϵ > 0, choose N such that N > 1

ϵ
.

If n > N , then d(pn, p) < ϵ. Note: this technique of choosing pn such that d(pn, p) <
1
n
is very useful.

Theorem 3.6

Suppose {sn}, {tn} are complex sequences, and limn→ sn = s, limn→∞ tn = t. Then

1. limn→∞(sn + tn) = s+ t;

2. limn→∞ csn = cs, limn→∞(c+ sn) = c+ sn, for any number c.

3. limn→∞ sntn = st;

4. limn→∞
1
sn

= 1
s , provided s ̸= 0.

Theorem 3.7

1. Suppose x⃗n ∈ Rk and x⃗n = (α1,n, . . . , αk,n). Then {x⃗n} converges to x⃗ = (α1, . . . , αk) if, and only
if

lim
n→∞

αj,n = αj (1 ≤ j ≤ k).

2. Suppose {x⃗n}, {y⃗n} are sequences in Rk, {βn} is a sequence of real numbers, and x⃗n → x⃗, y⃗n → y⃗n,
and βn → β. Then

lim
n→∞

(x⃗n + y⃗n) = x⃗+ y⃗, lim
n→∞

x⃗n · y⃗n = x⃗ · y⃗, lim
n→∞

βnx⃗n = βx⃗.

Remark 3.8. The forward direction of (1) follows directly from the definition of the norm. Proving the converse,
for each ϵ > 0 there exists a N ∈ N such that if n ≥ N, then

|αj,n − αj | <
ϵ√
k

for (1 ≤ j ≤ k). Thus n ≥ N implies

|x⃗n − x⃗| =

{
k∑

j=1

|αj,n − αj |2
}1/2

< ϵ.

(2) follows immediately from (1) and Theorem 3.6.

3.2 Subsequences

Definition 3.9. Given a sequence {pn}, consider the increasing sequence {nk} of positive integers. The
sequence {pnk

} is called a subsequence of {pn}. If {pnk
} converges, its limit is called a subsequential limit of

{pn}.

Remark 3.10. Obviously, {pn} converges to p if, and only if, every subsequence of {pn} converges to p. Note
that {pn} is a subsequence of itself.
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Theorem 3.11 (Subsequences and Compactness)

1. A sequence in a compact metric space X has a subsequence that converges to a point in X.

2. Every bounded sequence in Rk has a convergent subsequence.

Remark 3.12. The proof of (1) is trivial when the range of {pn} is finite. Otherwise, the range of {pn} is an
infinite subset of a compact set, and thus has a limit point p. Since every neighborhood of p contains infinitely
many points in the range of {pn}, we can choose n1 ∈ N such that d(pn1 , p) < 1, and ni > ni−1 such that
d(pni , p) <

1
i
. (This argument should look familiar!) Moreover, (2) follows immediately from (1).

Theorem 3.13

The subsequential limits of a sequence {pn} in a metric space X form a closed subset of X.

Remark 3.14. The proof of this theorem involves showing that a limit point q of E∗, the set of all subsequential
limits of a sequence {pn}, is contained in E∗. We first start by choosing some n1 ∈ N such that pn1 ≠ q, and
let δ = d(q, pn1). If we can’t find one, we’re done. Assume inductively that n1, . . . , ni−1 are already chosen.
Because q is a limit point of E∗, there exists some x ∈ E∗ such that d(x, q) < 2−iδ. Since x is a subsequential
limit of {pn}, there exists an ni > ni−1 such that d(x, pni) < 2−iδ. Then

d(q, pni) ≤ d(q, x) + d(x, pni) < (2−i + 2−i)δ

for i ∈ N. (This argument should look really familiar!)

3.3 Cauchy Sequences

Definition 3.15. A sequence {pn} in a metric space X is Cauchy if for every ϵ > 0, there exists a N ∈ N
such that d(pn, pm) < ϵ for all n,m ≥ N .

Example 3.16

{ 1
n | n ∈ N} is Cauchy. It is convergent in R but not convergent in (0,∞).

{3, 3.1, 3.14, 3.141, 3.1415, 3.14159, . . . }, where each successive term has one more digit of π is Cauchy.
It is convergent in R but not convergent in Q.

Definition 3.17. Let E be a nonempty subset of a metric space X, and let

S = {d(p, q) | p, q ∈ E}.

The supremum of S is called the diameter of E.

Remark 3.18. If {pn} is a sequence in X and E = {pN , pN+1, . . . }, then it’s clear that {pn} is a Cauchy
sequence if, and only if, limN→∞ diam EN = 0.
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Theorem 3.19

1. diam E = diam E.

2. If {Kn} is a sequence of compact sets such that Kn ⊃ Kn+1 for all n ∈ N, and if

lim
n→∞

diam Kn = 0,

then
⋂∞

n=1 Kn consists of exactly one point.

Remark 3.20. Proving (1) consists of showing diam E ≤ diam E and diam E ≤ diam E. Proving (2) is
immediate from the Finite Intersection Theorem and a quick contradiction when assuming that the intersection
has more than one point.

This machinery allows us to formalize an important intuition about Cauchy and convergent sequences: a
limit is explicitly involved in the latter, but not the former.

Theorem 3.21

1. Every convergent sequence is Cauchy.

2. Every Cauchy sequence converges in a compact metric space.

3. In Rk, every Cauchy sequence converges.

Definition 3.22. A metric space is said to be complete if every Cauchy sequence in it converges.

Example 3.23

1. All compact and Euclidean metric spaces are complete.

2. Every closed subset of a complete metric space is complete.

3. Q is not complete with d(x, y) = |x− y|.

Definition 3.24. A sequence {sn} of real numbers is said to be

1. monotonically increasing if sn ≤ sn+1 for n ∈ N;

2. monotonically decreasing if sn ≥ sn+1 for n ∈ N.

Theorem 3.25 (Monotone Convergence Theorem)

A monotonic sequence converges if, and only if, it is bounded.

Remark 3.26. Most of the proof is immediate. Suppose sn ≤ sn+1 and {sn} is bounded. Then we can let s be
the least upper bound of {sn}. Because s = sup{sn}, for each ϵ > 0 there exists an N ∈ N such that

s− ϵ < sN ≤ s.

(Otherwise, s− ϵ would be an upper bound.) Then for all n ≥ N , we have that s− ϵ < sn ≤ s.
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3.4 Upper and Lower Limits

Definition 3.27. If {sn} is a sequence of real numbers such that for every M ∈ R, there exists an N ∈ N
such that n ≥ N implies sn ≥ M , then we write

sn → +∞.

A similar definition applies for limits to −∞.

Definition 3.28. Let {sn} ∈ R and E = {x ∈ R | snk
→ x}. The set E contains all subsequential limits and

possibly +∞,−∞. The upper and lower limits of {sn} are defined as follows:

lim sup
n→∞

sn = supE, lim inf
n→∞

sn = inf E.

Theorem 3.29

Let {sn} be a sequence of real numbers and E be defined as above. Then lim sup sn has the following
two properties:

1. lim sup sn ∈ E,

2. If x > lim sup sn, there is an N ∈ N such that n ≥ N implies sn < x.

Of course, lim inf has similar properties.

Example 3.30

1. Let {sn} be a sequence of all the rationals (we can obtain such a sequence because Q is countable).
Then every real number is a subsequential limit and lim supn→∞ sn = +∞, lim infn→∞ sn = −∞.

2. Let sn = (−1)n

1+1/n . Then lim supn→∞ sn = 1, and lim infn→∞ sn = −1.

3. For {sn} ∈ R, it’s the case that limn→∞ sn = s if, and only if

lim sup
n→∞

sn = lim inf
n→∞

sn = s.

Theorem 3.31

If sn ≤ tn for n ≥ N , where N is fixed, then

lim inf
n→∞

sn ≤ lim inf
n→∞

tn,

lim sup
n→∞

sn ≤ lim sup
n→∞

tn
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Example 3.32

If p > 0, then limn→∞
1
np = 0.

If p > 0, then limn→∞ n
√
p = 1.

limn→∞
n
√
n = 1.

If p > 0 and α ∈ R, then limn→∞
nα

(1+p)n = 0.

If |x| < 1, then limn→∞ xn = 0.

3.5 Series

Definition 3.33. Given a sequence {an}, the infinite sum {a1 + a2 +· · · =
∑∞

n=1 an is an infinite series or
series. The numbers sn =

∑n
k=1 ak are the partial sums of the series, and if {sn} converges to s, then the

series converges and write
∞∑

n=1

an = s.

If {sn} diverges, the series is said to diverge.

The Cauchy Criterion can be restated in the following form:

Theorem 3.34∑
an converges if, and only if, for every ϵ > 0, there exists a N ∈ N such that∣∣∣∣∣

m∑
k=n

ak

∣∣∣∣∣ ≤ ϵ

if m ≥ n ≥ N.

In other words:

Theorem 3.35 (The Trivial Test)

If
∑

an converges, then limn→∞ an = 0.

Remark 3.36. However, an → 0 is not a sufficient condition for convergence of
∑

an. For example, the series∑∞
n=1

1
n
diverges.

Theorem 3.37 (Comparison Test)

1. If |an| ≤ cn for n ≥ N0, where N0 ∈ N, and if
∑

cn converges, then
∑

an converges.

2. If an ≥ dn ≥ 0 for n ≥ N0, and if
∑

dn diverges, then
∑

an alos diverges.

3.6 Series of Non-negative Terms
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Theorem 3.38 (Geometric Series)

If 0 ≤ x < 1, then
∞∑

n=0

xn =
1

1− x
.

If x ≥ 1, the series diverges.

Theorem 3.39 (Condensation Test)

Suppose a1 ≥ a2 ≥· · · ≥ 0. Then the series
∑∞

n=1 an converges if, and only if, the series

∞∑
k=0

2ka2k = a1 + 2a2 + 4a4 +· · ·

converges.

Theorem 3.40 (p-series)∑
1
np converges if p > 1 and diverges if p ≤ 1.

Theorem 3.41

If p > 1,
∞∑

n=2

1

n(log n)p

converges; if p ≤ 1, the series diverges.

3.7 The Number e

Definition 3.42. The number

e =

∞∑
n=0

1

n!
.

Theorem 3.43

lim
n→∞

(
1 +

1

n

)n

= e.

Theorem 3.44

e is irrational.

3.8 The Root and Ratio Tests
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Theorem 3.45 (Root Test)

Given
∑

an, put α = lim supn→∞
n
√
|an|. Then

1. If α < 1,
∑

an converges;

2. α > 1,
∑

an diverges;

3. If α = 1, the test is inconclusive.

Theorem 3.46 (Ratio Test)

The series
∑

an

1. converges if lim supn→∞

∣∣∣an+1

an

∣∣∣ < 1,

2. diverges if
∣∣∣an+1

an

∣∣∣ ≥ 1 for all n ≥ n0, where n0 is a fixed integer.

3. If lim an+1/an = 1, the test is inconclusive.

Example 3.47

The series 1
2 + 1

3 + 1
22 + 1

32 + 23

+
33

+ · · · is shown to be convergent by the root test, but the ratio test is
inconclusive.

The same is true for the series 1
2 + 1 + 1

8 + 1
4 + 1

32 + 1
16 +· · ·.

Remark 3.48. The ratio test is usually easier to apply than the root test, but the root test has wider scope.
In other words, whenever the ratio test shows convergence, the root test does too. Whenever the root test is
inconclusive, the ratio test is too.

Theorem 3.49

For any sequence {cn} of positive numbers:

1. lim infn→∞
cn+1

cn
≤ lim infn→∞ n

√
cn,

2. lim supn→∞
n
√
cn ≤ lim supn→∞

cn+1

cn
.

3.9 Power Series

Definition 3.50. Given {cn} ∈ C, the series

∞∑
n=0

cnz
n

is called a power series, with coefficients cn. The series will converge or diverge based on z; every power
series has an associated circle of convergence, such that the power series will converge if z is in the interior of
the circle and diverge otherwise.
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Theorem 3.51

Given the power series
∑

cnz
k, put

α = lim sup
n→∞

n
√
|cn|, R =

1

α
.

(If α = 0, then R = +∞; if α = +∞, then R = 0.)
∑

cnz
n converges if |z| < R, and diverges if |z| > R.

Remark 3.52. The proof consists of applying the root test to an = cnz
n:

lim sup
n→∞

n
√

|an| = |z| lim sup
n→∞

n
√
cn =

|z|
R

.

Note that we can also use the ratio test to obtain a radius of convergence, but it might not capture all z
values for which the power series converges.

Example 3.53

1.
∑

nnzn has R = 0.

2.
∑

zn

n! has R = +∞. (It is easier to use the ratio test in this example).

3.
∑

zn

n has R = 1, and diverges if z = 1 but converges for other |z| = 1.

4.
∑

zn has R = 1. If |z| = 1, the series diverges since the limit of zn is not 0.

5.
∑

zn

n2 has R = 1, and converges for all z with |z| = 1, by comparison with 1/n2.

3.10 Summation By Parts

Theorem 3.54

Let {an}, {bn} be sequences, and let An =
∑n

k=0 ak if n ≥ 0; and let A−1 = 0. Then if 0 ≤ p ≤ q, we
have

q∑
n=p

anbn =

q−1∑
n=p

A(bn − bn+1) +Aqbq −Ap−1bp.

Remark 3.55. Summation by parts is especially useful when investigating series of the form
∑

anbn, particularly
when {bn} is monotonic.

Theorem 3.56

Suppose

1. The partial sums An of
∑

an form a bounded sequence;

2. b0 ≥ b1 ≥ b2 ≥· · ·;

3. limn→∞ bn = 0.

Then
∑

anbn converges.
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Theorem 3.57 (Alternating Series Test)

Suppose

1. |c1| ≥ |c2| ≥ |c3| ≥· · ·;

2. c2m−1 ≥ 0, c2m≤0, for m ∈ N.

3. limn→∞ cn = 0.

Then
∑

cn converges.

Example 3.58 (Alternating Harmonic Series)

Let an = (−1)n

n . Then
∑

an converges.

Theorem 3.59

Suppose the radius of convergence of
∑

cnz
n is 1, and suppose c0 ≥ c1 ≥ c2 ≥· · ·, and limn→∞ cn = 0.

Then
∑

cnz
n converges at every point on the circle |z| = 1, except possibly at z = 1.

3.11 Absolute Convergence

Definition 3.60. A series
∑

an converges absolutely if the series
∑

|an| converges.

Remark 3.61. The comparison, root, and ratio tests are really tests for absolute convergence and cannot give
any information about non-absolutely convergent series.

3.12 Addition and Multiplication of Series

Theorem 3.62

If
∑

an = A and
∑

bn = B, then
∑

(an + bn) = A+B, and
∑

can = cA for any fixed c.

Definition 3.63 (Cauchy). Given
∑

an and
∑

bn, the Cauchy product of the two series is

cn =

n∑
k=0

akbn−k

Remark 3.64. If An =
∑n

k=0 ak, Bn =
∑n

k=0 bk, Cn =
∑n

k=0 ck, and An → A, Bn → B, and Cn → C, it is
not necessarily the case that {Cn} converges to AB.

Example 3.65

The series
∞∑

n=0

(−1)n√
n+ 1

= 1− 1√
2
+

1√
3
− 1√

4
+· · ·

converges, but the Cauchy product of the series with itself does not converge.
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Theorem 3.66

Suppose

1.
∑∞

n=0 an converges absolutely,

2.
∑∞

n=0 an = A,

3.
∑∞

n=0 bn = B,

4. c =
∑n

k=0 akbn−k for n = 0, 1, . . . .

Then
∞∑

n=0

cn = AB

In other words, the product of two convergent series converges to the the product of their individual limits if
at least one of the two series converges absolutely.

Theorem 3.67

If the series
∑

an,
∑

bn, and cn converge to A,B,C, and cn = a0bn +· · ·+ anb0, then C = AB.

Here, no assumptions are made about absolute convergence.

3.13 Rearrangements

Definition 3.68. Let {kn} be a sequence in which every positive integer appears exactly once. Putting
a′n = akn

, we say that
∑

a′n is a rearrangement of
∑

an.

Example 3.69

Consider the convergent series

1− 1

2
+

1

3
− 1

4
+· · ·

and one of its rearrangements

1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+

1

9
+

1

11
− 1

6
+· · ·

in which two positive terms are always followed by one negative. If s is the first sum, then s < 1− 1
2+

1
3 = 5

6 .
Since 1

4k−3 + 1
4k−1 − 1

2k > 0 for k ≥ 1, we see that s′3 < s′6 < s′9 < · · · where s′n is nth partial sum of the

second sum. Thus lim supn→∞ s′n > s′3 = 5
6 , so the two sums do not converge to the same value (if any).
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Theorem 3.70

Let
∑

an be a series of real numbers which converges, but not absolutely. Suppose

−∞ ≤ α ≤ β ≤ ∞.

Then there exists a rearrangement
∑

a′n with partial sums s′n such that

lim inf
n→∞

s′n = α, lim sup
n→∞

s′n = β.

Theorem 3.71

If
∑

an is a series of complex numbers which converge absolutely, then every rearrangement of
∑

an
converges, and they all converge to the same sum.
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4 Continuity

4.1 Limits of Functions

Definition 4.1. Let X and Y be metric spaces, E ⊂ X, f : E → Y , and p is a limit point of E. We write

f(x) → q as x → p, or lim
x→p

f(x) = q

if there is a point q ∈ Y such that for every ϵ > 0, there exists a δ > 0 such that

dY (f(x), q) < ϵ

for all points x ∈ E for which
0 < dX(x, p) < δ.

Remark 4.2. A few notes:

1. X and Y might have different distance functions, so we denote each as dX and dY to prevent ambiguity.

2. It’s of course necessary that p ∈ X, but p does not need to be in E. In fact, even if p ∈ E, it might be
the case that limx→p f(x) ̸= f(p).

Theorem 4.3

Assume all variables from Definition 4.1 carry the same meaning. Then

lim
x→p

f(x) = q

if, and only if,
lim
n→∞

f(pn) = q

for every sequence {pn} in E such that pn ̸= p and limn→∞ pn = p.

Remark 4.4. The proof is a simple exercise in symbolic manipulation. For the forward direction, choose a
sequence {pn} that converges to p (with pn ≠ p), and let ϵ > 0. Then there exists a δ > 0 such that d(f(x), q) < ϵ
if 0 < d(x, p) < δ. Furthermore, there exists an N ∈ N such that d(pn, p) < δ, and thus d(f(pn), q) < ϵ for every
n ≥ N .

Conversely, we proceed by contraposition, supposing limx→p f(x) ̸= q. Then there exists an ϵ > 0 such that
for every δ > 0, there exists an x ∈ X such that d(f(x), q) ≥ ϵ if 0 < d(x, p) < δ. We can now construct a
sequence that converges to p as follows:

1. For n ∈ N, let δn = 1
n
.

2. Pick xn such that d(f(xn), q) ≥ ϵ if 0 < d(xn, p) < δn.

The sequence {xn} converges to p and xn ̸= p, but limn→∞ f(xn) ̸= q.

Definition 4.5 (Sums and Products of Functions). For complex functions f, g defined on E, we have that

(f + g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x)

and if f(x) ≥ g(x) for every x ∈ E, we sometimes write f ≥ g.
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Theorem 4.6

Suppose E ⊂ X, p is a limit point of E, f, g are complex functions on E, and limx→p f(x) =
A, limx→p g(x) = B. Then

1. limx→p(f + g)(x) = A+B;

2. limx→p(fg)(x) = AB;

3. limx→p

(
f
g

)
(x) = A

B if B ̸= 0.

4.2 Continuous Functions

Definition 4.7. Suppose X,Y are metric spaces, E ⊂ X, p ∈ E, and f maps E into Y . Then f is said to
be continuous at p if for every ϵ > 0, there exists a δ > 0 such that

dY (f(x), f(p)) < ϵ

for all points x ∈ E for which dX(x, p) < δ.

Remark 4.8. • If f is continuous at every point of E, then f is said to be continuous on E.

• Also of note is that f must be defined at p in order for it to be continuous at p.

• If p is an isolated point of E, then every function with E as its domain is (vacuously) continuous at p.

Theorem 4.9 (Alternate Definition of Continuity at a Point)

Assume that p is a limit point of E. Then f is continuous at p if, and only if,

lim
x→p

f(x) = f(p).

Theorem 4.10 (Composition of Functions)

Suppose X,Y, Z are metric spaces, E ⊂ X, f : E → Y , g : f(E) → Z, and h is defined as

h(x) = g(f(x)) (x ∈ E).

If f is continuous at a point p ∈ E and if g is continuous at the point f(p), then h is continuous at p.

This function h is called the composition or the composite of f and g. We frequently use the notation
h = g ◦ f .

Remark 4.11. The proof is fairly straightforward from the definition of continuity at a point.

Theorem 4.12 (Continuity and Inverse Images)

A mapping f of a metric space X into a metric space Y is continuous on X if, and only if, f−1(V ) is
open in X for every open set V in Y .
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Remark 4.13. This is oftentimes more useful than the first definition of continuity.

To prove, let f be continuous on X and V be an open set in Y . Let y = f(p) ∈ V , and since V open, there
exists some neighborhood Nϵ(y) ⊂ V . Since f continuous, there exists a δ > 0 such that d(f(x), f(p)) < ϵ if
d(x, p) < δ. Then x ∈ f−1(V ) as soon as d(x, p) < δ.

Conversely, suppose f−1(V ) is open in X for an open set V ∈ Y . Choose some p ∈ X and let ϵ > 0. Notice
that V = {y ∈ Y | d(f(p), y) < ϵ} is an open set, so f−1(V ) is also open. In other words, there exists a δ > 0
such that x ∈ f−1(x) (and thus f(x) ∈ V or d(f(x), f(p)) < ϵ) if d(x, p) < δ.

Corollary 4.14

A mapping f of a metric space X into a metric space Y is continuous if, and only if, f−1(C) is closed in
X for every closed set C in Y .

Theorem 4.15 (Sums, Products, and Quotients of Continuous Functions are Continuous)

Let f, g be complex continuous functions on a metric space X. Then f + g, fg, and f/g are continuous
on X. (Assuming of course that g ̸= 0 in the last statement.)

Theorem 4.16

1. Let f1, f2, . . . , fk be real functions on a metric space X, and f⃗ be a mapping from X into Rk

defined by
f⃗(x) = (f1(x), . . . , fk(x)) (x ∈ X);

then f is continuous if, and only if, each of the functions f1, . . . , fk is continuous.

2. If f⃗ , g⃗ are continuous mappings of X into Rk, then f⃗ + g⃗ and f⃗ · g⃗ are continuous on X.

Remark 4.17. The functions f1, . . . , fk are called the components of f .

Example 4.18

Every polynomial and rational function (given denominator zero, of course) is continuous on Rk.

Remark 4.19. When referring to a function f , we lose nothing from discarding the complement of the domain
of f , so we shall talk about continuous mappings of one metric space into another instead of mappings of subsets,
and can do so without ambiguity.

4.3 Continuity and Compactness

Definition 4.20. A mapping f⃗ of a set E into Rk is said to be bounded if there exists M ∈ R such that
|f⃗ | ≤ M for all x ∈ E.

Theorem 4.21 (Continuous Images of Compact Sets are Compact)

Suppose X is compact, and f : X → Y is continuous. Then f(X) is compact.
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Remark 4.22. Note that f(f−1(E)) ⊂ E, where E ⊂ Y . (If E ⊂ X, then f−1(f(E)) ⊃ E.) To prove the above
theorem, let {Gα} be an open cover of f(X), use the continuity of f to see that {f(Gα)} is an open cover of X,
and use the compactness of X to obtain a finite subcover.

We can observe some consequences of Theorem 4.21:

Theorem 4.23

If X is compact and f⃗ : X → Rk is continuous, then f⃗(X) is closed and bounded. Thus f⃗ is bounded.

Theorem 4.24 (Extreme Value Theorem)

Suppose X is compact, f : X → R, and M = supp∈X f(p), m = infp∈X f(p). Then there exist points
p, q ∈ X such that f(p) = M and f(q) = m.

Remark 4.25. This directly follows from the fact that a closed and bounded sets in R contains its supremum
and infimum.

Theorem 4.26 (Inverses of Continuous Bijections are Continuous)

Suppose f is a continuous 1-1 mapping of a compact metric space X onto a metric space Y (in other
words, a bijection from X to Y ). Then the inverse mapping f−1 defined on Y by

f−1(f(x)) = x (x ∈ X)

is a continuous mapping of Y onto X.

Remark 4.27. It suffices to show that f(V ) is open if V ⊂ X is open. Notice that f(V c) is compact, thus
closed, and since f is a bijection, we have f(V c) = f(V )c so f(V ) is open.

Definition 4.28. Let f : X → Y . We say f is uniformly continuous on X if for every ϵ > 0, there exists a
δ > 0 such that

dY (f(p), f(q)) < ϵ

for all p, q ∈ X for which dX(p, q) < δ.

Notice there are subtle differences between uniform continuity and continuity:

• Continuity can be defined at a single point, whereas uniform continuity is inherently defined in terms of
a set.

• If f is continuous on X, it is possible to find, for each ϵ > 0 and each point p ∈ X, a number δ > 0,
which depends on both p and ϵ.

• On the other hand, if f is uniformly continuous on X, then it is possible for each ϵ > 0 to find one
number δ > 0 that will work for all points p of X.

• It follows from the logic above that every uniformly continuous function is continuous (but the converse
does not necessarily hold.)
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Theorem 4.29

Let X be compact, and f : X → Y be continuous. Then f is uniformly continuous on X.

Remark 4.30. To prove, we have to show that for some ϵ > 0, there exists a δ > 0 such that d(f(p), f(q)) < ϵ
if d(p, q) < δ.

Let ϵ > 0, and for each p ∈ X, define ϕ(p) such that for q ∈ X,

d(p, q) < ϕ(p) ⇒ d(f(p), f(q)) <
ϵ

2
.

Now, let

J(p) = {q ∈ X | d(p, q) < 1

2
ϕ(p).}

It should be clear that the collection {Jp} is an open cover of the compact set X, so there exist a finite set of
points p1, . . . , pn ∈ X such that

X ⊂ J(p1) ∪· · · ∪ J(pn).

We can choose δ = 1
2
min[ϕ(p1), . . . , ϕ(pn)], and because our list is finite, we know δ > 0. (Notice that this is not

necessarily the case for an infinite list of points.) Now, let p, q ∈ X such that d(p, q) < δ. Then there exists
some m, with 1 ≤ m ≤ n, such that p ∈ J(pm), so

d(p, pm) <
1

2
ϕ(pm).

Moreover, notice that

d(q, pm) ≤ d(p, q) + d(p, pm)

< δ +
1

2
ϕ(pm)

≤ ϕ(pm)

Thus d(f(p), f(pm)) < ϵ
2
and d(f(q), f(pm)) < ϵ

2
. So

d(f(p), f(q)) ≤ d(f(p), f(pm)) + d(f(q), f(pm)) < ϵ.

Theorem 4.31

Let E be a non-compact set in R. Then

1. There exists an unbounded continuous function on E.

2. There exists a continuous and bounded function on E with no maximum.

3. If E is bounded, then there exists a continuous function on E that is not uniformly continuous.

37



Elliott Yoon 4 Continuity

Example 4.32

1. If E is bounded, and there exists a limit point x0 of E that is not a point of E, then

f(x) =
1

x− x0
(x ∈ E)

is continuous on E, but unbounded. In fact, if we let ϵ > 0, δ > 0, and choose a point x ∈ E
such that |x − x0| < δ, we can take t close enough to x0 so that we can make the difference
|f(t)− f(x)| > ϵ, despite |t− x| < δ. Since δ is arbitrary, f is not uniformly continuous on E.

2. The function

g(x) =
1

1 + (x− x0)2
(x ∈ E)

is continuous on E and bounded between 0 and 1. Clearly, supx∈E g(x) = 1, but g(x) < 1 for all
x ∈ E so g has no maximum on E.

3. Assume E is unbounded. Then f(x) = x is continuous but unbounded, h(x) = x2

1+x2 is continuous
and bounded with no maximum (supx∈E h(x) = 1).

4. If we omit boundedness as a condition from (3), then the statement would be false. For example,
if E = Z, then every function on E would be uniformly continuous (take δ < 1).

We’ll now illustrate with an example that compactness of the domain is also essential in ensuring the inverse
mapping of a continuous bijection is continuous.

Example 4.33

Let X = [0, 2π) ⊂ R, Y = {y⃗ ∈ R2 | |y⃗| = 1}. Then define f⃗ : X → Y as follows:

f⃗(t) = (cos t, sin t) (0 ≤ t < 2π).

We will take for granted that both cosine and sine are continuous and have nice enough periodic properties
such that f⃗ is a bijection.

Notice that f−1 is not continuous at (1, 0) = f⃗(0), with, of course, the culprit being that X is not
compact. (It might be intriguing to see that Y is compact!)

4.4 Continuity and Connectedness

Theorem 4.34 (The Image of a Connected Set Under a Continuous Mapping is Connected)

Let f : X → Y be continuous and E ⊂ X be connected. Then f(E) is connected.

Remark 4.35. To prove, we will suppose to the contrary that f(E) = A ∪B, where A,B are separated. Let

G = E ∩ f−1(A), H = E ∩ f−1(B).

Then E = G ∪ H, since A,B separated. Notice A ⊂ A, so G ⊂ f−1(A), and since f−1(A) is closed by the
continuity of f , it follows that G ⊂ f−1(A). Then f(G) ⊂ A. Notice

f(G) ∩ f(H) ⊂ A ∩B = ∅,

so G ∩H = ∅, and similarly, G ∩H = ∅. Thus G,H are separated, a clear contradiction!
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Theorem 4.36 (Intermediate Value Theorem)

Let f be a continuous real function on the interval [a, b]. If f(a) < f(b) and if c is a number such that
f(a) < c < f(b), then there exists a point x ∈ (a, b) such that f(x) = c.

Remark 4.37. The converse might seem to be true (that if for any two points x1 < x2 and for any c ∈
(f(x1), f(x2)), there exists an x ∈ (x1, x2) such that f(x) = c, then f is continuous), but consider the following:

f(x) =

{
sin( 1

x
) (x ̸= 0),

0 (x = 0).

We will show later that this function is not continuous.

4.5 Discontinuities

If x is a point in the domain of the function f at which f is not continuous, we say that f is discontinuous
at x.

Definition 4.38. Let f be defined on (a, b). Consider any point x such that a ≤ x < b. We define the
right-hand limit of f at x as f(x+) = q if f(tn) → q as n → ∞, for all sequences {tn} in (x, b) such that
tn → x. To obtain the definition of the left-hand limit f(x−), for a < x ≤ b, we restrict ourselves to sequences
{tn} in (a, x).

Remark 4.39. At any point x ∈ (a, b), limt→x f(t) exists if, and only if,

f(x+) = f(x−) = lim
t→x

f(t).

Definition 4.40. Let f be defined on (a, b).

1. If f is discontinuous at x and if f(x+) and f(x−) exist, then f is said to have a discontinuity of the
first kind, or a simple discontinuity at x.

2. Otherwise, f has a discontinuity of the second kind.

Remark 4.41. There are two ways a function can have a simple discontinuity:

1. f(x+) ̸= (x−),

2. f(x+) = f(x−) ̸= f(x).

Example 4.42

Define

f(x) =

{
1 (x ∈ Q),

0 (x ̸∈ Q).

Then f has a discontinuity of the second kind at every point x, since neither one-sided limit exists.

Example 4.43

Define

f(x) =

{
x (x ∈ Q),

0 (x ̸∈ Q).

Then f is continuous at x = 0 and has a discontinuity of the second kind at every other point.
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Example 4.44

Define

f(x) =


x+ 2 (−3 < x < −2),

−x− 2 (−2 ≤ x < 0),

x+ 2 (0 ≤ x < 1).

Then f has a simple discontinuity at x = 0 and is continuous everywhere else in (−3, 1).

Example 4.45

Define

f(x) =

{
sin( 1x ) (x ̸= 0),

0 (x = 0).

Since neither f(0+) nor f(0−) exists, f has a discontinuity of the second kind at x = 0. We will show
later that f is continuous everywhere else.

4.6 Monotonic Functions

Definition 4.46. Let f be real on (a, b). Then f is montonically increasing on (a, b) if a < x < y < b
implies f(x) ≤ f(y). In other words, f is non-decreasing. We can reverse the last inequality to define a
monotonically decreasing function.

Remark 4.47. A function is montonic if it is either monotonically increasing or monotonically decreasing.

Theorem 4.48

Let f be monotonically increasing on (a, b). Then f(x+) and f(x−) exist at every point x ∈ (a, b).
More precisely,

sup
a<t<x

f(t) = f(x−) ≤ f(x) ≤ f(x+) = inf
x<t<b

f(t).

Furthermore, if a < x < y < b, then
f(x+) ≤ f(y−).

(Analogous results evidently hold for monotonically decreasing functions.)

Remark 4.49. The proof hearkens back to many ideas from Chapter 1: The set of numbers f(t), where
a < t < x, is bounded above by f(x), and thus has a least upper bound α. Obviously, α ≤ f(x). Let ϵ > 0.
Since α is a least upper bound, there exists a δ > 0 such that a < x− δ < x and

α− ϵ < f(x− δ) ≤ A (x− δ < t < x).

f being monotonic gives
f(x− δ) ≤ f(t) ≤ A (x− δ < t < x).

Thus
|f(t)− α| < ϵ.

Thus f(x−) = α, and the same reasoning proves the same inequality for the greatest lower bound and f(+).
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Notice that if a < x < y < b, then

f(x+) = inf
x<t<b

f(t) = inf
x<t<y

f(t) and f(y−) = sup
a<t<y

f(t) = sup
x<t<y

f(t).

Corollary 4.50

Montonic functions have no discontinuities of the second kind.

This directly implies that every monotonic function is discontinuous at a countable set of points at
most.

Theorem 4.51

Let f be monotonic on (a, b). Then the set of points of (a, b) at which f is discontinuous is at most
countable.

Remark 4.52. The proof proceeds by establishing a bijection between the points of discontinuities and the
rationals, a countable set: Suppose f is monotonically increasing and let E be the set of points at which f is
discontinuous. Then, for every point x ∈ E, we let r(x) ∈ Q such that

f(x−) < r(x) < f(x+).

Since x1 < x2 implies f(x1+) ≤ f(x2−), it follows that r(x1) ̸= r(x2) if x1 ̸= x2.

Note that discontinuities of a monotonic function do not necessarily need to be isolated. In fact, given a
countable subset E of (a, b), (which may even be dense!) we can construct a function f monotonic on (a, b),
discontinuous at every point of E, and at no other point of (a, b).

Example 4.53 (la fonction)

Arrange the points of E in a sequence {xn}. Let {cn} be a sequence of positive numbers such that
∑

cn
converges (notice that the sum also absolutely converges), and define

f(x) =
∑
xn<x

cn (a < x < b).

If there are no points xn to the left of x, the sum is empty; thus zero. Then

1. f is monotonically increasing on (a, b);

2. f is discontinuous at every point of E; in fact,

f(xn+)− f(xn−) = cn.

3. f is continuous at every other point of (a, b).

Notice that f(x−) = f(x) for all x ∈ (a, b). Functions satisfying this condition are said to be continuous
from the left. If f(x+) = f(x) at every x ∈ (a, b), then f would be said to be continuous from the
right (and this would be the case if the summation defined were to be taken over all indices n for which
xn ≤ x!).
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Figure 2: To Infinity and Beyond!

4.7 Infinite Limits and Limits at Infinity

Definition 4.54. For any c ∈ R, the set of x ∈ R such that x > c is called a neighborhood of +∞ and is
written (c,+∞). Similarly, the set (−∞, c) is a neighborhood of −∞.

Definition 4.55. Let E ⊂ R and f : E → R. We say

f(t) → A as t → x,

where A and x are in the extended real number system, if for every neighborhood U of A there is a
neighborhood V of x such that

1. V ∩ E is not empty, and

2. f(t) ∈ U for all t ∈ V ∩ E, where t ̸= x.

Remark 4.56. If A, x ∈ R, this definition of a limit is the same as defined previously. As expected, properties
of limits still hold in the extended real number system.

Theorem 4.57

Let f, g be defined on E ⊂ R. Suppose f(t) → A and g(t) → B as t → x. Then

1. f(t) → A′ implies A′ = A,

2. (f + g)(t) → A+B,

3. (fg)(t) → AB,

4. (f/g)(t) → A/B,

provided that the right members of (2), (3), and (4) are defined. Note that ∞−∞, 0 · ∞,∞/∞, A/0
are not defined.
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5 Differentiation

Note that in this chapter, we’ll narrow our scope to real-valued functions defined on open and closed intervals.

5.1 The Derivative of a Real Function

Definition 5.1. Let f be defined (and real-valued) on [a, b]. For any x ∈ [a, b], define

f ′(x) = lim
t→x

f(t)− f(x)

t− x
(a < t < b, t ̸= x),

provided this limit exists. We shall associate with f another function f ′ whose domain is the set of points x
at which the limit exists; we’ll call f ′ the derivative of f .

If f ′ is defined at a point x, we say that f is differentiable at x. If f ′ is defined at every point of a set
E ⊂ [a, b], we say that f is differentiable on E.

Remark 5.2. Considering right and left hand limits of the quotient limit leads to the notion of right-hand and
left-hand derivatives. At the endpoints a and b, the derivative, if it exists, is a right-hand or left-hand derivative,
respectively.

If f is defined on an open interval (a, b) and if x ∈ (a, b), then f ′(x) is defined as expected; however, f ′(a)
and f ′(b) are not defined.

Theorem 5.3

Let f be defined on [a, b]. If f is differentiable at a point x ∈ [a, b], then f is continuous at x.

Remark 5.4. Note that to prove equality of a = b, it is often easier to prove a− b = 0. We will do so here:

As t → x, we have that

f(t)− f(x) =
f(t)− f(x)

t− x
· (t− x) → f ′(x) · 0 = 0.

The converse of Theorem 5.3 is definitely not true (the quintessential example being f(x) = |x|). In fact,
there exists a function that is continuous on all of R but is not differentiable at any point!

Theorem 5.5 (Sum, Product, and Quotient Rule)

Suppose f ,g are defined on [a, b] and are differentiable at a point x ∈ [a, b]. Then f + g, fg, and f/g are
differentiable at x, and

1. (f + g)′(x) = f ′(x) + g′(x);

2. (fg)′(x) = f ′(x)g(x) + f(x)g′(x);

3.
(

f
g

)′
(x) = g(x)f ′(x)−g′(x)f(x)

g2(x)

of course assuming in (3) that g(x) ̸= 0.

43



Elliott Yoon 5 Differentiation

Remark 5.6. (1) is immediate. Notice that

f(t)g(t)− f(x)g(x) = f(t)[g(t)− g(x)] + g(x)[f(t)− f(x)],

and (2) follows. Notice that

f(t)
g(t)

− f(x)
g(x)

t− x
=

1

g(t)g(x)

f(t)g(x)− f(x)g(t)

t− x
=

1

g(t)g(x)

[
g(x)

f(t)− f(x)

t− x
− f(x)

g(t)− g(x)

t− x

]
,

and (3) follows.

Example 5.7

1. The derivative of any constant is 0.

2. If f(x) = x, then f ′(x) = 1.

3. If f(x) = xn, then f ′(x) = nxn−1, for any n ∈ Z. (This is called the Power Rule.)

4. Every polynomial is differentiable,

5. Every rational function is differentiable, except at points where the denominator is zero.

Theorem 5.8 (Chain Rule)

Suppose f is continuous on [a, b], f ′(x) exists at some point x ∈ [a, b], g is defined on an interval I which
contains the range of f , and g is differentiable at the point f(x). If

h(t) = g(f(t)) (a ≤ t ≤ b),

then h is differentiable at x, and
h′(x) = g′(f(x))f ′(x).

Example 5.9

Define f as follows:

f(x) =

{
x sin( 1x ) (x ̸= 0),

0 (x = 0).

When x ̸= 0, we get that f ′(x) = sin( 1x )−
1
x cos( 1x ). At x = 0, we must use the definition of a derivative

to get that
f(t)− f(0)

t− 0
= sin

(
1

t

)
,

which does not tend to any limit as t → 0. So f ′(0) does not exist.
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Figure 3: The cake is a lie.

Example 5.10

Define f as follows:

f(x) =

{
x2 sin( 1x ) (x ̸= 0)

0 (x = 0),

For x ̸= 0, we get f ′(x) = 2x sin 1
x − cos 1

x and at x = 0, we get∣∣∣∣f(t)− f(0)

t− 0

∣∣∣∣ = ∣∣∣∣t sin 1

t

∣∣∣∣ ≤ |t|

so as t → 0, f ′(0) = 0. Notice that f is differentiable for all x, but f ′ is not continuous (at x = 0).

5.2 Mean Value Theorems

Definition 5.11. Let f be a real function defined on a metric space X. We say that f has a local maximum
at a point p ∈ X if there exists δ > 0 such that f(q) ≤ f(p) for all q ∈ X with d(p, q) < δ. (Local minima are
defined similarly.)

Theorem 5.12

Let f be defined on [a, b]. If f has a local maximum at a point x ∈ (a, b), and if f ′(x) exists, then
f ′(x) = 0.

Remark 5.13. To prove, choose δ > 0 such that f(q) ≤ f(p) for all p ∈ X with d(p, q) < δ. Then

a < x− δ < x < x+ δ < b.
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If x− δ < t < x, then
f(t)− f(x)

t− x
≥ 0,

so as t → x, f ′(x) ≥ 0. If x < t < x+ δ, then

f(t)− f(x)

t− x
≤ 0,

so f ′(x) ≤ 0.

Theorem 5.14 (Generalized Mean Value Theorem)

If f and g are continuous real functions on [a, b] which are differentiable in (a, b), then there exists a
point x ∈ (a, b) where

[f(b)− f(a)]g′(x) = [g(b)− g(a)]f ′(x).

Remark 5.15. Note that differentiability is not required at endpoints. To prove, let

h(t) = [f(b)− f(a)]g(t)− [g(b)− g(a)]f(t) (a ≤ t ≤ b).

Notice that h is continuous on [a, b], differentiable on (a, b), and

h(a) = f(b)g(a)− f(a)g(b) = h(b).

To finish the proof, we need to show h′(x) = 0 for some x ∈ (a, b). If h constant, we’re done. If h(t) > h(a) for
some t ∈ (a, b), then h attains its maximum at some x on the closed (compact) interval [a, b]. Since h(a) = h(b),
x ∈ (a, b). If h(t) < h(a), for some t ∈ (a, b), the same argument applies to choose an x where h attains its
minimum.

Theorem 5.16 (The Mean Value Theorem)

If f is a real continuous function on [a, b], which is differentiable in (a, b), then there is a point x ∈ (a, b)
at which

f(b)− f(a) = (b− a)f ′(x).

Remark 5.17. The proof follows immediately after taking g(x) = x in the Generalizeed Mean Value Theorem.

Theorem 5.18

Suppose f is differentiable in (a, b):

1. If f ′(x) ≥ 0 for all x ∈ (a, b), then f is monotonically increasing.

2. If f ′(x) = 0 for all x ∈ (a, b), then f is constant.

3. If f ′(x) ≤ 0 for all x ∈ (a, b), then f is monotonically decreasing.

5.3 Continuity of Derivatives

Not every function is a derivative!

Derivatives which exist at every point in an interval have one important quality that they share with functions
continuous on that interval: intermediate values are assumed.
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Theorem 5.19

Suppose f is a real differentiable function on [a, b] and suppose f ′(a) < λ < f ′(b). Then there is a point
x ∈ (a, b) such that f ′(x) = λ. (A similar result holds if f ′(a) > f ′(b).)

Remark 5.20. To prove, let
g(t) = f(t)− λt.

Since λ > f ′(a), we know g′(a) < 0 so g(t1) < g(a) for some t1 ∈ (a, b). Similarly, g(t2) < g(b) for some
t2 ∈ (a, b), so g attains minimum on (a, b). Thus there exists some x ∈ (a, b) such that g′(x) = 0, and thus
0 = f ′(x)− λ.

Corollary 5.21

If f is differentiable on [a, b], then f ′ cannot have any simple discontinuities on [a, b]. (But may very
well have discontinuities of the second type. See the following example)

Example 5.22 (Deja vu)

The function

f(x) =

{
x2 sin( 1x ) x ̸= 0,

0 x = 0.

is differentiable but f ′ is discontinuous a x = 0.

5.4 L’Hospital’s Rule

Theorem 5.23

Suppose f and g are real and differentiable in (a, b) and g′(x) ̸= 0 for all x ∈ (a, b), where −∞ ≤ a <
b ≤ +∞. Suppose

f ′(x)

g′(x)
→ A as x → a.

If f(x) → 0 and g(x) → 0 as x → a, or if g(x) → +∞ as x → a, then

f(x)

g(x)
→ A as x → a.

Remark 5.24. Like most things in this chapter, you can use the Mean Value Theorem to prove this statement.
That being said, I’m running on 2 hours of sleep and have been up for nearly 24 hours straight, so this one’s not
getting written down here.

5.5 Derivatives of Higher Order

Definition 5.25. If f has a derivative f ′ on an interval, and f ′ itself is differentiable, we denote the derivative
of f ′ by f ′′ and call f ′′ the second derivative of f . We can continue in the same manner to obtain

f, f ′, f ′′, f(3), . . . , f (n),

where f (n) is called the nth derivative of f . In order for f (n)(x) to exist at a point x, f (n−1 must exist in a
neighborhood of x, and be differentiable at x, and so on...
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5.6 Taylor’s Theorem

Theorem 5.26

Suppose f is a real function on [a, b], n ∈ N, f (n−1) is continuous on [a, b], and f (n)(t) exists for every
t ∈ (a, b). Let α, β be distinct points of [a, b] and define

P (t) =

n−1∑
k=0

f (k)(α)

k!
(t− α)k.

Then there exists a point x between α and β such that

f(β) = P (β) +
f (n)(x)

n!
(β − α)n.

For n = 1, this is just the mean value theorem (but are we that surprised?)

In general, Taylor’s Theorem lets us approximate functions with polynomials of degree n− 1, and (arguably
most importantly,) estimate the error if we know bounds on |f (n)(x)|.

Remark 5.27. Again, this uses the Mean Value Theorem in its proof. zzz

5.7 Differentiation of Vector-Valued Functions

Remark 5.28. In terms of vector valued functions, f⃗(x) is the point of Rk (if there is one) for which

lim
t→x

∣∣∣∣∣ f⃗(t)− f⃗(x)

t− x
− f⃗ ′(x)

∣∣∣∣∣ = 0,

and f⃗ ′ is again a function with values in Rk. If f1, . . . , fk are the components of f⃗ , then

f⃗ ′ = (f ′
1, . . . , f

′
k),

and f⃗ is differentiable at a point x if, and only if, each of the functions f1, . . . , fk is differentiable at x.

Unfortunately, the Mean Value Theorem (and thus L’Hopital’s Rule) don’t necessarily hold in Rk.

Example 5.29 (RIP the GOAT: MVT was the MVP)

Let f(x) = eix = cos(x) + i sin(x). Then

f(2π)− f(0) = 1− 1 = 0,

but
f ′(x) = ieix,

(and thus |f ′(x)| = 1 for all x ∈ R.)
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Example 5.30 (French Hospital est trés pauvre)

On the open interval, define f(x) = x and

g(x) = x+ x2ei/x
2

.

Notice that as x → 0, both f(x) and g(x) approach 0. Since |eit| = 1 for all t ∈ R, notice that

lim
x→0

f(x)

g(x)
= 1.

Next,

g′(x) = 1 +

(
2x− 2i

x

)
ei/x

2

(0 < x < 1),

so that

|g′(x)| ≥
∣∣∣∣2x− 2i

x

∣∣∣∣− 1 ≥ 2

x
− 1.

Thus ∣∣∣∣f ′(x)

g′(x)

∣∣∣∣ = 1

|g′(x)|
≤ x

2− x

so

lim
x→0

f ′(x)

g′(x)
= 0.

Repose en paix, mon doux hôpital.

Theorem 5.31 (A New Hope)

Suppose f⃗ is a continuous mapping of [a, b] into Rk and f⃗ is differentiable in (a, b). Then there exists
x ∈ (a, b) such that

|f⃗(b)− f⃗(a)| ≤ (b− a)|f⃗ ′(x)|.

Remark 5.32. Let z⃗ = f⃗(b)− f⃗(a), and define

ϕ(t) = z⃗ · f⃗(t) (a ≤ t ≤ b).

Then ϕ is a real-valued continuous function on [a, b] which is differentiable in (a, b). By the Mean Value Theorem
(hooray! it’s back!):

ϕ(b)− ϕ(a) = (b− a)ϕ′(x) = (b− a)z⃗ · f⃗ ′(x)

for some x ∈ (a, b). On the other hand,

ϕ(b)− ϕ(a) = z⃗ · f⃗(b)− z · f⃗(a) = z⃗ · z⃗ = |z⃗|2.

Thus,
|z⃗|2 = (b− a)|z⃗ · f⃗ ′(x)| ≤ (b− a)|z⃗||f⃗ ′(x)|,

so |z⃗| ≤ (b− a)|f⃗ ′(x)|.

49



Elliott Yoon 5 Differentiation

50


	The Real and Complex Numbers
	The Real Field
	The Extended Real Numbers
	The Complex Field
	The Euclidean Space

	Basic Topology
	Finite, Countable, and Uncountable Sets
	Metric Spaces
	Compactness
	Perfect Sets
	Connected Sets

	Sequences and Series
	Convergent Sequences
	Subsequences
	Cauchy Sequences
	Upper and Lower Limits
	Series
	Series of Non-negative Terms
	The Number e
	The Root and Ratio Tests
	Power Series
	Summation By Parts
	Absolute Convergence
	Addition and Multiplication of Series
	Rearrangements

	Continuity
	Limits of Functions
	Continuous Functions
	Continuity and Compactness
	Continuity and Connectedness
	Discontinuities
	Monotonic Functions
	Infinite Limits and Limits at Infinity

	Differentiation
	The Derivative of a Real Function
	Mean Value Theorems
	Continuity of Derivatives
	L'Hospital's Rule
	Derivatives of Higher Order
	Taylor's Theorem
	Differentiation of Vector-Valued Functions


