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Elliott Yoon 1 The Riemann Stieljis Integral

1 The Riemann Stieljis Integral

I Remark 1.1. For this section, let there be a standing assumption that f is bounded.

Definition 1.2. Let [a,b] be a given interval. A partition P of [a,b] is a finite set of points {zg,21,..., 2}
where
a=x9g<r] < <Xy =b.
We will adopt the following notation: Az; = x; — x;_1. Now, let P be any partition of [a,b]. We put
1. M;=sup f(z) (mi-1<x<zy),
2. m; =inf f(z) (w1 <z <),
3. U(P, f) = ¥iLy MiAxy,
4. L(P, f) =Y, miAx,,
and finally obtain the upper and lower Riemann integrals of f over [a,b]:
1. [Pfdz =infpes U(P, f),
2. Labfdas =Suppegp L(P, f)
where &2 is the set of all partitions P of [a,b].
Lemma 1.3
The set {U(P, f) | P € &} is bounded below.
Proof. Since f is bounded, f(x) > m for all x € [a,b]. Notice that
U(P,f)=§: sup f(a:)Aq:izim~Axi=m(b—a).
b O i1
O

Definition 1.4. We say that f is Riemann-integrable and write f € #([a,b]) if

fabfdx: fabfdx.

Remark 1.5. Notice that L(P, f) and U(P, f) are bounded by m(b-a) and M (b-a), where m < f(z) < M for

all z € [a,b]. In other words, the upper and lower integrals exist for every bounded real function.

Definition 1.6. Let o be nondecreasing (monotonically increasing) function on [a,b]. We write Aq; =

a(z;) — a(x;-1). (Clearly, Aa; > 0. We put

L. U(Pa fva) = z?:l MiAai’
2. L(P7 fva) = Z?:l m’LAal
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where M;, m; have the same meaning as in Definition 1.2 and we define

|/ " fdo = inf U(P, f,a) (1)
and .

f fda=sup L(P, f,a). (2)

Ja Pe2?

If (1) and (2) are equal, then we say f is integrable with respect to o over [a,b], written f € Z(«), and notate
their common value, known as the Riemann-Stieltjes integral as

fabfdoz.

Question 1.7. When is f € Z(«)
It may be helpful to rephrase the question to ask when f is not in Z(«).

e Nonexample: The function

1 zeQ

is not in %Z([a,b]). Notice that for any partition P, U(P, f)=1+0=L(P, f).

So whenever infpeg U(P, f, ) is strictly greater than supp.g L(P, f, @), we know f ¢ Z(«).

Definition 1.8. For partitions P,Q € &,

1. If @ o P, we say Q@ is a refinement of P.

2. We call P* = Pu (@ a common refinement.

Lemma 1.9
If Q> P, then U(Q, f,a) <U(P, f,«) and L(Q, f,a) > L(P, f, ).

Proof. Let Q = Pu{xg,...,zx}. If k = 0, the conclusion obviously holds. Now, suppose k € N and
U(Q, f,a) <U(P, f,a), and let P* contain just one more point than P, x*, where x,_1 < ¥ < x;. Write
W1 = SUP,, | <pepr f(2) and wy = sup .o, f(2). Notice wy, ws < My where M; =sup,. | <,,, f(z). Then

U(P, f,a) =U(P", f,a) = Mi[a(xi) - a(zi-1) —wi[a(z”) - a(zi-1)] - waa(z;) - a(2™)]
= (M; —wi)[a(z") - a(zi-1)] + (M; - w2)[a(z;) — a(z™)]
> 0.

The proof for the lower integrals is the same. O

Remark 1.10. Notice that for any partitions Py, P», it follows with the common refinement P* = P; u P, that

L(Py, f, ) < L(P", f,a) <U(P", f,a) <U(P, f, ).
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Corollary 1.11
b b
/ fda< f fda.

We now arrive at a useful lemma relating integrability to being able to find partitions that allow the distance
between upper and lower integrals to be arbitrarily small:

Lemma 1.12
feZ(a) if, and only if, Ve > 0, there exists a partition P such that U(P, f,a) - L(P, f,«) <e.

Proof. Let f € 2. Then there exists a partition P; such that 0 <U(Py, f,«) — fabf da < €/2. Similarly, there
exists P, such that 0 < [abf da — L(Py, f, ) < €/2. (Notice that f € Z(a), so [fda= [fda= [ fda.) Let
P = P, U P, be the common refinement of P; and P,. Then

U(P, f,0) <U(Py, f,a) < f fda+e/2<L(Ps, f,a) +e< L(P,f,a) +c.

Now assume the converse. Recall that Tf da <U(P, f,a) and [ fda > L(P, f,«) for any partition P. Let
€ > 0. Then there exists a partition P such that B

0< ffda— /fda <U(P,f,0)- L(P,f,a) <.
O
Now, let’s introduce a bit of notation to make our lives easier. We can write that f is continuous on a metric

space X as f € € (X). Furthermore, we can improve upon our notation of integrability to write f € Z(«, S)
to mean that f is integrable on with respect to a over S.

Theorem 1.13
Let f e % ([a,b]). Then f e Z(a,[a,b]).

Proof. Notice [a,b] is compact. Thus f is uniformly continuous on [a,b], so for € > 0, there exists § > 0
such that |f(z) - f(y)| < “O)eaa Whenever |z —y| < 6. Now, pick a partition P (with n elements) such that
Ax; <6 for all j. Then

dea—lfda <U(P.f,a)~ L(P, f,a) = ilsgpfmj - Zn:i}l_ffAmj

j I j=1 "3

= Z (supf—inff) Ax;
j=1\ I; I

n €
<y ———Aux;
]Z::l a(b) - pla)
€
= ——(a(b) - =e.
gy 0) () =<
Since € is arbitrary, the proof is complete. O
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Remark 1.14. It turns out, we need not require that f is continuous on the entire interval; it suffices for f to
be continuous except at finitely many points, with a continuous where f is not! Zoo wee mama)

Remark 1.15. In fact, the Lebesgue Criterion for Riemann Integrability states that
feZ# < f is discontinuous on a set of measure zero!

(As a reminder, a set E has measure zero if for € > 0, there exists a collection of intervals {I,,} > E such that
>, diam(I,) <e.)

(" Theorem 1.16 (The cooler Daniel)

If f is continuous at except finitely many points and « is continuous at the points of f’s discontinuity,
then f e Z(a).
.

Proof. Let f be continuous except at finitely many points, say {zg,...,2,}. Because f is continuous at
except finitely many points, we can let M = |f].

Since the set of discontinuities S = {xg,...,x,} is finite, o is uniformly continuous on S. It follows from
the triangle inequality and the monotone increasing property of « that for all € > 0 there exists a § > 0 such
that a(z; +0) —a(z; -0) <e.

We can always choose § to be smaller, so without loss of generality, assume the set of [x; — d,z; + ]
is disjoint. Let F = [a,b] \ UjL(x; - d,x; + ). F is compact, so for all € > 0, there exists ¢’ > 0 such that
|f(u) = f(v)] <€ for all u,v € F where |u—v|<d'.

We can now partition F' into intervals I; with Axz; < ¢’. Let J; = [x; — 0, 2; + §]. We can now partition
[a,b] into a partition P consisting of the I;’s and J;’s. Then

ffda—[fdag Zsupfoj —Zinffoj+Zsupfoj—Zinffda
- 7L 7l 7 i P

= Z(Supf—inff) Az + Z(supf—inff) Az

j I I; j Jj Jj
<€ Z Axj+ Z 2Me
J J

= K,

where K € R. O
Remark 1.17. What if we want to compose functions? Will their composition be integrable? Well it turns

out that if the inner function is integrable, then the outer function being continuous on the range of the inner
function is sufficient for integrability of the composition.

Theorem 1.18 (Integrability of composition of functions)
If f takes values in [m, M ] on [a,b], f € Z(a, [a,b]), and ¢ continuous on [m, M], then ¢o f € Z(«, [a,b]).

The proof for this theorem is pretty funny, so hang on.

Proof. ¢ is uniformly continuous on [m,M] (why?) so for some ¢ > 0 there exists a § < € such that
|#(u) — ¢(v)| < € whenever |u—v| <. Note that if we find a sufficiently small §, then any value less than §
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also works so we can restrict ourselves to only working with § < e. It turns out, this restriction will become
very useful later on!

Since f € Z(«), it follows from Lemma 1.12 that there exists a partition P such that
U(P, f,a) - L(P, f,a) < 6%
For each j=1,...,n (where n =|P|), if supy, f—infr, f <4, place j € A. Otherwise place j € B.
1 1If j € A, then [¢(f(2)) - ¢(f(y))| <€ z,y € I;.

2. If j e B, then sup; (¢ o f) —infy; (¢ o f) < 2sup[,, a1 |¢], and let’s notate K = supp,, a7 [4]-
But U(P, f,a) - L(P, f,a) < 62, so

A s e 52
ZéAaJSZ(sgpf 1Rff)A:EJS5 .

jeB
Dividing both sides by 4, we get } ;g Aa; <.

Thus

[oorda- [60 fia<U(Poofa)-L(P,60 fa)

IA

Zn: eAaj + Z 2K Aq;
j=1 jeB

<e(a(d) -ala)) +2K5
<e(a(b) - ala) +2K).

O

Remark 1.19. Note that we (stupidly, in the words of Jared Wunsch,) overcount in the third-to-last line of the
extended equation; summing over all j instead of just j € A.

Remark 1.20. You've probably caught on to the style of proving a function is integrable: find a partition such
that the difference U — L is bounded above by an arbitrary e.

We will now explore the properties of the integral, which pretty much agree with the intuition of someone
who studied linear algebra and multivariate calculus with Aaron Peterson in MATH 291 @ Northwestern
University:

1. The integral is linear over R;

2. If a function bounds another from above, then the integral of the first will bound the integral of the
second from above;

3. We can split integrals by an intermediate bound;

4. If the magnitude of a function is bounded by a finite number M, then the magnitude of the integral of
that function will by bounded by the product of M and the width of the integral’s bounds.

5. The sum of functions integrable with respect to different ”clock speeds” is integrable with respect to
the sum of their individual clock speeds. (Really pushing the metaphore here..)
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(" Theorem 1.21 (Rudin 6.12) A

1. If f1, fo e Z(«) then fi + fo e Z(), cf € Z(«) for every c € R, and

fab(f1+f2)doz=/;bf1doz+/abfzda and /abcfda:c/abfda,

2. If fi(z) < fo(z) on [a,b], then
b b
[a frda< fa il
3. If feZ(a) on [a,b] and a < ¢ < b, then f e Z(a) on [a,c] and [¢,b], and

[acfda+fcbfda:fabfda.

4. If f e Z() on [a,b] and if |f(z)| < M on [a,b], then

fabfda

5 If feZ(ar) and f e Z(az), then f e Z(ay + az) and

Lbfd(al+a2)=fabfda1+fabfda2;

If feZ(a) and c e R*, then f € Z(ca) and

Lbfd(ca):clbfda.

- J

< Mla(b) - a(a)];

Proof. The proofs for each part are very similar, so we will only prove (1). However Wunsch messed up here
so we’ll skip this for now. A proof is in Rudin if you really want to read it. O

The previous theorem (Rudin 6.12) gives us a lot of power to determine the integrability of functions;
we just need to be adept at manipulating expressions into sums and compositions of continuous functions.
Thankfully, - =2 is continuous and we have a useful identity to translate multiplication into addition:

A useful identity: zy = i ((1 +y)? - (v - y)z).

(" Theorem 1.22
Let f,g € Z(«). Then

1. fgeZ(a),
2. |f| e Z(«), and

3. |/ fdo| < [ |f|do.

Proof. Notice that f+ge %Z(a), so (f +g)% e Z(a). Then
fo=1((+9)* = (f - 9)) e R(e).

6
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2

Since u — u* is continuous, |f| € Z(«). Finally, there exists a ¢ = +1 where

‘ffda‘26ffda:[cfda§f|f|da.

Example 1.23 (Heaviside Function)
We define the Heaviside Function as

0 =<0
H(m):{l 351l

If a<0<band f is continuous at = = 0, then f € Z([a,b], H) and /abde = f(0).

Proof. Again, we choose a funny partition that will result in some clean shit: Let P = {x¢, 1, z2, %3}, where
2o =a,z1 =0,23 =b, and x5 € (0,b). Then

U(P,fﬂ)=[Su(r)>]f'(H(0)—H(a))+ sup f-(H(z2) - H(0)) + sup f-(H(b) - H(z2))

[0,22] [z2,b]
=sup f-(0-0)+ sup f-(1-0)+ sup f-(1-1)
[a,0] [0,22] [z2,b]
= sup f.
[0,112]

Similarly, L(P, f, H) = inf[o ,,] f. Letting z2 approach 0 from the right, notice that U(P, f, H) — f(0)* and
L(P, f,H) » £(0)". So [ fdH =0. O

Corollary 1.24 (Basically Heaviside, with linearity!)
Let o = Zj]\il c¢;H(x-sj), se[a,b], and f € €([a,b]). Then

b N
/a fda= ;ij(Sj)

Proof. Immediate by Theorem 1.20. O

I Remark 1.25. Rudin extends « to be an infinite sum, but we don’t need to get that crazy here...

Theorem 1.26
Say o exists for all x € [a,b], & is bounded, and f is Riemann-integrable (i.e. f e %([a,b],x). Then
feZ(a). If o/ € Z([a,b], ), then fabfda = fabf(;v)o/(x) dr.

Proof. Let o be bounded for all z € [a,b] and f € Z([a,b],z). For € > 0, there exists a partition P of [a,b]
such that U(P, f) - L(P, f) < ¢/K, where K = supf, ;jo’. Now, note that for any j € P, the Mean Value
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Theorem implies there exists some x} € [x;-1,2;] such that a(z;) — a(z;-1) = /(2] )Az;. With this, notice

U(P,f.0) - L(P.fra) = T (supf gt f) (a(ay) - a(e;1))

JjepP J

= _Z;D(Mj -mj)a'(z})Ax;
j€

<K ) (Mj-mj)Az;
jeP
<K-¢/K =e.
Thus f € Z(a). Now, let o' € Z([a,b],z). Then for € > 0, there exists a partition P such that
L. U(Paf)_L(Paf) <€,
2. U(Pafva,) _L(Paf70/) <§,

w

DN (suij o —infr, ') Az; <€, or U(P,o’) - L(P, o) <€, and

N

. U(P, f,a) = L(P, f,«) < ¢, shown earlier in the proof.

Now, for each j € P pick any u; € I;. By the Mean Value Theorem, there exists some z7 € I; such that

> flu)Aay =3 f(uj)d (af)Az; = (Z f(ua')a'(ug‘)ij) + ( > fu) (o (a5) - a'(Uj))Aij) :
jeP jeP jeP jeP

Define, for sake of brevity, A =3 ;.p f(u;)a’(u;)Az; and B = ¥ ;p f(u;)(a/(2]) - o'(u;))Az;. (These are

the last two sums in the previous equation.) Letting M = sup|f|, we can bound B as follows:

|B|< > suplf]- (supo/—i}lfo/) Az < Me.
jepP I; J
Since L(P, f,a) < A+ B<U(P, f,a), we have L(P, f,a) - Me< A<U(P, f,a) + Me, and thus
b
A—f Fda<e+ Me.

Since A is a Riemann Sum, we also have

< €.

b
‘A— [ fo' dx

Combining all our Pokémon card inequality cards collected throughout the proof, we finally get

fabfda—[abfa'dx

<e+Me+e.

2 Integration and Differentiation

We will explore the dynamics between integration and differentiation, and as expected, the two act as
quasi-inverse functions.
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Theorem 2.1 (Fundamental Theorem of Calculus 1)
Let f € %Z([a,b]) and f be continuous at a point zg € [a,b]. Then

fao)= = [ 1(s)as

=T

Proof. Differentiating our funny integral, we have that

d re o [Eot f(s)ds - [0 f(s) ds
%[a f(s) ds = Jimy =2 h ‘

We now have to inspect both right and left hand limits, but as the proofs for each case are analogous, we’ll
just look at the right hand limit: h — 0. Since f is continuous at xq, for € > 0, there exists ¢ > 0 such that if
0<|y—xo| <9, then |f(y) — f(z0)| < e. Since we're taking the limit as h approaches 0, we can limit our choice
of h to only those with h < §. Pick any of them. Then |f(s) - f(xo)| < € for all s € (zg,zo + h).

We'll now employ a slick trick: since f(zg) is constant, we can write f(xo) = + ;;wh ds.

Then
zo+h
3L s s

zo+h zo+h
:’i[x f(s)ds—%fgc0 fxg)ds

L - s

1

zo+h
<o [ - fo)lds

1 zo+h
< —
h Zxo

= €.

eds

O
I Remark 2.2. Notice that F(z) = [.* f(s)ds is continuous on [a,b].
Proof. By continuity, if x <y then
y y
F@) - F@)=| [ f)as| < [*1r(s)]ds <supl iy - 2).
So for € > 0, take ¢ = ¢/ sup|f|. O
Continuous things have antiderivatives!
(" Theorem 2.3 (Fundamental Theorem of Calculus 2 (le célebre)) A
Let f € %Z([a,b]), and there exist a differentiable F' such that F’ = f on [a,b]. Then
b
f f(s)ds = F(b) - F(a).
. J
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Remark 2.4. Recall that integrable functions need not be continuous. (What’s an example of a finitely
discontinuous function that is is Riemann-integrable?) However, the large majority of commonly used integrable
functions are continuous, so we’ll prove this theorem for continuous functions first, and then weaken our
hypothesis for the real proof.

Proof. (naive) Let f be continuous, and set G(z) = [.* f(s)ds. By FTCL,

2 6(w) = f(@) = F'(x),

so G(x) = F(z) + C, where C is constant. Thus

[abf(s)ds - /be(s)ds— fcaf(s)ds - G(b) - G(a) = F(b) - F(a).
]

Proof. (The real one..) You know the drill: For € > 0, there exists a partition P = {xg,x1,...,2,} such that
U(P, f)-L(P, f) <e. By the Mean Value Theorem, there exists a 2} € [x;-1, ;] such that F(z;) - F(z;-1) =
f(x})Az;. Then

F(b) - F(a) - ip(xj) CF(zy) = if(x;)mj.
Thus,

<E€E.

ro-r@- [

O

We now approach the topic of integration by parts, which is often thought of as a computational integration
tool by calculus students. As it turns out, it also carries much importance in analysis by showing that one
can move derivatives around inside the integrand at the cost of a negative sign:

Theorem 2.5 (Integration by Parts)
Say F,G are differentiable functions, F' = f, G’ = g, and f,g € %. Then

b £ b
f ngx:FG‘ —f FGda.

Proof. By the chain rule, (FG)' = Fg+ fG. Rearrange to isolate Fg and apply FTC2. O

Corollary 2.6
If G =0 and a,b, then [’ FG'dz = - [ F'G da.

Finally, we introduce machinery that will facilitate changing the bounds of integration. In doing so, we must
account for the ”stretch” factor when stretching or shrinking the region of integration.

10
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Theorem 2.7 (Change of Variables)
Let ¢ : [a,b] - [A, B] be strictly increasing, where ¢(a) = A and ¢(b) = B. Let ¢ be differentiable, with
¢’ €Z, and f:[A, B] > R be continuous. Then

[ 16@ns @ = [ 1)

Proof. Set F(z) = [ f(s)ds. By FTC1, F' = f. By the chain rule, %F((ﬁ(a:)) = f(¢(z))¢'(x). By FTC2,

we have . ’ Lo . .
J, 1@ane @ = [TRE) - Fo@))| - [ 1)

O
2.1 Appendix
There are some arguments utilized throughout the section worth having in writing for posterity:
(" Theorem 2.8 )
Recall that F € Z(«a) on [a,b] if and only if for every € > 0 there exists a partition P such that
U(P,f,(l)—L(P,f,OJ)<€. (3)
It is now the case that
1. If (3) holds for some P and €, then (3) holds (with the same €) for every refinement of P.
2. If (3) holds for P = {xq,...,z,} and if s;,¢; are arbitrary points in [2;-1,2;], then
Z |f(si) = f(ti)|Aa; <e.
i=1
3. If f e Z(«) and the hypothesis of (2) hold, then
n b
S F(t) Aai - f fdal<e.
i=1 a
. J
Proof. Immediate after noting Y71 | f(s:) - f(t;)|Ax; <U(P, f,a) — L(P, f,a),
L(P.f,0) <3 f(t:)Ac <U(P, f.a)  andL(P, f, ) < f fda<U(P,f,a).
O

Theorem 2.9

If f is monotonic on [a,b] and « is continuous on [a,b], then f € Z(«).

Proof. Monotonic functions are discontinuous at most countably many times. Countable subsets have measure
zero, so we're done. Thanks, Lebesgue! O

11
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3 Sequences and Series of Functions

Say f,: E - C are functions.

Definition 3.1. The sequence {f,} converges pointwise on E (to f(x)) if for all z € E,
Tim fu(2) = f(2).
Question 3.2. What good properties of f, might f inherit?

LMAO none. Anyway, an example:

Example 3.3

Let f, = arctan(nz) c R. f,, converges pointwise to

-m/2 x<0
f(x)=40 z=0
w2  x>0.

So f, is infinitely differentiable, but lim,,_. ., f(n) is not even continuous!

Definition 3.4. f,, converges uniformly on F if for all ¢ > 0, there exists an N € N such that if n > N and
r € F, then

|fn - f(.%‘)| <€

I Remark 3.5. N is independent of x! (What else does this independence remind you of?)

Example 3.6 (3.3, revisited.)

Pick € = 7. Given N, there exists & > 0 such that arctan(Nxz) < § (since lim,, . arctan(Nz) = 0). Then

fn(@) - f@)l< |-

(" Theorem 3.7 (Cauchy Criterion for sequences of functions, kinda.) )

fn = f uniformly on FE if, and only if, for every € > 0, there exists an N € N such that for m,n > N, for
all z e F,

|fm(x) - fn(l')| <E€.
. J

Proof. Say f, — f uniformly. Then for € > 0, there exists IV € N such that for all n.> N, |f,(z) - f(2)| < §
for all x. Then for m > N, we obtain the same inequality and the proof follows directly from the triangle
inequality. Conversely, suppose for every € > 0, there exists N € N such that for m,n > N, for all x € E,
|fm () = fu(x)| < 5. Then for all z, if we fix m, {fn(2)} is Cauchy in C. By completeness of C, there exists
a f(x) such that lim, .« fn(z) = f(z). By uniform convergence, for all m > N

T [ fon (@) = fu(@)] = fin (@) = S (@)] < 3.

12
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Theorem 3.8

If f,, are continuous functions on X, a metric space, and f, — f uniformly on X, then f is continuous.

Proof. Fix y € X. Then for € > 0:

1. There exists N € N such that |f,(z) - f(z)| < § forall n> N and z € X.

2. If fy continuous, there exists § > 0 such that [fx(z) - fn(y)| < § whenever d(z,y) <.

Now for all  such that d(z,y) <4, (1) and (2) give

F@) = <17 @) = (@) + (@) = Iv )]+ 1w () = F @) < 5+ 5+ 5

O

We will now introduce an important notion of distance between functions, which will nicely lead to the notion
of a metric space of continuous functions!

Definition 3.9. If f: X — C is bounded, set | f| = sup|f], where X is a nonempty metric space. Let
€(X)={f:X - C| f is continuous and bounded}.

For f,ge‘ﬁ(X), we define d%(.fhg) = Hf_gH

Of course, we wouldn’t be defining a distance function if we didn’t think we could use it as a metric...

Lemma 3.10
If+gl <I£]+ gl

Proof. As one would intuitively expect,

| £+ gl =sup|f () + g(2)| < sup(|f ()] + |g(x)]) < sup|f| +suplg| = [ £] + [ g]-

L]
Proposition 3.11
de is a metric on €(X).
Proof. Using the lemma,
e dy is symmetric since |f —g| =|g - f]-
® d(f,9)=0 < sup|f-g[=0 < [f(z) -g(2)|=0 Vo < [f=g.
e d(f.h)=|f-hl=|f-g+g-h|<|f-gl+]g-hl=d(fg)~+d(g,h).
O]

Sick, so (¢(X),d¢) is a metric space.
But what’s the point of going through all this work to verify this fact?

13
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Proposition 3.12 (Convergence in (¢'(X),d¢) is analogous to uniform convergence of functions.)
fn— fin €(X) if, and only if, f,, - f uniformly.

Proof. Let f,, » f in €(X). Then for € > 0, there exists N € N such that

sup|f(z) = fu(@)[ = [ fn - f] <€

whenever n > N. Thus, |f(x) - fn(2)| <€ for all . Conversely, let f, - f uniformly. Then for € > 0, there
exists IV € N such that if n > N, z € X, then

(@) = F(@)] < 5,

SO

| fn = ]l = sup|fu(x) - f(z)] < %

Theorem 3.13 (this seems important)
% (X) is complete.

Proof. Say {f,} is Cauchy in €(X). Then for € > 0, there exists N € N such that if m,n > N, then

an - me = Sup|fn - fm| <e€.

Thus for all z € X, |f,,(z) = fin ()| < € and thus {f,} is uniformly convergent to some f(z). By the previous
proposition, f is continuous. Then there exists N € N such that if n > N, |f, - f(2)| < 1 for all z, and thus
|f(2)] < 1+|fn(z)], so f is bounded. O

Some notation: If E c R, we write €*(E) = {f: E->C|f,f,...,f® e€(E)}. (Notice €°(E) = €(E).)

(" Theorem 3.14 A

Let o be nondecreasing on [a,b] c R, f,, € Z(«) for all n, and assume f,, - f uniformly. Then
1. feZ(a), and

2. limy—eo [ab fanda= fabfda.
. J

Proof. TBD. O

3.1 I missed class

wip: need to catch up on the lecture I missed (1/13/2023)

Definition 3.15. Two notions of boundedness:

1. A sequence of functions {f,} € C(X) is said to be pointwise bounded if for all 2 € X, there exists C'(x)
such that |f,,(x)| < C(x) for all z.

14
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2. A sequence of functions {f,} € C(X) is said to be uniformly bounded if for all = € X, there exists a
constant M such that |f, (x)| < M for all z.

Definition 3.16. A family .%# of complex functions f defined on a set E of a metric space X is said to be
equicontinuous on F if for every € > 0, there exists a § > 0 such that

If () = f(y)l <e

whenever d(z,y) < 0, where z,y € E, f ¢ &.

Indeed, it is the case that uniform convergence of sequences of functions and this notion of equicontinuity
are related to one another.

Theorem 3.17
If K is compact set, f, € €(K) and f, — f uniformly on K for n € N, then {f, }nen is equicontinuous.

Proof. For € >0, there exists an N € N such that for any z € K,
€
ale) - f@)] < 5

whenever n > N. Furthermore, since f,, — f uniformly, f is continuous; because K is compact, we even have
f uniformly continuous. So there exists a ¢’ > 0 such that if d(x,y) < §’, then

€
)~ )l <
So, if d(x,y) < and m,n > N, we have

(@) = fu (W)l <[ fn(@) = f(@)[+1f (@) = FWI +1F(Y) - fuly)l < e

Finally, f1,..., fy are continuous on a compact metric space, so they are uniformly continuous. Thus for
each 1 <j <N, there exists a 6; > 0 such that

Ifi(e) = fi(W)l<e (G=1,....,N).

Set 6 =min(¢’,d1,...,0n), and we're done. O

Lemma 3.18

If K is compact, then there exists countable dense subset of K.

Proof. We can cover K with {B(x, 2) |z € K}ev. (Here, we shall abuse the notation B(a,b) to represent the
neighborhood of radius b centered at a, and x to represent the element x; with corresponding neighborhood

B(x;,1).) For any n €N, there exists a finite subcover {B(=7, L} of balls of fixed radius =. Then for all
neN and y € K, there exists x7 such that d(y,z}) < % Take

S={z}|neN,j=1,...,N}.

15
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Lemma 3.19

Given countable S and uniformly bounded sequence of functions f,,, there exits subsequence converging
to every element of .S

Proof. Let S = {x1,...}. Since the sequence f,(z1) is bounded in C (i.e sup|f,| < M for all n € N), there
exists a subsequence f,,: such that f,:(z1) converges. (Abusing more notation, let the sequence of subindices
J J

nj only consist of the sequence of indices ni" if m <n.) Similary, because f,,1(z2) <M for all j, there exists
J
a subsequence n? of njl such that f,2(z2) converges. Since f,2 is a subsequence of f,:, it also converges
J J J
at 1. Then f,s converges at z3 (and thus at z7 and x3); by induction, it can be seen that f,» converges
J J

at x1,...,2,. Now, to obtain an explicit subsequence, we shall diagonalize (recall Cantor’s diagonalization
argument from proving the countable union of countable sets is countable!), by setting

gj :fn;y

For all k, if j > k, then f, ; is a subsequence of f,, so g;j(x1),...,g;(z;) converge as j — co. O
J J

Theorem 3.20 (Arzela—Ascoli)

K compact, f, € €(K) for n=1,2,.... Assume {f,}neny bounded in € (K) (i.e. uniformly bounded)
and equicontinuous. Then there exists a convergent subsequence in € (K) (i.e. uniformly convergent).

Proof. Using Lemma 3.18, pick a countable and dense S c K. Using Lemma 3.19, pick a subsequence g; of
fn converging on x for all x € S. If we show g; is uniformly convergent on K, then we're done:

We can do so by showing g; is uniformly Cauchy. It follows from equicontinuity that for all € > 0, there
exists ¢ > 0 such that if d(x,y) < J, then for all j,

l97(x) = 9;)] < - (4)

By Lemma 3.18, we can obtain, from the open cover {B(z;,0) | z; € S}, a finite subcover {B(x,d) | x € S5},
where S5 is finite. Now, since g; converges to every element of S, there exists NV € N such that for all x € Ss

9(2) = gun ()] < (5)

whenever m,n > N. (Take N =max{N, | z € S5}.) Now, for all i,j > N, y € K, there exists x € S5 such that
d(y,x) <6, so (4) and (5) give

l9: (y) — 95 (W) < 19i(y) = gi(@)| + |gi(x) = g; ()| + |95 (z) = g;(v)]
LeLE, €
33 3

=€
O

Remark 3.21. Rudin displays the Arzela—Ascoli theorem with slightly weaker conditions: he requires {f,} to
be a pointwise bounded sequence of complex functions on a countable set. However, pointwise boundedness is
almost never used, so we’ll choose not to think about it.

16
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Remark 3.22. TODO: bounds on derivatives (or difference quotients) give equicontinuity. (MVT probably
comes into play.....)

4 A Special Function

Definition 4.1. For z € C, we define a power series to be the infinite series

) N
n_ 1 n
nE:oan —nlgrolo ng 2" (6)

Lemma 4.2 (Weierstrauss M-Test)

Consider the series of functions }72, f;j(x). If there exists M; such that sup|f(x)| < M; and ¥ M; < oo,
then Y72 f;(x) converges uniformly.

Proof. Let s, = ¥ fi(x). For m <n,

(n-sm)@ls Y 1@< ¥ M,

j=m+1 j=m+1

and if )7 M; converges, then for all € > 0, there exists an IV € N such that ) 1Mj<eifm,n>N. O

n
Jj=m+

(" Theorem 4.3 )
There exists an R € [0, +00) such that

1. (6) converges absolutely for all z € C with |z| < R, and converges uniformly on {z | |z| < R’} for all
0< R <R.

2. (6) diverges for |z| > R, with no information on R.

- J

Proof. Recall that Y. a,, converges if lim sup |an|% =t a < 1, and diverges if a > 1. Now, notice that

limsup|cnz”|% = |Z|hmsup|cn|% = %

If % < 1, we get absolute convergence (and divergence if % > 1). We'll now check uniform convergence
on the closure of B(0,R'): If R’ < R, then £ < . Pick s to be sandwiched such that & < s < #. Now,

limsup |c,|# = 4, so there exists N € N such that if n > N, then |e,|= < s. So, for n> N, if |2| < R, observe

1
R’
lenz™ < sn (RN = (sR" < 1.

Defining f3 := sR’, we have |¢,2"| < 7, so § < 1 and we get uniform convergence for |z| < R’ by the M-test! [

17
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.

(" Theorem 4.4 )

Fix a series Y, ¢,2™ with radius of convergence R. For |z| < R, let

f(z) =) caz™
n=0
Then the derivative evaluated at real z € R
f'(z) =Y conz = > crar (b + 1)z*
n=1 n=0
has the same radius of convergence R.
J

Proof. Tt suffices to verify that both f(z) and f’(z) have the same radius of convergence.

limsup,,_, . |n - cn|% = limsupn%|cn|% =

1
R, 50
. ER 1 1
= lim n» -limsup|c,|» =1- —.
f’ n—o0 n—>00 R

So for any R’ < R, ¥ nc,z"! = f'(2) converges uniformly if |z| < R'.

Notice that

Corollary 4.5
For all k, f®)(z) = ¥, con(n+1)-(n -k +1)2"* for |z| < R.

Corollary 4.6
F*(0) = kley.

Remark 4.7. By the last corollary, we get that the infinite series we’'ve been working with were Taylor series

I for f.

What about the converse? Can we represent every function by some Taylor series?

Example 4.8

Let
<0

x>0

f(z) = {2;2

Then f € €, but fU)(0) =0 for all j, so f is obviously not equal to its Taylor series.

Then what functions work?

Definition 4.9. A function that can be represented by a series Y ¢,2" is said to be an analytic function.

Example 4.10
The function 1—; =Y 52" converges if |z| < 1 and diverges if |z| > 1.

18
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4.1 The exponential function

Example 4.11
Define

Zn+1

(n+1)!
any disc. Furthermore, notice that

By the ratio test, lim,_,

n+1

n-1

n=0 : n=1

|Zn—r,b| =1limy o0 2k = 0 for all z € C. Thus E(z) converges uniformly on

F@)=y =5 DB,

( Corollary 4.12
E(-z) = ﬁ, x €C. Thus E(z) #0 for all z€C.

.

Definition 4.13. -
=FE(1) = —.
e=B(M)=3

Notice
1. B(w)=E(1+-+1)=FE(1)"=¢" for all n e N,

2. 8(5) = B(E e t) = B@) =e 50 B (1) = el

Proposition 4.14
E(x) is strictly increasing on R.

Proof. E'(x) = E(x) >0 for all z.

19
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Elliott Yoon 4 A Special Function

I Remark 4.15. ¢ was also defined (at some point) as sup,,/,, E(g) = E(x).

Example 4.16

Note that e* is the unique function characterized by satisfying the following ordinary differential equation:

E'(x)=E(x) VYzeR
E(0) =1

We can further derive the aforementioned properties of e* with this formulation, e.g. both E(z + tw)
and E(z)E(tw) satisfy %g = wg:

d

%E(z +tw) = wE(z + tw)

d

aE(z)E(tw) = E(2) +wE'(tw)

, E(z+w) = E(2)E(tw).

4.2 The Natural Logarithm

Since e > 1, it follows that " — co as n - oo and e™* — 0 as & - oco. Moreover, z — E(z) maps R - (0, c0),

and is a one-to-one and onto. Thus, there exists an inverse function L : (0,00) > R, Fo L = Id. By properties

of the derivative,
1 1 1

L, y = = = —
VB T T
so by the Fundamental Theorem of Calculus, L(y) = [,/ % ds+C. Since E(0) =1, L(1) =0 and thus C' = 0.

Definition 4.17. We define the natural logarithm function to be inverse of e*:

tog(y) = L(y) = [~ ds.

4.3 feat. sine & cosine

Recall that E(z) = ¥72, %7 SO

B(iz) = ¥, - 7 (7)

Definition 4.18. Notice C'(x) = -S(z) and C(0) = 1; S’(z) = C(x) and S(0) = 0. As you’ve probably
guessed, C'(z) = cos(z) and S(x) =sin(x).

(" Theorem 4.19 (Sum and Difference Rule) A

aka SACB, CASB or SINE COSINE COSINE SINE, COSINE, COSINE, SINE SINE. SINE THE
SAME, COSINE CHANGE, nananananana -Paul Zaclin, Fall 2018, Calculus 1.

sin(x £ y) = sin(z) cos(y) + cos(z) sin(y)

cos(x + y) cos(x) cos(y) F sin(x) sin(y)

20
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Proof. Let E(iz) = C(x) +iS(x), where C(x),S(z) € R. Then, (7) implies that
C'(z) +iS'(z) =i(C(z) +iS(x)) =iC(z) - S(z).

Thus
E(i(z+y)) = E(iz) E(iy) = C(z +y) +iS(z +y) = (C(z) +iS(2))(C(y) +15(y)),
C(z+y) = (C(x)C(y) - S()S(y))
S(z+y) =(S(@)C(y) + C(x)S(y))

O
Theorem 4.20 (Pythagorean Identity)
cos?(z) +sin?(z) = 1.
Proof. Notice
e”zz(i;)j: Z (_;T)] — i e%.
Thus 1 = e = ¢ie-iz = || = cos?(z) + sin®(x). O

5 Fourier Analysis

The year is 1807. France just had a revolution or something. Enter Joseph Fourier. This guy is living the
life: Napolean likes him and makes him do math n stuff. Of specific interest to us is Fourier’s study of heat
equations, which led him to an extremely important proposition:

( Proposition 5.1 )

Any nice” 2m-periodic function can be written as the Fourier Series
f(d?) _ Z aneina:
n=—oo
for some coefficients a,, € C. (Barring exponentials, he would’ve written the series as
f(z) =Y ajcos(jz)+ . bjsin(jz)
§=0 j=1

but the bookkeeping with this representation is a wee bit more annoying than the first.)

. J

I Remark 5.2. Notice that e™(®*2™ = ¢ for all £ so ¥ ane'™ is 2r-periodic (if the series converges).

Definition 5.3. We shall define, for convenience, the function

1
en(z) = VT
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Say f(a) =32, anen(x). We say convergence of f is uniform if

=N

anen(x) = f(z)
N

n
lim
N—oo
n=—

with uniform convergence.

Question 5.4. What values a,, are nice?

This will motivate further exploration into this silly goofy world.

Definition 5.5. Let f,g € 2([0,27]). We define the following the notation:
2m —
<fg>= [ f@)yg@)dr.

As an analogy, imagine we go from the continuous world of [0,27] to the discrete world of n points:

Z1y...,2n. Then 37 f(x;)g(x;) is the dot (or inner) product on C. Thus we can think of < ¥, w > to be an
infinitessimal notion of an inner product! Moreover, recall the .#?-norm is defined

r13={ [ 1r@kas)

Turns, out | f||? = O2Tr |f(x)]?dz =< f, f >. Hmmmm. Okay, so that doesn’t really mean anything to me. But
let’s keep digging: For n € N,

1 m nx _—ijr
< en(7),¢5(z) > :%/0 e dr =1+ 6y,

1 | =
where d,,; = {O J . " So
jEn
< fiej > = <Y anen(x),ej(x) > =) an< en(x),e5(x) > =aj.

4 Proposition 5.6 (a conjecture, really) )
For nice*™ f,
f@)= Y f(n)e™
with . .
f(n) =< fen >= — f f(x)e ™ dx.
2 J-x
- J

**Sadly, it turns out bounded and uniformly continuous does not suffice. Well, at least it almost does..

Remark 5.7. The bounds of integration for f(n) are often 0 to 27 instead. Since f is periodic, it doesn’t really
matter.
5.1 Priodicity of sine and cosine

Before proceeding, it is first imperative that we establish the periodicity of sine and cosine. Recall that
E(iz) = C(x) +iS(x), where C is cosine, S is sine, and C(0) =1,5(0) = 0.
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Lemma 5.8
C(z)>1-z for z > 0.

Proof. Let f(x) = C(z)+2z-1. (We want to show that f(xz) > 0 if z >0.) Notice f'(z) = -S(z) + 1, so
f(0) =1 and f(z) > 0 for all . Thus f(x) > 0 on z € (0,¢) for ¢ > 0. Thus, for sufficientlys small h,

limy, o f(h ) =1 and so flz)> %h. For sake of contradiction, suppose there exists a > 0 with f(a) <0. Then,

by the Mean Value Theorem, there exists b € [e,a] with f/(b) <0, a contradiction since S(z) < 1. O

Set T(x) = 55 on [0,1], since C(X) > 0 on [0,1]. Notice T'(X) = gkyr = S8 550 = 1(x)? 412 1.

Thus T'(1) > 1, so there exists a € [0,1] such that T'(a) = 1.

Definition 5.9. Define 7 = 4a.
Then T (%) =1,50 C (%) =S5(%)>0since C(X)>0on [0,1]. Since C*+5?=1,C(Z)=5(%)= %,and
thus
i (\/_ \/_) in _
e 4 = =€ =-1.

7_’,7

So for all z € R,
61(27r+z) _ ez:ve27r7, _ ez:r’

and thus
C(X+2m)=C(X), S(X+2r)=5(X).

So sine and cosine are periodic! Whew, that was a lot.

5.2 The Direchlet and Fejer Kernel

Okay, so we’ve defined the notation of e, = \/%ei”x, n € Z, the operation < f,g >= fOQTr f(x)g(z)dx, and the

set

GrH(SY) = {f e (R) | f(x+2m) = f(x) Val.
It would be really nice if for all f e €%(SY), f(z) = £o° . anca(x). If all goes well, then

o)

<fej>= Y an<en,e;>=aj.

n=—oo
We want a; =< f,e; >= f(]) In other words, we want
o N

(])e] Z<f,6j>6j:]\l[i_1)1; Z < f,ej>e;.

j=N

&,\_‘
%MS

Definition 5.10. We define the Direchlet Kernel to be

1 N
Dy(z) = o ;
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Remark 5.11. Here, "kernel” has no relationship to the notion of kerenels of a vector space, or the like. In this
case, a kernel is something that is synechdoche with its integral.

Then

N

lim < f,ei>e;
Naoo]:Z_:N f’ J J

~
Il

3 (7 ) e
tm 8 ()7 e )

Jj=

1 < ij (2-y)
I f - ij(z-y) g
Neo 0 27Tf(y)j:Z_:N€ Y

27
1313;[0 f(y)Dn(z -y)dy.

Definition 5.12. Let sy(z) = ij\i_]v F(W)e;(x).
We've just shown that sy (z) = fo% f(y)Dn(x - y) dy, which if you’ve taken probability might recognize
a convolution buried in notational junk. Wait, a what?

Definition 5.13. Let f,g €% (S'). The convolution of f and g is defined as (f * g)(z) = [ f(y)g(z - y) dy

Well, this is cool, but how can it be applied?
Question 5.14. Let f, g€ %(S') and y = s — z. Show

f f)g(x-y)dy = f flz=-x2)g(2)dz.
(In other words, show (f * g)(z) = (g * f)(x).)

Remark 5.15. If we consider the convolution f * Dy(z) = [ f(x - y)Dn(y)dy, notice that it is a quasi-
?weighted average” function, that smooths out f. Furthermore, the N th partial sum of a Fourier series:

sn(z) = (f * Dn)(2),

where as a reminder, Dy (z) = 5= Z;-V:_N et =L Z;-V:_N(em] ).

Notice that

i 1 . 1 .
¢ Dy () = Dy () + Ve - L i
2 2
SO

T 1 i T —-i(Nz
Diy(2)(¢7 = 1) = (V)7 - =iV,
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and thus
1 ei(N+1)a: _ e—iN:v
D =
n(z) 2w e —1
1 ei(N+%)z _ 6—i(N+%)m
Ton e's —e7i3
1 2isin(N + %:r))
“2m 2isin(lz)
1 sin(N + ;)

2 sin($2)

Definition 5.16. We say s,,(z) converges Cesaro if oy (z) = & (S0 + s1 +++ sy-1)(2) = f(z).

Theorem 5.17 (Fejér)
If fe®?(S!), then on(z) — f(x) uniformly.

Proof. Tt’s coming, don’t you worry. We just need some more machinery first...
Definition 5.18. We define the Fejér Kernel to be Fy(z) = ~ (D ++ + Dy_1).
Remark 5.19. Notice that we can compute the following equality:

1

on(z) = N(SO +51 4+ 8n-1)(T)
1 27 27
-5 ([T @Dy [T H@)Dx -y dy)
2m 1
- [ #w) (§ Do+ + Dya)(@-1)) dy
0

:/O%f(y)FN(m—y)dy.

Next, recall that e!® — e = 2 sin(a), so

1 Nlsin(j+1)z

F -
n(@) QWN];) sin(%x)
1 N-1

B 21N sin (%z)

N
'~
~
(S
I

|
~
8

1

B 27w N sin (%x)

1 N N N sin (5 ) 1 sin? (§z)
:%IJ(COSf-F’LSIHf:L') —7 = 51
27N sin (32) 2 2 sin(5) 27N sin® (1z)

and thus Fy(z) - 0 as N grows to infinity. On the other hand, Dy (x) oscillates forever.
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(" Lemma 5.20 )
The following hold:

1. f027T Dy (z)dz =1 for all N,
2. fOQW Fyn(z)dx =1 for all N, and
3. Fy(z) 20 for all x. For ¢ >0, F(x) - 0 uniformly as N — co on z € [-7, 7] \ (=6, 9).

Proof. Recall that Dy = \/% Z;V?N ej(z) = Zé-\':,N %, =)

27 N 1 27 i
Dn(z)dz = —/ ijz _ 1,
Jy Dux@@yda= 3 o [
Furthermore,
27 1 2r N-1 1
F dsz D;j(z)dr=—~—-N=1.
Jy Ex@do= [ ¥ Dito)do=

2
sin( Xz . . .. . . .
Fyn(x) >0 since Fy(x) = \/%7 Sin(ém))) . On [6,7), notice sin 1z is increasing (take the derivative!), so for

2
sufficiently small ¢ > 0,
LN . N
sin 5 x| |sin 52| 1
1
sin 5z

a |sing| - sin%.

So on [6,7], Fy(z) < + —5+. Likewise, on [-7,-0], since Fy is even, 0 < Fy(z) < %s% on [-m,pi]\ (6,6),
S1n b) mn bl
and this tends to 0 as IV goes to infinity. O

Lemma 5.21

Let the conditions for the Fejer Theorem hold. Then for € > 0, there exists a § > such that there exists
an Ny € N where if N > Ny, then

[f(z) - on(@)|<e.

Proof. For e >0, continuity of f gives |f(z) — f(y)| < 5 whenever |z —y| <. Given this J, there exist an Ny

such that if N > Ny, then
€

0<F <—
w(@) 4sup|f|2m

on [-m,m] N\ (=4,9). Then for all N > Ny,
F@) =on@ < [T1f@) - F@)Fy (- y)dy
- [ @ - sy [ £() - F)IF (e v) dy

—m,z+7 |\ (x-6,x+6)

T+6 € €
< $Fn(z-y)dy + / 2 S
-/;—5 2 N(l' y) y [z-m,z+m]\(z=8,2+F5) SuP|f|4sup|f|27r Y

T € €
< [ SPy(z-y)dy+2r-2sup|f] ———
.[w 2 n(z=y)dy+2m-2s5up]f] 4sup|f|2m

€
+-=e
2

N | ™
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Theorem 5.22 ((Fejer, again))

If fe€°(S'), then fOQTr fy)Fn(x-y)dy =on(z) - f(x) uniformly on R. (Indeed, if f € 2([0,27]) is
continuous at a € R, then on(a) » f(a).)

Proof. We can do the clever trick of multiplying by a funny representation of 1: f(z) = f f(x)Fn(z-1vy)dy.
Then

5@ -ox@l= 1@ - [ @) ey d
| [T U@ - @) Fx -y
< [T1@) - F@)Fx - dy

<e.
O
( Corollary 5.23 )
Trigonometric polynpmials are dense in ¢°(S'). (Trigonometric polyomials are finite Fourier series of
the form Zjl\i,N b;ets = Z]_, bj(cos(z) +isin(x))’ for some N, b_y,,...,bn;.)
. J
4 Corollary 5.24 (Weierstrass Approximation Theorem ) )
Let f:[0,1] - R be continuous. Then there is a sequence of polynomials P, (x) such that
lim sup |Pa(z) - /()] =
7 xel0,
. J

I Remark 5.25. This holds not just for [0, 1], but also any closed interval [a,b].

Lemma 5.26 (This is important')

If f € €% (S), then |f(n)| < S, n 0, and DFf(n) = nk f(n).

= ‘nlk?

Proof. Since f € #Z, |f(n)| = |f027rf
parts:

(m)\/%emx dz| < sup|f|v/27. Since f € €, we can use integration by

pi(m = [ 2ﬂ1f’($)\/12_7reimdx
f = (D @) e + f(x)%
0
-n [0 f<m>mdx
=nf(n).

It follows from an induction argument that if f € €*(S"), then D* f(n) = n* f(n) since D* f(n) is bounded. [
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Elliott Yoon 5 Fourier Analysis

Remark 5.27. In other words, taking Fourier coefficients connects differentiation to multiplication! Moreover,
there is a correlation between how smooth (i.e. how many times differentiable) a function is and how fast its
Fourier series decays.

Addendum: didn’t have time to finish typing these up so the rest of the notes are hastily handwritten:
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Elliott Yoon 5 Fourier Analysis

HELP ME FIGURE OK, ASSIGN THE ANSWER A | THAT LEAVES YOU WITH THREE

QUT THIS HOME- VALUE OF "X" "X” AUNMS  |ON THIS SIDE, SO WHAT TINES

WORK MEANS MULTIPLY, SO TAKE  |THREE EQUALS E\GHT # THE
TME NUMERATOR (THATS LD

FOR "NUMBER EIGHTER") AND

PANSHER, OF COURSE., |S SIK.

OOH, THATS A TRICKY ONE
YOU HAVE. TO USE CALQULS
AND IMAGINARY NUMBERS
R THIS.
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