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Elliott Yoon 1 The Riemann Stieljis Integral

1 The Riemann Stieljis Integral

Remark 1.1. For this section, let there be a standing assumption that f is bounded.

Definition 1.2. Let [a, b] be a given interval. A partition P of [a, b] is a finite set of points {x0, x1, . . . , xn}

where
a = x0 ≤ x1 ≤⋯ ≤ xn = b.

We will adopt the following notation: ∆xi = xi − xi−1. Now, let P be any partition of [a, b]. We put

1. Mi = sup f(x) (xi−1 ≤ x ≤ xi),

2. mi = inf f(x) (xi−1 ≤ x ≤ xi),

3. U(P, f) = ∑
n
i=1Mi∆xi,

4. L(P, f) = ∑
n
i=1mi∆xi,

and finally obtain the upper and lower Riemann integrals of f over [a, b]:

1. ∫
b
a f dx = infP ∈P U(P, f),

2. ∫
b
a f dx = supP ∈P L(P, f)

where P is the set of all partitions P of [a, b].

Lemma 1.3

The set {U(P, f) ∣ P ∈P} is bounded below.

Proof. Since f is bounded, f(x) ≥m for all x ∈ [a, b]. Notice that

U(P, f) =
n

∑
i=1

sup
x∈[xi−1,xi]

f(x)∆xi ≥
n

∑
i=1

m ⋅∆xi =m(b − a).

Definition 1.4. We say that f is Riemann-integrable and write f ∈R([a, b]) if

∫

b

a
f dx = ∫

b

a
f dx.

Remark 1.5. Notice that L(P, f) and U(P, f) are bounded by m(b− a) and M(b− a), where m ≤ f(x) ≤M for
all x ∈ [a, b]. In other words, the upper and lower integrals exist for every bounded real function.

Definition 1.6. Let α be nondecreasing (monotonically increasing) function on [a, b]. We write ∆αi =

α(xi) − α(xi−1). (Clearly, ∆αi ≥ 0. We put

1. U(P, f,α) = ∑
n
i=1Mi∆αi,

2. L(P, f,α) = ∑
n
i=1mi∆αi.
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where Mi,mi have the same meaning as in Definition 1.2 and we define

∫

b

a
f dα = inf

P ∈P
U(P, f,α) (1)

and

∫

b

a
f dα = sup

P ∈P
L(P, f,α). (2)

If (1) and (2) are equal, then we say f is integrable with respect to α over [a, b], written f ∈R(α), and notate
their common value, known as the Riemann-Stieltjes integral as

∫

b

a
f dα.

Question 1.7. When is f ∈R(α)

It may be helpful to rephrase the question to ask when f is not in R(α).

• Nonexample: The function

f(x) =

⎧⎪⎪
⎨
⎪⎪⎩

1 x ∈ Q
0 x /∈ Q

is not in R([a, b]). Notice that for any partition P , U(P, f) = 1 ≠ 0 = L(P, f).

So whenever infP ∈P U(P, f,α) is strictly greater than supP ∈P L(P, f,α), we know f /∈R(α).

Definition 1.8. For partitions P,Q ∈P,

1. If Q ⊃ P , we say Q is a refinement of P .

2. We call P ∗ = P ∪Q a common refinement.

Lemma 1.9

If Q ⊃ P , then U(Q,f,α) ≤ U(P, f,α) and L(Q,f,α) ≥ L(P, f,α).

Proof. Let Q = P ∪ {x0, . . . , xk}. If k = 0, the conclusion obviously holds. Now, suppose k ∈ N and
U(Q,f,α) ≤ U(P, f,α), and let P ∗ contain just one more point than P , x∗, where xi−1 < x

∗ < xi. Write
w1 = supxi−1≤x≤x∗ f(x) and w2 = supx∗≤x≤xi

f(x). Notice w1,w2 ≤Mi where Mi = supxi−1≤x≤xi
f(x). Then

U(P, f,α) −U(P ∗, f, α) =Mi[α(xi) − α(xi−1) −w1[α(x
∗
) − α(xi−1)] −w2[α(xi) − α(x

∗
)]

= (Mi −w1)[α(x
∗
) − α(xi−1)] + (Mi −w2)[α(xi) − α(x

∗
)]

≥ 0.

The proof for the lower integrals is the same.

Remark 1.10. Notice that for any partitions P1, P2, it follows with the common refinement P ∗ = P1 ∪ P2 that

L(P1, f, α) ≤ L(P ∗, f, α) ≤ U(P ∗, f, α) ≤ U(P2, f, α).
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Corollary 1.11

∫

b

a
f dα ≤ ∫

b

a
f dα.

We now arrive at a useful lemma relating integrability to being able to find partitions that allow the distance
between upper and lower integrals to be arbitrarily small:

Lemma 1.12

f ∈R(α) if, and only if, ∀ϵ > 0, there exists a partition P such that U(P, f,α) −L(P, f,α) < ϵ.

Proof. Let f ∈R. Then there exists a partition P1 such that 0 ≤ U(P1, f, α) − ∫
b
a f dα < ϵ/2. Similarly, there

exists P2 such that 0 ≤ ∫
b
a f dα − L(P2, f, α) < ϵ/2. (Notice that f ∈ R(α), so ∫ f dα = ∫ f dα = ∫ f dα.) Let

P = P1 ∪ P2 be the common refinement of P1 and P2. Then

U(P, f,α) ≤ U(P1, f, α) < ∫ f dα + ϵ/2 < L(P2, f, α) + ϵ ≤ L(P, f,α) + ϵ.

Now assume the converse. Recall that ∫ f dα ≤ U(P, f,α) and ∫ f dα ≥ L(P, f,α) for any partition P . Let
ϵ > 0. Then there exists a partition P such that

0 ≤ ∫ f dα − ∫ f dα ≤ U(P, f,α) −L(P, f,α) < ϵ.

Now, let’s introduce a bit of notation to make our lives easier. We can write that f is continuous on a metric
space X as f ∈ C (X). Furthermore, we can improve upon our notation of integrability to write f ∈R(α,S)
to mean that f is integrable on with respect to α over S.

Theorem 1.13

Let f ∈ C ([a, b]). Then f ∈R(α, [a, b]).

Proof. Notice [a, b] is compact. Thus f is uniformly continuous on [a, b], so for ϵ > 0, there exists δ > 0
such that ∣f(x) − f(y)∣ < ϵ

α(b)−α(a)
whenever ∣x − y∣ < δ. Now, pick a partition P (with n elements) such that

∆xj < δ for all j. Then

∫ f dα − ∫ f dα ≤ U(P, f,α) −L(P, f,α) =
n

∑
j=1

sup
Ij

f ∆xj −
n

∑
j=1

inf
Ij

f ∆xj

=
n

∑
j=1

(sup
Ij

f − inf
Ij

f)∆xj

<
n

∑
j=1

ϵ

α(b) − β(a)
∆xj

=
ϵ

α(b) − α(a)
(α(b) − α(a)) = ϵ.

Since ϵ is arbitrary, the proof is complete.
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Remark 1.14. It turns out, we need not require that f is continuous on the entire interval; it suffices for f to
be continuous except at finitely many points, with α continuous where f is not! Zoo wee mama!

Remark 1.15. In fact, the Lebesgue Criterion for Riemann Integrability states that

f ∈R ⇐⇒ f is discontinuous on a set of measure zero!

(As a reminder, a set E has measure zero if for ϵ > 0, there exists a collection of intervals {In} ⊃ E such that

∑n diam(In) < ϵ.)

Theorem 1.16 (The cooler Daniel)

If f is continuous at except finitely many points and α is continuous at the points of f ’s discontinuity,
then f ∈R(α).

Proof. Let f be continuous except at finitely many points, say {x0, . . . , xn}. Because f is continuous at
except finitely many points, we can let M = ∣f ∣.

Since the set of discontinuities S = {x0, . . . , xn} is finite, α is uniformly continuous on S. It follows from
the triangle inequality and the monotone increasing property of α that for all ϵ > 0 there exists a δ > 0 such
that α(xj + δ) − α(xj − δ) < ϵ.

We can always choose δ to be smaller, so without loss of generality, assume the set of [xj − δ, xj + δ]
is disjoint. Let F = [a, b] ∖⋃n

i=1(xj − δ, xj + δ). F is compact, so for all ϵ > 0, there exists δ′ > 0 such that
∣f(u) − f(v)∣ < ϵ for all u, v ∈ F where ∣u − v∣ < δ′.

We can now partition F into intervals Ij with ∆xj < δ
′. Let Ji = [xi − δ, xi + δ]. We can now partition

[a, b] into a partition P consisting of the Ii’s and Ji’s. Then

∫ f dα − ∫ f dα ≤∑
j

sup
Ij

f ∆xj −∑
j

inf
Ij

f ∆xj +∑
j

sup
Jj

f ∆xj −∑
j

inf
Jj

f dα

=∑
j

(sup
Ij

f − inf
Ij

f) ∆xj +∑
j

(sup
Jj

f − inf
Jj

f) ,∆xj

≤ ϵ∑
j

∆xj +∑
j

2Mϵ

=Kϵ,

where K ∈ R.

Remark 1.17. What if we want to compose functions? Will their composition be integrable? Well it turns
out that if the inner function is integrable, then the outer function being continuous on the range of the inner
function is sufficient for integrability of the composition.

Theorem 1.18 (Integrability of composition of functions)

If f takes values in [m,M] on [a, b], f ∈R(α, [a, b]), and ϕ continuous on [m,M], then ϕ○f ∈R(α, [a, b]).

The proof for this theorem is pretty funny, so hang on.

Proof. ϕ is uniformly continuous on [m,M] (why?) so for some ϵ > 0 there exists a δ < ϵ such that
∣ϕ(u) − ϕ(v)∣ < ϵ whenever ∣u − v∣ < δ. Note that if we find a sufficiently small δ, then any value less than δ
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also works so we can restrict ourselves to only working with δ < ϵ. It turns out, this restriction will become
very useful later on!

Since f ∈R(α), it follows from Lemma 1.12 that there exists a partition P such that

U(P, f,α) −L(P, f,α) < δ2.

For each j = 1, . . . , n (where n = ∣P ∣), if supIj f − infIj f < δ, place j ∈ A. Otherwise place j ∈ B.

1. If j ∈ A, then ∣ϕ(f(x)) − ϕ(f(y))∣ < ϵ, x, y ∈ Ij .

2. If j ∈ B, then supIj(ϕ ○ f) − infIj(ϕ ○ f) ≤ 2 sup[m,M] ∣ϕ∣, and let’s notate K = sup[m,M] ∣ϕ∣.

But U(P, f,α) −L(P, f,α) < δ2, so

∑
j∈B

δ∆αj ≤∑(sup
Ij

f − inf
Ij

f)∆xj ≤ δ
2.

Dividing both sides by δ, we get ∑j∈B ∆αj < δ.

Thus

∫ ϕ ○ f dα − ∫ ϕ ○ f dα ≤ U(P,ϕ ○ f,α) −L(P,ϕ ○ f,α)

≤
n

∑
j=1

ϵ∆αj + ∑
j∈B

2K∆αj

≤ ϵ(α(b) − α(a)) + 2Kδ

< ϵ(α(b) − α(a) + 2K).

Remark 1.19. Note that we (stupidly, in the words of Jared Wunsch,) overcount in the third-to-last line of the
extended equation; summing over all j instead of just j ∈ A.

Remark 1.20. You’ve probably caught on to the style of proving a function is integrable: find a partition such
that the difference U −L is bounded above by an arbitrary ϵ.

We will now explore the properties of the integral, which pretty much agree with the intuition of someone
who studied linear algebra and multivariate calculus with Aaron Peterson in MATH 291 @ Northwestern
University:

1. The integral is linear over R;

2. If a function bounds another from above, then the integral of the first will bound the integral of the
second from above;

3. We can split integrals by an intermediate bound;

4. If the magnitude of a function is bounded by a finite number M , then the magnitude of the integral of
that function will by bounded by the product of M and the width of the integral’s bounds.

5. The sum of functions integrable with respect to different ”clock speeds” is integrable with respect to
the sum of their individual clock speeds. (Really pushing the metaphore here..)
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Theorem 1.21 (Rudin 6.12)

1. If f1, f2 ∈R(α) then f1 + f2 ∈R(α), cf ∈R(α) for every c ∈ R, and

∫

b

a
(f1 + f2)dα = ∫

b

a
f1 dα + ∫

b

a
f2 dα and ∫

b

a
cf dα = c∫

b

a
f dα.

2. If f1(x) ≤ f2(x) on [a, b], then

∫

b

a
f1 dα ≤ ∫

b

a
f2 dα.

3. If f ∈R(α) on [a, b] and a < c < b, then f ∈R(α) on [a, c] and [c, b], and

∫

c

a
f dα + ∫

b

c
f dα = ∫

b

a
f dα.

4. If f ∈R(α) on [a, b] and if ∣f(x)∣ ≤M on [a, b], then

∣∫

b

a
f dα∣ ≤M[α(b) − α(a)];

5. If f ∈R(α1) and f ∈R(α2), then f ∈R(α1 + α2) and

∫

b

a
f d(α1 + α2) = ∫

b

a
f dα1 + ∫

b

a
f dα2;

If f ∈R(α) and c ∈ R+, then f ∈R(cα) and

∫

b

a
f d(cα) = c∫

b

a
f dα.

Proof. The proofs for each part are very similar, so we will only prove (1). However Wunsch messed up here
so we’ll skip this for now. A proof is in Rudin if you really want to read it.

The previous theorem (Rudin 6.12) gives us a lot of power to determine the integrability of functions;
we just need to be adept at manipulating expressions into sums and compositions of continuous functions.
Thankfully, x→ x2 is continuous and we have a useful identity to translate multiplication into addition:

A useful identity: xy = 1
4
((x + y)2 − (x − y)2).

Theorem 1.22

Let f, g ∈R(α). Then

1. fg ∈R(α),

2. ∣f ∣ ∈R(α), and

3. ∣∫
b
a f dα∣ ≤ ∫

b
a ∣f ∣dα.

Proof. Notice that f ± g ∈R(α), so (f ± g)2 ∈R(α). Then

fg =
1

4
((f + g)2 − (f − g)2) ∈R(α).
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Since u→ u2 is continuous, ∣f ∣ ∈R(α). Finally, there exists a c = ±1 where

∣∫ f dα∣ = c∫ f dα = ∫ cf dα ≤ ∫ ∣f ∣dα.

Example 1.23 (Heaviside Function)

We define the Heaviside Function as

H(x) =

⎧⎪⎪
⎨
⎪⎪⎩

0 x ≤ 0

1 x > 1

If a < 0 < b and f is continuous at x = 0, then f ∈R([a, b],H) and ∫
b
a f dH = f(0).

Proof. Again, we choose a funny partition that will result in some clean shit: Let P = {x0, x1, x2, x3}, where
x0 = a, x1 = 0, x3 = b, and x2 ∈ (0, b). Then

U(P, f,H) = sup
[a,0]

f ⋅ (H(0) −H(a)) + sup
[0,x2]

f ⋅ (H(x2) −H(0)) + sup
[x2,b]

f ⋅ (H(b) −H(x2))

= sup
[a,0]

f ⋅ (0 − 0) + sup
[0,x2]

f ⋅ (1 − 0) + sup
[x2,b]

f ⋅ (1 − 1)

= sup
[0,x2]

f.

Similarly, L(P, f,H) = inf[0,x2] f . Letting x2 approach 0 from the right, notice that U(P, f,H)→ f(0)+ and

L(P, f,H)→ f(0)−. So ∫
b
a f dH = 0.

Corollary 1.24 (Basically Heaviside, with linearity!)

Let α = ∑
N
j=1 cjH(x − sj), s ∈ [a, b], and f ∈ C ([a, b]). Then

∫

b

a
f dα =

N

∑
i=1

cjf(sj)

Proof. Immediate by Theorem 1.20.

Remark 1.25. Rudin extends α to be an infinite sum, but we don’t need to get that crazy here...

Theorem 1.26

Say α′ exists for all x ∈ [a, b], α′ is bounded, and f is Riemann-integrable (i.e. f ∈R([a, b], x). Then

f ∈R(α). If α′ ∈R([a, b], x), then ∫
b
a f dα = ∫

b
a f(x)α′(x)dx.

Proof. Let α′ be bounded for all x ∈ [a, b] and f ∈R([a, b], x). For ϵ > 0, there exists a partition P of [a, b]
such that U(P, f) − L(P, f) < ϵ/K, where K = sup[a,b] α

′. Now, note that for any j ∈ P , the Mean Value
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Theorem implies there exists some x∗j ∈ [xj−1, xj] such that α(xj) − α(xj−1) = α
′(x∗j )∆xj . With this, notice

U(P, f,α) −L(P, f,α) = ∑
j∈P

(sup
Ij

f − inf
Ij

f)(α(xj) − α(xj−1))

= ∑
j∈P

(Mj −mj)α
′
(x∗j )∆xj

≤K ∑
j∈P

(Mj −mj)∆xj

<K ⋅ ϵ/K = ϵ.

Thus f ∈R(α). Now, let α′ ∈R([a, b], x). Then for ϵ > 0, there exists a partition P such that

1. U(P, f) −L(P, f) < ϵ,

2. U(P, f,α′) −L(P, f,α′) < ϵ,

3. ∑j∈P (supIj α
′ − infIj α

′)∆xj < ϵ, or U(P,α
′) −L(P,α′) < ϵ, and

4. U(P, f,α) −L(P, f,α) < ϵ, shown earlier in the proof.

Now, for each j ∈ P pick any uj ∈ Ij . By the Mean Value Theorem, there exists some x∗j ∈ Ij such that

∑
j∈P

f(uj)∆αj = ∑
j∈P

f(uj)α
′
(x∗j )∆xj =

⎛

⎝
∑
j∈P

f(uj)α
′
(uj)∆xj

⎞

⎠
+
⎛

⎝
∑
j∈P

f(uj)(α
′
(x∗j ) − α

′
(uj))∆xj

⎞

⎠
.

Define, for sake of brevity, A = ∑j∈P f(uj)α
′(uj)∆xj and B = ∑j∈P f(uj)(α

′(x∗j ) − α
′(uj))∆xj . (These are

the last two sums in the previous equation.) Letting M = sup ∣f ∣, we can bound B as follows:

∣B∣ ≤ ∑
j∈P

sup ∣f ∣ ⋅ (sup
Ij

α′ − inf
Ij

α′)∆xj ≤Mϵ.

Since L(P, f,α) ≤ A +B ≤ U(P, f,α), we have L(P, f,α) −Mϵ ≤ A ≤ U(P, f,α) +Mϵ, and thus

A − ∫
b

a
f dα < ϵ +Mϵ.

Since A is a Riemann Sum, we also have

∣A − ∫
b

a
fα′ dx∣ < ϵ.

Combining all our Pokémon card inequality cards collected throughout the proof, we finally get

∣∫

b

a
f dα − ∫

b

a
fα′ dx∣ < ϵ +Mϵ + ϵ.

2 Integration and Differentiation

We will explore the dynamics between integration and differentiation, and as expected, the two act as
quasi-inverse functions.
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Theorem 2.1 (Fundamental Theorem of Calculus 1)

Let f ∈R([a, b]) and f be continuous at a point x0 ∈ [a, b]. Then

f(x0) =
d

dx
∫

x

a
f(s)ds∣

x=x0

.

Proof. Differentiating our funny integral, we have that

d

dx
∫

x

a
f(s)ds = lim

h→0

∫
x0+h
0 f(s)ds − ∫

x0

a f(s)ds

h
.

We now have to inspect both right and left hand limits, but as the proofs for each case are analogous, we’ll
just look at the right hand limit: h→ 0+. Since f is continuous at x0, for ϵ > 0, there exists δ > 0 such that if
0 ≤ ∣y −x0∣ < δ, then ∣f(y)− f(x0)∣ < ϵ. Since we’re taking the limit as h approaches 0, we can limit our choice
of h to only those with h < δ. Pick any of them. Then ∣f(s) − f(x0)∣ < ϵ∣ for all s ∈ (x0, x0 + h).

We’ll now employ a slick trick: since f(x0) is constant, we can write f(x0) =
1
h ∫

x0+h
x0

ds.

Then

∣
1

h
∫

x0+h

x0

f(s)ds − f(x0)∣ = ∣
1

h
∫

x0+h

x0

f(s)ds −
1

h
∫

x0+h

x0

f(x0)ds∣

= ∣
1

h
∫

x0+h

x0

f(s) − f(x0)ds∣

≤
1

h
∫

x0+h

x0

∣f(s) − f(x0)∣ds

<
1

h
∫

x0+h

x0

ϵ ds

= ϵ.

Remark 2.2. Notice that F (x) = ∫
x

a f(s)ds is continuous on [a, b].

Proof. By continuity, if x < y then

∣F (x) − F (y)∣ = ∣∫
y

x
f(s)ds∣ ≤ ∫

y

x
∣f(s)∣ds ≤ sup ∣f ∣(y − x).

So for ϵ > 0, take δ = ϵ/ sup ∣f ∣.

Continuous things have antiderivatives!

Theorem 2.3 (Fundamental Theorem of Calculus 2 (le célèbre))

Let f ∈R([a, b]), and there exist a differentiable F such that F ′ = f on [a, b]. Then

∫

b

a
f(s)ds = F (b) − F (a).
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Remark 2.4. Recall that integrable functions need not be continuous. (What’s an example of a finitely
discontinuous function that is is Riemann-integrable?) However, the large majority of commonly used integrable
functions are continuous, so we’ll prove this theorem for continuous functions first, and then weaken our
hypothesis for the real proof.

Proof. (naive) Let f be continuous, and set G(x) = ∫
x
c f(s)ds. By FTC1,

d

dx
G(x) = f(x) = F ′(x),

so G(x) = F (x) +C, where C is constant. Thus

∫

b

a
f(s)ds = ∫

b

c
f(s)ds − ∫

a

c
f(s)ds = G(b) −G(a) = F (b) − F (a).

Proof. (The real one..) You know the drill: For ϵ > 0, there exists a partition P = {x0, x1, . . . , xn} such that
U(P, f)−L(P, f) < ϵ. By the Mean Value Theorem, there exists a x∗j ∈ [xj−1, xj] such that F (xj)−F (xj−1) =

f(x∗j )∆xj . Then

F (b) − F (a) =
n

∑
i=1

F (xj) − F (xj−1) =
n

∑
i=1

f(x∗j )∆xj .

Thus,

∣F (b) − F (a) − ∫
b

a
f(s)ds∣ < ϵ.

We now approach the topic of integration by parts, which is often thought of as a computational integration
tool by calculus students. As it turns out, it also carries much importance in analysis by showing that one
can move derivatives around inside the integrand at the cost of a negative sign:

Theorem 2.5 (Integration by Parts)

Say F,G are differentiable functions, F ′ = f , G′ = g, and f, g ∈R. Then

∫

b

a
Fg dx = FG∣

b

a

− ∫

b

a
fGdx.

Proof. By the chain rule, (FG)′ = Fg + fG. Rearrange to isolate Fg and apply FTC2.

Corollary 2.6

If G = 0 and a, b, then ∫
b
a FG′ dx = − ∫

b
a F ′Gdx.

Finally, we introduce machinery that will facilitate changing the bounds of integration. In doing so, we must
account for the ”stretch” factor when stretching or shrinking the region of integration.

10



Elliott Yoon 2 Integration and Differentiation

Theorem 2.7 (Change of Variables)

Let ϕ ∶ [a, b]→ [A,B] be strictly increasing, where ϕ(a) = A and ϕ(b) = B. Let ϕ be differentiable, with
ϕ′ ∈R, and f ∶ [A,B]→ R be continuous. Then

∫

b

a
f(ϕ(x))ϕ′(x)dx = ∫

B

A
f(y)dy.

Proof. Set F (x) = ∫
x
A f(s)ds. By FTC1, F ′ = f . By the chain rule, d

dx
F (ϕ(x)) = f(ϕ(x))ϕ′(x). By FTC2,

we have

∫

b

a
f(ϕ(x))ϕ′(x)dx =

d

dx
∫

b

a
F (ϕ(x)) = F (ϕ(x))∣

b

a

= ∫

B

A
f(s)ds.

2.1 Appendix

There are some arguments utilized throughout the section worth having in writing for posterity:

Theorem 2.8

Recall that F ∈R(α) on [a, b] if and only if for every ϵ > 0 there exists a partition P such that

U(P, f,α) −L(P, f,α) < ϵ. (3)

It is now the case that

1. If (3) holds for some P and ϵ, then (3) holds (with the same ϵ) for every refinement of P .

2. If (3) holds for P = {x0, . . . , xn} and if si, ti are arbitrary points in [xi−1, xi], then

n

∑
i=1

∣f(si) − f(ti)∣∆αi < ϵ.

3. If f ∈R(α) and the hypothesis of (2) hold, then

∣
n

∑
i=1

f(ti)∆αi − ∫

b

a
f dα∣ < ϵ.

Proof. Immediate after noting ∑
n
i=1 ∣f(si) − f(ti)∣∆xi ≤ U(P, f,α) −L(P, f,α),

L(P, f,α) ≤∑ f(ti)∆αi ≤ U(P, f,α) andL(P, f,α) ≤ ∫ f dα ≤ U(P, f,α).

Theorem 2.9

If f is monotonic on [a, b] and α is continuous on [a, b], then f ∈R(α).

Proof. Monotonic functions are discontinuous at most countably many times. Countable subsets have measure
zero, so we’re done. Thanks, Lebesgue!

11



Elliott Yoon 3 Sequences and Series of Functions

3 Sequences and Series of Functions

Say fn ∶ E → C are functions.

Definition 3.1. The sequence {fn} converges pointwise on E (to f(x)) if for all x ∈ E,

lim
n→∞

fn(x) = f(x).

Question 3.2. What good properties of fn might f inherit?

LMAO none. Anyway, an example:

Example 3.3

Let fn = arctan(nx) ⊂ R. fn converges pointwise to

f(x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−π/2 x < 0

0 x = 0

π/2 x > 0.

So fn is infinitely differentiable, but limn→∞ f(n) is not even continuous!

Definition 3.4. fn converges uniformly on E if for all ϵ > 0, there exists an N ∈ N such that if n ≥ N and
x ∈ E, then

∣fn − f(x)∣ < ϵ.

Remark 3.5. N is independent of x! (What else does this independence remind you of?)

Example 3.6 (3.3, revisited.)

Pick ϵ = π
4
. Given N , there exists x > 0 such that arctan(Nx) < π

4
(since limn→∞ arctan(Nx) = 0). Then

∣fN(x) − f(x)∣ <
π

4
∣ .

Theorem 3.7 (Cauchy Criterion for sequences of functions, kinda.)

fn → f uniformly on E if, and only if, for every ϵ > 0, there exists an N ∈ N such that for m,n ≥ N , for
all x ∈ E,

∣fm(x) − fn(x)∣ < ϵ.

Proof. Say fn → f uniformly. Then for ϵ > 0, there exists N ∈ N such that for all n ≥ N , ∣fn(x) − f(x)∣ <
ϵ
2

for all x. Then for m ≥ N , we obtain the same inequality and the proof follows directly from the triangle
inequality. Conversely, suppose for every ϵ > 0, there exists N ∈ N such that for m,n ≥ N , for all x ∈ E,
∣fm(x) − fn(x)∣ <

ϵ
2
. Then for all x, if we fix m, {fn(x)} is Cauchy in C. By completeness of C, there exists

a f(x) such that limn→∞ fn(x) = f(x). By uniform convergence, for all m ≥ N

lim
n→∞

∣fm(x) − fn(x)∣ = ∣fm(x) − f(x)∣ ≤
ϵ

2
.

12
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Theorem 3.8

If fn are continuous functions on X, a metric space, and fn → f uniformly on X, then f is continuous.

Proof. Fix y ∈X. Then for ϵ > 0:

1. There exists N ∈ N such that ∣fn(x) − f(x)∣ <
ϵ
3
for all n ≥ N and x ∈X.

2. If fN continuous, there exists δ > 0 such that ∣fN(x) − fN(y)∣ <
ϵ
3
whenever d(x, y) < δ.

Now for all x such that d(x, y) < δ, (1) and (2) give

∣f(x) − f(y)∣ ≤ ∣f(x) − fN(x)∣ + ∣fN(x) − fN(y)∣ + ∣fN(y) − f(y)∣ <
ϵ

3
+
ϵ

3
+
ϵ

3
.

We will now introduce an important notion of distance between functions, which will nicely lead to the notion
of a metric space of continuous functions!

Definition 3.9. If f ∶X → C is bounded, set ∥f∥ = sup ∣f ∣, where X is a nonempty metric space. Let

C (X) = {f ∶X → C ∣ f is continuous and bounded}.

For f, g ∈ C (X), we define dC (f, g) = ∥f − g∥.

Of course, we wouldn’t be defining a distance function if we didn’t think we could use it as a metric...

Lemma 3.10

∥f + g∥ ≤ ∥f∥ + ∥g∥.

Proof. As one would intuitively expect,

∥f + g∥ = sup ∣f(x) + g(x)∣ ≤ sup(∣f(x)∣ + ∣g(x)∣) ≤ sup ∣f ∣ + sup ∣g∣ = ∥f∥ + ∥g∥.

Proposition 3.11

dC is a metric on C (X).

Proof. Using the lemma,

• dC is symmetric since ∣f − g∣ = ∣g − f ∣.

• dC (f, g) = 0 ⇐⇒ sup ∣f − g∣ = 0 ⇐⇒ ∣f(x) − g(x)∣ = 0 ∀x ⇐⇒ f = g.

• d(f, h) = ∥f − h∥ = ∥f − g + g − h∥ ≤ ∥f − g∥ + ∥g − h∥ = d(f, g) + d(g, h).

Sick, so (C (X), dC ) is a metric space.

But what’s the point of going through all this work to verify this fact?

13
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Proposition 3.12 (Convergence in (C (X), dC ) is analogous to uniform convergence of functions.)

fn → f in C (X) if, and only if, fn → f uniformly.

Proof. Let fn → f in C (X). Then for ϵ > 0, there exists N ∈ N such that

sup ∣f(x) − fn(x)∣ = ∥fn − f∥ < ϵ

whenever n ≥ N . Thus, ∣f(x) − fn(x)∣ < ϵ for all x. Conversely, let fn → f uniformly. Then for ϵ > 0, there
exists N ∈ N such that if n ≥ N , x ∈X, then

∣fn(x) − f(x)∣ <
ϵ

2
,

so
∥fn − f∥ = sup ∣fn(x) − f(x)∣ ≤

ϵ

2
.

Theorem 3.13 (this seems important)

C (X) is complete.

Proof. Say {fn} is Cauchy in C (X). Then for ϵ > 0, there exists N ∈ N such that if m,n ≥ N , then

∥fn − fm∥ = sup ∣fn − fm∣ < ϵ.

Thus for all x ∈X, ∣fn(x) − fm(x)∣ < ϵ and thus {fn} is uniformly convergent to some f(x). By the previous
proposition, f is continuous. Then there exists N ∈ N such that if n ≥ N , ∣fn − f(x)∣ < 1 for all x, and thus
∣f(x)∣ < 1 + ∣fn(x)∣, so f is bounded.

Some notation: If E ⊂ R, we write C k(E) = {f ∶ E → C ∣ f, f ′, . . . , f (k) ∈ C (E)}. (Notice C 0(E) = C (E).)

Theorem 3.14

Let α be nondecreasing on [a, b] ⊂ R, fn ∈R(α) for all n, and assume fn → f uniformly. Then

1. f ∈R(α), and

2. limn→∞ ∫
b
a fn dα = ∫

b
a f dα.

Proof. TBD.

3.1 I missed class

wip: need to catch up on the lecture I missed (1/13/2023)

Definition 3.15. Two notions of boundedness:

1. A sequence of functions {fn} ∈ C(X) is said to be pointwise bounded if for all x ∈X, there exists C(x)
such that ∣fn(x)∣ ≤ C(x) for all x.

14
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2. A sequence of functions {fn} ∈ C(X) is said to be uniformly bounded if for all x ∈ X, there exists a
constant M such that ∣fn(x)∣ ≤M for all x.

Definition 3.16. A family F of complex functions f defined on a set E of a metric space X is said to be
equicontinuous on E if for every ϵ > 0, there exists a δ > 0 such that

∣f(x) − f(y)∣ < ϵ

whenever d(x, y) < δ, where x, y ∈ E, f ∈F .

Indeed, it is the case that uniform convergence of sequences of functions and this notion of equicontinuity
are related to one another.

Theorem 3.17

If K is compact set, fn ∈ C (K) and fn → f uniformly on K for n ∈ N, then {fn}n∈N is equicontinuous.

Proof. For ϵ > 0, there exists an N ∈ N such that for any x ∈K,

∣fn(x) − f(x)∣ <
ϵ

3

whenever n ≥ N . Furthermore, since fn → f uniformly, f is continuous; because K is compact, we even have
f uniformly continuous. So there exists a δ′ > 0 such that if d(x, y) < δ′, then

∣f(x) − f(y)∣ <
ϵ

3
.

So, if d(x, y) < δ′ and m,n ≥ N , we have

∣fn(x) − fn(y)∣ ≤ ∣fn(x) − f(x)∣ + ∣f(x) − f(y)∣ + ∣f(y) − fn(y)∣ < ϵ.

Finally, f1, . . . , fN are continuous on a compact metric space, so they are uniformly continuous. Thus for
each 1 ≤ j ≤ N , there exists a δj > 0 such that

∣fj(x) − fj(y)∣ < ϵ (j = 1, . . . ,N).

Set δ =min(δ′, δ1, . . . , δN), and we’re done.

Lemma 3.18

If K is compact, then there exists countable dense subset of K.

Proof. We can cover K with {B(x, 1
n
) ∣ x ∈K}n∈N. (Here, we shall abuse the notation B(a, b) to represent the

neighborhood of radius b centered at a, and xn
j to represent the element xj with corresponding neighborhood

B(xj ,
1
n
).) For any n ∈ N, there exists a finite subcover {B(xn

j ,
1
n
} of balls of fixed radius 1

n
. Then for all

n ∈ N and y ∈K, there exists xn
j such that d(y, xn

j ) <
1
n
. Take

S = {xn
j ∣ n ∈ N, j = 1, . . . ,N}.

15



Elliott Yoon 3 Sequences and Series of Functions

Lemma 3.19

Given countable S and uniformly bounded sequence of functions fn, there exits subsequence converging
to every element of S

Proof. Let S = {x1, . . .}. Since the sequence fn(x1) is bounded in C (i.e sup ∣fn∣ ≤M for all n ∈ N), there
exists a subsequence fn1

j
such that fn1

j
(x1) converges. (Abusing more notation, let the sequence of subindices

nn
j only consist of the sequence of indices nm

j if m < n.) Similary, because fn1
j
(x2) ≤M for all j, there exists

a subsequence n2
j of n1

j such that fn2
j
(x2) converges. Since fn2

j
is a subsequence of fn1

j
, it also converges

at x1. Then fn3
j
converges at x3 (and thus at x1 and x2); by induction, it can be seen that fnk

j
converges

at x1, . . . , xk. Now, to obtain an explicit subsequence, we shall diagonalize (recall Cantor’s diagonalization
argument from proving the countable union of countable sets is countable!), by setting

gj = fnj
j
.

For all k, if j ≥ k, then fnj
j
is a subsequence of fnk

j
, so gj(x1), . . . , gj(xj) converge as j →∞.

Theorem 3.20 (Arzelà–Ascoli)

K compact, fn ∈ C (K) for n = 1,2, . . . . Assume {fn}n∈N bounded in C (K) (i.e. uniformly bounded)
and equicontinuous. Then there exists a convergent subsequence in C (K) (i.e. uniformly convergent).

Proof. Using Lemma 3.18, pick a countable and dense S ⊂K. Using Lemma 3.19, pick a subsequence gj of
fn converging on x for all x ∈ S. If we show gj is uniformly convergent on K, then we’re done:

We can do so by showing gj is uniformly Cauchy. It follows from equicontinuity that for all ϵ > 0, there
exists δ > 0 such that if d(x, y) < δ, then for all j,

∣gj(x) − gj(y)∣ <
ϵ

3
. (4)

By Lemma 3.18, we can obtain, from the open cover {B(xj , δ) ∣ xj ∈ S}, a finite subcover {B(x, δ) ∣ x ∈ Sδ},
where Sδ is finite. Now, since gj converges to every element of S, there exists N ∈ N such that for all x ∈ Sδ

∣gn(x) − gm(x)∣ <
ϵ

3
(5)

whenever m,n ≥ N . (Take N =max{Nx ∣ x ∈ Sδ}.) Now, for all i, j ≥ N , y ∈K, there exists x ∈ Sδ such that
d(y, x) < δ, so (4) and (5) give

∣gi(y) − gj(y)∣ ≤ ∣gi(y) − gi(x)∣ + ∣gi(x) − gj(x)∣ + ∣gj(x) − gj(y)∣

<
ϵ

3
+
ϵ

3
+
ϵ

3
= ϵ.

Remark 3.21. Rudin displays the Arzelà–Ascoli theorem with slightly weaker conditions: he requires {fn} to
be a pointwise bounded sequence of complex functions on a countable set. However, pointwise boundedness is
almost never used, so we’ll choose not to think about it.
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Remark 3.22. TODO: bounds on derivatives (or difference quotients) give equicontinuity. (MVT probably
comes into play.....)

4 A Special Function

Definition 4.1. For z ∈ C, we define a power series to be the infinite series

∞

∑
n=0

cnz
n
= lim

n→∞

N

∑
n

cnz
n. (6)

Lemma 4.2 (Weierstrauss M-Test)

Consider the series of functions ∑
∞
j=0 fj(x). If there exists Mj such that sup ∣f(x)∣ ≤Mj and ∑Mj <∞,

then ∑
∞
j=0 fj(x) converges uniformly.

Proof. Let sn = ∑
n
j=0 fj(x). For m < n,

∣(sn − sm)(x)∣ ≤
n

∑
j=m+1

∣fj(x)∣ ≤
n

∑
j=m+1

Mj ,

and if ∑Mj converges, then for all ϵ > 0, there exists an N ∈ N such that ∑
n
j=m+1Mj < ϵ if m,n ≥ N .

Theorem 4.3

There exists an R ∈ [0,+∞) such that

1. (6) converges absolutely for all z ∈ C with ∣z∣ < R, and converges uniformly on {z ∣ ∣z∣ ≤ R′} for all
0 ≤ R′ < R.

2. (6) diverges for ∣z∣ > R, with no information on R.

Proof. Recall that ∑an converges if lim sup ∣an∣
1
n =∶ α < 1, and diverges if α > 1. Now, notice that

lim sup ∣cnz
n
∣
1
n = ∣z∣ lim sup ∣cn∣

1
n =
∣z∣

R
.

If ∣z∣
R
< 1, we get absolute convergence (and divergence if ∣z∣

R
> 1). We’ll now check uniform convergence

on the closure of B(0,R′): If R′ < R, then 1
R
< 1

R′
. Pick s to be sandwiched such that 1

R
< s < 1

R′
. Now,

lim sup ∣cn∣
1
n = 1

R
, so there exists N ∈ N such that if n ≥ N , then ∣cn∣

1
n ≤ s. So, for n ≥ N , if ∣z∣ < R′, observe

∣cnz
n
∣ ≤ sn(R

′
)
n
= (sR′)n < 1.

Defining β ∶= sR′, we have ∣cnz
n∣ < βn, so β < 1 and we get uniform convergence for ∣z∣ ≤ R′ by the M-test!
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Theorem 4.4

Fix a series ∑
∞
n cnz

n with radius of convergence R. For ∣z∣ < R, let

f(z) =
∞

∑
n=0

cnz
n.

Then the derivative evaluated at real z ∈ R

f ′(z) =
∞

∑
n=1

cnnz
n−1
=
∞

∑
n=0

ck+1(k + 1)z
k

has the same radius of convergence R.

Proof. It suffices to verify that both f(z) and f ′(z) have the same radius of convergence. Notice that

lim supn→∞ ∣n ⋅ cn∣
1
n = lim supn

1
n ∣cn∣

1
n = 1

Rf ′
, so

1

Rf ′
= lim

n→∞
n

1
n ⋅ lim sup

n→∞
∣cn∣

1
n = 1 ⋅

1

R
.

So for any R′ < R, ∑ncnz
n−1 = f ′(z) converges uniformly if ∣z∣ ≤ R′.

Corollary 4.5

For all k, f (k)(x) = ∑
∞
n=k cnn(n + 1)⋯(n − k + 1)z

n−k for ∣x∣ < R.

Corollary 4.6

f (k)(0) = k!ck.

Remark 4.7. By the last corollary, we get that the infinite series we’ve been working with were Taylor series
for f .

What about the converse? Can we represent every function by some Taylor series?

Example 4.8

Let

f(x) =

⎧⎪⎪
⎨
⎪⎪⎩

0 x ≤ 0

e−
1
x2 x > 0

.

Then f ∈ C∞, but f (j)(0) = 0 for all j, so f is obviously not equal to its Taylor series.

Then what functions work?

Definition 4.9. A function that can be represented by a series ∑ cnz
n is said to be an analytic function.

Example 4.10

The function 1
1−z
= ∑

∞
n=0 z

n converges if ∣z∣ < 1 and diverges if ∣z∣ > 1.
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4.1 The exponential function

Example 4.11

Define

E(z) =
∞

∑
n=0

zn

n!
.

By the ratio test, limn→∞ ∣
zn+1

(n+1)!
∣ ∣ z

n

n!
∣ = limn→∞

∣z∣
n+1
= 0 for all z ∈ C. Thus E(z) converges uniformly on

any disc. Furthermore, notice that

E′(x) =
∞

∑
n=0

nzn−1

n!
=
∞

∑
n=1

zn

n!
= E(x),

and E(0) = 1. Taking z,w ∈ C, we get from some sad algebraic manipulation that

E(z)E(w) =
∞

∑
n=0

zn

n!

∞

∑
k=0

wk

k!

=
∞

∑
m=0

∑
n+k=m

znwk

n!k!

=
∞

∑
m=0

(
m

∑
k=0

zm−kwk

(m − k)!k!
)

=
∞

∑
m=0

1

m!

m

∑
k=0

m!

k!(m − k)!
zm−kwk

=
k

∑
m=0

1

m!
(z +w)m

= E(z +w).

Corollary 4.12

E(−x) = 1
E(x)

, x ∈ C. Thus E(z) ≠ 0 for all z ∈ C.

Definition 4.13.

e = E(1) =
∞

∑
n=0

1

n!
.

Notice

1. E(w) = E(1 +⋯ + 1) = E(1)n = en for all n ∈ N,

2. E (p
q
)
q
= E (p

q
+⋯ +

p
q
) = E(p) = ep, so E (p

q
) = ep/q.

Proposition 4.14

E(x) is strictly increasing on R.

Proof. E′(x) = E(x) > 0 for all x.
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Remark 4.15. ex was also defined (at some point) as supp/q<xE ( pq ) = E(x).

Example 4.16

Note that ex is the unique function characterized by satisfying the following ordinary differential equation:

⎧⎪⎪
⎨
⎪⎪⎩

E′(x) = E(x) ∀x ∈ R
E(0) = 1

We can further derive the aforementioned properties of ex with this formulation, e.g. both E(z + tw)
and E(z)E(tw) satisfy d

dt
g = wg:

d

dt
E(z + tw) = wE(z + tw)

d

dt
E(z)E(tw) = E(z) +wE′(tw)

, E(z +w) = E(z)E(tw).

4.2 The Natural Logarithm

Since e > 1, it follows that en →∞ as n→∞ and e−x → 0 as x→∞. Moreover, x↦ E(x) maps R→ (0,∞),
and is a one-to-one and onto. Thus, there exists an inverse function L ∶ (0,∞)→ R, E ○L = Id. By properties
of the derivative,

L′(y) =
1

E(L(y)
=

1

L−1(L(y))
=
1

y

so by the Fundamental Theorem of Calculus, L(y) = ∫
y
1

1
s
ds +C. Since E(0) = 1, L(1) = 0 and thus C = 0.

Definition 4.17. We define the natural logarithm function to be inverse of ex:

log(y) = L(y) = ∫
y

1

1

s
ds.

4.3 feat. sine & cosine

Recall that E(z) = ∑
∞
j=0

zj

j!
, so

E(ix) =
∞

∑
j=0

(ix)j

j!
=
∞

∑
j=0

ijxj

j!
. (7)

Definition 4.18. Notice C ′(x) = −S(x) and C(0) = 1; S′(x) = C(x) and S(0) = 0. As you’ve probably
guessed, C(x) = cos(x) and S(x) = sin(x).

Theorem 4.19 (Sum and Difference Rule)

aka SACB, CASB or SINE COSINE COSINE SINE, COSINE, COSINE, SINE SINE. SINE THE
SAME, COSINE CHANGE, nananananana -Paul Zaclin, Fall 2018, Calculus 1.

sin(x ± y) = sin(x) cos(y) ± cos(x) sin(y)

cos(x ± y) cos(x) cos(y) ∓ sin(x) sin(y)
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Proof. Let E(ix) = C(x) + iS(x), where C(x), S(x) ∈ R. Then, (7) implies that

C ′(x) + iS′(x) = i(C(x) + iS(x)) = iC(x) − S(x).

Thus
E(i(x + y)) = E(ix)E(iy) = C(x + y) + iS(x + y) = (C(x) + iS(x))(C(y) + iS(y)),

so

C(x + y) = (C(x)C(y) − S(x)S(y))

S(x + y) = (S(x)C(y) +C(x)S(y))

Theorem 4.20 (Pythagorean Identity)

cos2(x) + sin2(x) = 1.

Proof. Notice

eix =∑
(ix)j

j!
=∑

(−ix)j

j!
= e−ix =

1

eix
.

Thus 1 = eixe−ix = eixe−ix = ∣eix∣2 = cos2(x) + sin2(x).

5 Fourier Analysis

The year is 1807. France just had a revolution or something. Enter Joseph Fourier. This guy is living the
life: Napolean likes him and makes him do math n stuff. Of specific interest to us is Fourier’s study of heat
equations, which led him to an extremely important proposition:

Proposition 5.1

Any nice∗ 2π-periodic function can be written as the Fourier Series

f(x) =
∞

∑
n=−∞

ane
inx

for some coefficients an ∈ C. (Barring exponentials, he would’ve written the series as

f(x) =
∞

∑
j=0

aj cos(jx) +
∞

∑
j=1

bj sin(jx)

but the bookkeeping with this representation is a wee bit more annoying than the first.)

Remark 5.2. Notice that ein(x+2π) = einx for all x so ∑ane
inx is 2π-periodic (if the series converges).

Definition 5.3. We shall define, for convenience, the function

en(x) =
1
√
2π

einx.
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Say f(α) = ∑
∞
−∞ anen(x). We say convergence of f is uniform if

lim
N→∞

n=N

∑
n=−N

anen(x) = f(x)

with uniform convergence.

Question 5.4. What values an are nice?

This will motivate further exploration into this silly goofy world.

Definition 5.5. Let f, g ∈R([0,2π]). We define the following the notation:

< f, g >= ∫
2π

0
f(x)g(x)dx.

As an analogy, imagine we go from the continuous world of [0,2π] to the discrete world of n points:

x1, . . . , xn. Then ∑
n
i=1 f(xi)g(xi) is the dot (or inner) product on C. Thus we can think of < v⃗, w⃗ > to be an

infinitessimal notion of an inner product! Moreover, recall the L 2-norm is defined

∥f∥22 = {∫ ∣f(x)∣
2 dx}

1/2

Turns, out ∥f∥2 = ∫
2π
0 ∣f(x)∣2 dx =< f, f >. Hmmmm. Okay, so that doesn’t really mean anything to me. But

let’s keep digging: For n ∈ N,

< en(x), ej(x) > =
1

2π
∫

2π

0
einxe−ijx dx = 1 ⋅ δnj ,

where dnj =

⎧⎪⎪
⎨
⎪⎪⎩

1 j = n

0 j ≠ n
. So

< f, ej > = <
∞

∑
−∞

anen(x), ej(x) > =
∞

∑
−∞

an < en(x), ej(x) > = aj .

Proposition 5.6 (a conjecture, really)

For nice∗∗ f ,

f(x) =
∞

∑
n=−∞

f̂(n)einx

with

f̂(n) =< f, en >=
1

2π
∫

π

−π
f(x)e−inx dx.

**Sadly, it turns out bounded and uniformly continuous does not suffice. Well, at least it almost does..

Remark 5.7. The bounds of integration for f̂(n) are often 0 to 2π instead. Since f is periodic, it doesn’t really
matter.

5.1 Priodicity of sine and cosine

Before proceeding, it is first imperative that we establish the periodicity of sine and cosine. Recall that
E(ix) = C(x) + iS(x), where C is cosine, S is sine, and C(0) = 1, S(0) = 0.
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Lemma 5.8

C(x) > 1 − x for x > 0.

Proof. Let f(x) = C(x) + x − 1. (We want to show that f(x) > 0 if x > 0.) Notice f ′(x) = −S(x) + 1, so
f ′(0) = 1 and f(x) ≥ 0 for all x. Thus f(x) > 0 on x ∈ (0, ϵ) for ϵ > 0. Thus, for sufficientlys small h,

limh→0
f(h)
h
= 1 and so f(x) ≥ 1

2
h. For sake of contradiction, suppose there exists a > 0 with f(a) ≤ 0. Then,

by the Mean Value Theorem, there exists b ∈ [ϵ, a] with f ′(b) < 0, a contradiction since S(x) ≤ 1.

Set T (x) = S(x)
C(X)

on [0,1], since C(X) > 0 on [0,1]. Notice T ′(X) = 1
C(X)2

=
S(X)2+C(X)2

C(X)2
= T (X)2 + 1 ≥ 1.

Thus T (1) ≥ 1, so there exists a ∈ [0,1] such that T (a) = 1.

Definition 5.9. Define π = 4a.

Then T (π
4
) = 1, so C (π

4
) = S (π

4
) > 0 since C(X) > 0 on [0, 1]. Since C2 +S2 = 1, C (π

4
) = S (π

4
) =

√
2
2
,and

thus

ei
π
4 = (

√
2

2
+ i

√
2

2
)⇒ eiπ = −1.

So for all x ∈ R,
ei(2π+x) = eixe2πi = eix,

and thus
C(X + 2π) = C(X), S(X + 2π) = S(X).

So sine and cosine are periodic! Whew, that was a lot.

5.2 The Direchlet and Fejer Kernel

Okay, so we’ve defined the notation of en =
1
√
2π

einx, n ∈ Z, the operation < f, g >= ∫
2π
0 f(x)g(x)dx, and the

set
C k
(S1
) = {f ∈ C k

(R) ∣ f(x + 2π) = f(x) ∀x}.

It would be really nice if for all f ∈ C k(S1), f(x) = ∑
∞
n=−∞ ancn(x). If all goes well, then

< f, ej >=
∞

∑
n=−∞

an < en, ej >= aj .

We want aj =< f, ej >= f̂(j). In other words, we want

f =
∞

∑
j=∞

f̂(j)ej =
∞

∑
−∞

< f, ej > ej = lim
N→∞

N

∑
j=−N

< f, ej > ej .

Definition 5.10. We define the Direchlet Kernel to be

DN(x) =
1

2π

N

∑
j=−N

eijx.
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Remark 5.11. Here, ”kernel” has no relationship to the notion of kerenels of a vector space, or the like. In this
case, a kernel is something that is synechdoche with its integral.

Then

f = lim
N→∞

N

∑
j=−N

< f, ej > ej

= lim
N→∞

N

∑
j=−N

(∫

2π

0
f(y)ej(y)) ej(x)

= lim
N→∞

N

∑
j=−N

(∫

2π

0
f(y)

1

2π
eij(x−y) dy)

= lim
N→∞

∫

2π

0

1

2π
f(y)

N

∑
j=−N

eij(x−y) dy

= lim
N→∞

∫

2π

0
f(y)DN(x − y)dy.

Definition 5.12. Let sN(x) = ∑
N
j=−N f̂(y)ej(x).

We’ve just shown that sN(x) = ∫
2π
0 f(y)DN(x − y)dy, which if you’ve taken probability might recognize

a convolution buried in notational junk. Wait, a what?

Definition 5.13. Let f, g ∈ C (S1). The convolution of f and g is defined as (f ★ g)(x) = ∫ f(y)g(x − y)dy

Well, this is cool, but how can it be applied?

Question 5.14. Let f, g ∈ C (S1) and y = s − z. Show

∫ f(y)g(x − y)dy = ∫ f(z − x)g(z)dz.

(In other words, show (f ★ g)(x) = (g ★ f)(x).)

Remark 5.15. If we consider the convolution f ★ DN(x) = ∫ f(x − y)DN(y)dy, notice that it is a quasi-
”weighted average” function, that smooths out f . Furthermore, the N th partial sum of a Fourier series:

sN(x) = (f ★DN)(x),

where as a reminder, DN(x) = 1
2π ∑

N
j=−N eijx = 1

2π ∑
N
j=−N(eix

j

).

Notice that

eixDN(x) =DN(x) +
1

2π
ei(N+1)x −

1

2π
e−iNx,

so

DN(x)(e
ix
− 1) =

1

2π
(ei(N+1)x − e−i(Nx)

),
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and thus

DN(x) =
1

2π

ei(N+1)x − e−iNx

eix − 1

=
1

2π

ei(N+
1
2 )x − e−i(N+

1
2 )x

ei
x
2 − e−i

x
2

=
1

2π

2i sin(N + 1
2
x)

2i sin( 1
2
x)

)

=
1

2π

sin(N + 1
2
x)

sin( 1
2
x)

Definition 5.16. We say sn(x) converges Cesaro if σN(x) =
1
N
(s0 + s1 +⋯ + sN−1)(x)→ f(x).

Theorem 5.17 (Fejér)

If f ∈ C 0(S1), then σN(x)→ f(x) uniformly.

Proof. It’s coming, don’t you worry. We just need some more machinery first...

Definition 5.18. We define the Fejér Kernel to be FN(x) =
1
N
(D0 +⋯ +DN−1).

Remark 5.19. Notice that we can compute the following equality:

σN(x) =
1

N
(s0 + s1 +⋯ + sN−1)(x)

= 1

N
(∫

2π

0
f(y)D0(x − y)dy + ⋅ ⋅ ⋅ + ∫

2π

0
f(y)DN−1(x − y)dy)

= ∫
2π

0
f(y) ( 1

N
(D0 +⋯ +DN−1)(x − y)) dy

= ∫
2π

0
f(y)FN(x − y)dy.

Next, recall that eia − e−ia = 2π sin(a), so

FN(x) =
1

2πN

N−1

∑
j=0

sin (j + 1
2
)x

sin ( 1
2
x)

=
1

2πN sin ( 1
2
x)

I
N−1

∑
j=0

ei(j+
1
2 )x

=
1

2πN sin ( 1
2
x)

I

⎧⎪⎪
⎨
⎪⎪⎩

ei
x
2

N−1

∑
j=0

(eix)j
⎫⎪⎪
⎬
⎪⎪⎭

=
1

2πN sin ( 1
2
x)

I{ei
x
2 (

eiNx − 1

eix − 1
)}

=
1

2πN sin ( 1
2
x)

I

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ei
N
2 x (ei

N
2 x − e−i

N
2 x)

ei
x
2 − e−i

x
2

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

=
1

2πN sin ( 1
2
x)

I(cos
N

2
+ i sin

N

2
x)
⎛

⎝

sin (N
2
x)

sin( 1
2
x)

⎞

⎠
=

1

2πN

sin2 (N
2
x)

sin2 ( 1
2
x)

and thus FN(x)→ 0 as N grows to infinity. On the other hand, DN(x) oscillates forever.
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Lemma 5.20

The following hold:

1. ∫
2π
0 DN(x)dx = 1 for all N ,

2. ∫
2π
0 FN(x)dx = 1 for all N , and

3. FN(x) ≥ 0 for all x. For δ > 0, FN(x)→ 0 uniformly as N →∞ on x ∈ [−π,π] ∖ (−δ, δ).

Proof. Recall that DN =
1
√
2π
∑

N
j=−N ej(x) = ∑

N
j=−N

eijx

2π
, so

∫

2π

0
DN(x)dx =

N

∑
j=−N

1

2π
∫

2π

0
eijx = 1.

Furthermore,

∫

2π

0
FN(x)dx =

1

N
∫

2π

0

N−1

∑
j=0

Dj(x)dx =
1

N
⋅N = 1.

FN(x) ≥ 0 since FN(x) = (
1
√
2π

sin(N2 x)

sin( 12x)
)
2

. On [δ, π), notice sin 1
2
x is increasing (take the derivative!), so for

sufficiently small δ > 0,

∣
sin N

2
x

sin 1
2
x
∣ ≤
∣ sin N

2
x∣

∣ sin δ
2
∣
≤

1

sin δ
2

.

So on [δ, π], FN(x) ≤
1
N

1
sin2 δ

2

. Likewise, on [−π,−δ], since FN is even, 0 ≤ FN(x) ≤
1
N

1
sin2 δ

2

on [−π, pi]∖(δ, δ),

and this tends to 0 as N goes to infinity.

Lemma 5.21

Let the conditions for the Fejer Theorem hold. Then for ϵ > 0, there exists a δ > such that there exists
an N0 ∈ N where if N ≥ N0, then

∣f(x) − σN(x)∣ ≤ ϵ.

Proof. For ϵ > 0, continuity of f gives ∣f(x) − f(y)∣ < ϵ
2
whenever ∣x − y∣ < δ. Given this δ, there exist an N0

such that if N ≥ N0, then

0 ≤ FN(x) <
ϵ

4 sup ∣f ∣2π

on [−π,π] ∖ (−δ, δ). Then for all N ≥ N0,

∣f(x) − σN(x)∣ ≤ ∫
π

−π
∣f(x) − f(y)∣FN(x − y)dy

= ∫

x+δ

x−δ
∣f(x) − f(y)∣FN(x − y)dy + ∫

[x−π,x+π]∖(x−δ,x+δ)
∣f(x) − f(y)∣FN(x − y)dy

≤ ∫

x+δ

x−δ

ϵ

2
FN(x − y)dy + ∫

[x−π,x+π]∖(x−δ,x+δ)
2 sup ∣f ∣

ϵ

4 sup ∣f ∣2π
dy

≤ ∫

π

−π

ϵ

2
FN(x − y)dy + 2π ⋅ 2 sup ∣f ∣ ⋅

ϵ

4 sup ∣f ∣2π

=
ϵ

2
+
ϵ

2
= ϵ.
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Theorem 5.22 ((Fejer, again))

If f ∈ C 0(S1), then ∫
2π
0 f(y)FN(x − y)dy = σN(x)→ f(x) uniformly on R. (Indeed, if f ∈R([0, 2π]) is

continuous at a ∈ R, then σN(a)→ f(a).)

Proof. We can do the clever trick of multiplying by a funny representation of 1: f(x) = ∫
2π
0 f(x)FN(x− y)dy.

Then

∣f(x) − σN(x)∣ = ∣f(x) − ∫
2π

0
f(y)FN(x − y)dy∣

= ∣∫

2π

0
(f(x) − f(y))FN(x − y)dy∣

≤ ∫

2π

0
∣f(x) − f(y)∣FN(x − y)dy

< ϵ.

Corollary 5.23

Trigonometric polynomials are dense in C 0(S1). (Trigonometric polyomials are finite Fourier series of
the form ∑

N
j=−N bje

ijx = ∑
N
j=−N bj(cos(x) + i sin(x))

j for some N , b−Nj , . . . , bNj .)

Corollary 5.24 (Weierstrass Approximation Theorem )

Let f ∶ [0,1]→ R be continuous. Then there is a sequence of polynomials Pn(x) such that

lim
n→∞

sup
x∈[0,1]

∣Pn(x) − f(x)∣ = 0

Remark 5.25. This holds not just for [0,1], but also any closed interval [a, b].

Lemma 5.26 (This is important!)

If f ∈ C k(S1), then ∣f̂(n)∣ ≤
Cf

∣n∣k
, n ≠ 0, and D̂kf(n) = nkf̂(n).

Proof. Since f ∈ R, ∣f̂(n)∣ = ∣ ∫
2π
0 f(x) 1

√
2π

einx dx∣ ≤ sup ∣f ∣
√
2π. Since f ∈ C 1, we can use integration by

parts:

D̂f(n) = ∫
2π

0

1

i
f ′(x)

1
√
2π

einx dx

= ∫

2π

0

1

i
√
2π
(−1)(−in)f(x)einx dx +

1

i
f(x)

1
√
2π

einx∣

2π

0

= n∫
2π

0
f(x)en(x)dx

= nf̂(n).

It follows from an induction argument that if f ∈ C k(S1), then D̂kf(n) = nkf̂(n) since D̂kf(n) is bounded.
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Remark 5.27. In other words, taking Fourier coefficients connects differentiation to multiplication! Moreover,
there is a correlation between how smooth (i.e. how many times differentiable) a function is and how fast its
Fourier series decays.

Addendum: didn’t have time to finish typing these up so the rest of the notes are hastily handwritten:
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IR
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fiadiffractabletofixabl-,
x=ca,) => fix) isthe amen transferee

with
h+0

W



Definition SetEcIR" be open, 8:E-1*, XFE. B I lmean transformation A:R"-1R* st.

eim/Atx?
- Ah 1

=0
he0 /

we say
f isdifferentiable atX, and write f(x) =A. it is differentiable at

every XCE, we say
f is differentiable inE.

TheoremSupposethe about definition holds w/ A:A, and A =As. ThenA, =Az.

Theem (Chain Rule, kinda l

LetECIR" be open. f:E-RM, f differentiable & DotE, g maps an open setcontaining
fCE) into IR", and

a differentiable & f(xo). ThenF:E- IR" deferred by F(x) =g(f(x))
in differentiable & to, and

F'(x0) =g(Cf(x.)) f(x)
pqby:f(x), A =f(xo), B=g'/yo),and defineuch)=f(xoth) - f(xo)- Ah, wKK) =g(york) - g(yo)-BK friable heRY, kelR*

Then lachl)-schilh), (w(k)1:MCk1(k), where alh1, UCK) - 10 as 2, K - 0.

Mirenh, putk =flxoth) - f(x0). Then

1k1:1Ah-mch11=[IIAl+achl] 121
and Fix.th) - F(x.)- BAh =g(yo+k)-g(ys) -BAL =B(k-Ah) + v(k) =Buchl+r(k). Then fr h10,

1-F(xol - BAhl
Ih1 -11B1 a(n) +[11AN +sch17 m(k)

Let h-0. Thenachl--O. aMo, k+0 so MSK1-SO. Itfollows thatF'(xol =BA.

Consider a functionof thatmaps an open setECIR" into R". Yetde,
...,
em3 and say

.., umb be the standeral

Cares of RR" and IRM. Thecompenents off one the real functions f,.., for defied by
f(x) =2,filxle,(x+E)

For filx)=f(x).2:, 1sism). We writethe partial donativeByfi, or , in the denative of fil respectto Xj.

Note Even fucontruousfunctions, existenceof partial dematures of existence of the denrative. However,

existence of the demorature ->existence of partial demotivers.



Theem Suppose f: Em, f is differentiable ata pointXSE. Thenthe partial denatives (D; fi) e) exist,
and

fixej =2,D,fildel mi (12j =n)

=>It[f(x)] be the matux thatexpresents f(x) ul respectto standard beers.

Ther
-

b,)(x)..
- (Df(x)↳ I[f(x)] =cD,fulxl..." (Defil(x

Directional demature
X

Jun stuff: gadier.E, Difclei, Dulx)-eil-f(x):fxe
-Dif(x) - mi

Men (BudgetMVT) Support f umape a connex open setECIR" into RRM, f isdifferentiable in E,and EMERS.A.

11 f(x)/) =m

FXGE. Then

If(b)-fa)) -> M(b-al

↓a,b +E.

=>Italso, f(x) =0 WXGE, then fis constant.

Dition a differentiable mapping ofof an open set ECIR" into IRM iscontinuancely differentiable in E
if f' is a contruous mapping of E into LCIRY, IRM). More explicitly,

*x+E VEC0 1630 St. 1fCy-f(x)/<d if yeE and Ix-y)c 8.

C.
If so, say

f is a Y-mapping, as of ICE).

TheoremSuppose of maps an open setECIR" into R". Then febCE) E) the partial dennatures Djfi existand
are contruous on E.

( =x

ofassume fo SCE). ThenDifi(x)
=f(x)ej. MiVijj xrE. Hence

Djf:G) - Djfi(x)
=G [f(y) - f(x)7ejB.mi

Sue (uil=(ej)=1,

1 DifiCyl-D,fi(x)) =1[fyl-f(x) =1fcy)-fxsl) -

LEX amnoying convexityargument



therimDuniple
I
a fixed pointtheorem valid in abituary completemetric spaces.

Deution Set (X,d) be a meticspace. 2 4:X+ Xand Ecc1 euch thatdLy(x), y(y)) => <d(x,y) XxyeX. then

o isa contraction of X intoX.

Theorem of X is a complete metricspace, of isa contraction of X into X. Then11x=X st.q(x) =x.

14 has a singular fixed point) owe,and OLIONE
-

↳
miqueness isturnial:p(y) =y,y(x)

=x =d(x,y) =d)y(x),q(y)) =cd(x,y) =E.

Thefunctiontheorem
↑

mongly speaking, a continuously differentiable mapping of is investibleina mughborhood of any
pointX atwhich the lineartransformationf(x) ismetable.

Theorem Suppose of is a 'mapping of an open setECIR" into R2, fial is inventille for name atE, biffal.
Then al open sets M,VCIR" such thatat 1, bEU, f isone-to-one one, and f(UI=V.

b) y g istheunease off (which exists by sal) defined inN by

g(f(x) =x (x =u).

E
than go 6'srl.

Wintingy
=f(x) incomponentform, we aliveatthe followinginterpretationof the conclusion:

thesystemof an equations yi
:filxy..,xu) sixiznl

can be solved for x .., u in terms of y,,...,yn;ifwe restrictx and
y to small enough

neighborhoods of a and b, thesolutions are unque and continuously differentiable.

->theoremoff is a bi-maping of an open set ECIR" intoIR" andif f(x) in invectibleFxtE, then

fiw) is an open subectof IRN Taper WCIR",i.e. f isan open mappingof Eito IR



ThemitFunction theem

Nation: 1 x =(xy..., x2) =R2, y
=(x,

..., xm)f1RM, wite

(xcy) =(x,
.

.

, x, y, ..,ym) ERHtm

of AS L/R**, RY can be uplitinto twolean transformations Ax, Ay defined by
Axh =AS2,0), Ayk =AS0,k)

theRRY, kEIRM. Then Ax FLCIRY, AyfLCIRM, MY), and ACh,K)=Axh+Ayk.
d

Theem (fineal OmplicitfunctionTheorem)

LetA FLCAR, IRY) andAs be investible. Than FKEIRM I! hfIR" such thatACh,k) =0.

=- (AxlAyk.
IfAChyk) =0 <=> Axh+Ayk =0.

Theorem (ImphalFunction Theorem)

Letf be a 5'mapping of an setECIR" into R2,such thatfla,b) =0 for came pointLab)=E.
PutA:f'(a,b) and assume Ax is invertible. ThenI open sets UC In, WCIRM, with lab) =1

and bew, sit

·FyEW 1! x Si (x,y)= M and f(x,y) =0
&[If this X: =g(y), then gi a 5" mapping of W into RRY

Dg(b) =a
④

f(g(y),y) =0 (y +w
⑪

gi(b) = - (Ax )Ay

Note:thefunction g isimplantly"defined,
hence thename.

theequation f(x) =0 can be writen as a systemof an equations inwith vanables:

E
fil xy .., xn, y., ...,yn)

=0

(1) i i

fulx,
.... n,y, . .

. .,ym) =0
evaluated& (a,b) is investible,the assumptionof As beingmoble means [itBit]
and thuswas monger determinant

(3)holds whenastheasthebeen
a

canbesomebytheend



Definition of:
E**I4"

is differentiable at a pointX=E, the determentof fix) in

called thefacabianof 7atX:

Jf(x): =det f(x)

: -
,yn)
2(xy..jxn) it (y, ..., yn):fixx--, x-)

the ancialhypothesisof the mouse functiontheoremcan be restatedas follows:Jf(a) F0.

·In the implicitfunctionthemem, the concialassumptionisthatall to

DofHigher Order

TheemSuppose f isdefinedinan open setECRRY, Dif, Dust, and Dat existatevery part

of E, and Drif iscontinuous atsome point(a,b)eE. Then D.2f exists atCab) and

Dizf(a,b):Dzif(a,b).

↳
Couary:Duf:Dint of feb"(E)

AAretationof Integrals
MotivatingQuestion:under whatconditions on of can one prove the equation of (4(x,tdx:( xt) ax!

⑤

TheoremSuppose g(x,H is defenced for asx2b, c2+Id, d isan increasingfunctionon Earb)

② d

G
=

R(a) v += [x,d] casad, and toevery 300 3800 st

holds whenevel ( (D.4) (x,+ - (D,4)(x.51) < a
acontinuousdegreea,b). Vt7(s-6, 6-1i

Definefht:8"4(x,+)d6(x) (cc + +d)

Then(D24)- TCH), fils exists, and fics)=(?(D24)(x,sdd(x)



Theorems from sporak Integestion

Lem3-1

Suppose P'be a refinementof P. Then LL7,P)?L2+, P') and UCGP' =U24,Ph.

↳
Conotay 3-2 If P,Q are any two partitions, ((f,P):UL,R). Pf:Let R be a common refrementof P! Q. *

a function f:A-1R" isintegrableon Aiff is abounded, and *sudL(f,P13=int3uct,Pl3.
Theorem 3-3 (Integratility Criteren (

a bounded function f:A-R" isintegrable F9C07 partition P withU(70)-2(+,P/E.

IfEI SupdLC,Pl3=intuctipl3. So far E20 ZP, P'such thatUCf,P)-227,p'). 2. Take P"tobe a refrementof PVP'. The

u(f,p")-227,0") [kCf,P)-22+,p') c 3.r (E) ImmediateA

Theorem 3-Y

the countable unionofsets of measure zero also has measure yes, i.e. A.E. As has meanne zero ifeach Ai does.
-

PIuse Canters dagenalization argumenttoobtain a series (I,=a ⑰

i =1
Adetration:Awas measureher

it

wasarecardedgeviaE.e
Theorem 3-5
&
Inby,as done nothave contento. *Moreover, if31,.,Umb ina finitecover of Taib) by dored intervals, then

E.WUilb-a

oObviously, each 2: c[a]. But Stil, attoatis... tis be all the endrants of all Mi. E,r(i)I,Ai-tj-) = b-a.*

Theorem3-6

o Aiscompactand has measure yet, then Ahas contentzero.

RIImmediateby compactness. A



I

gableFune insup (f(x): 1x-alc8] -int/f(x):
Ix-alse

fetAbe a closed rectangle, f:A-R" be bounded such thatoff, alca FazA. Then Spartition P of Awith

U(7,P)-2Lf,P)>E.wCAI.

theorem 3-8

LetAbe a cored rectangle, f.ACIR" be bounded. ItB: 3 x 1 f discontuos & X 3. The

f integrable 3 B has measure zero.

treocems-a the function xA**integrable t IC has measus 0 (contentseance I dared).

a louded outa whore boundary has measure on called Jordan-measurable.
theintegral I, Iis called the content/volume of 2.

Note:Even if his open and f is continuous, I mightnotbe fender-measurable so

Itisnotnecessary dined.

Theorem 3-10 (Jubini)

LetACIRY, BCIR* be closed rectangles, f:AxB* IRbe integrable. For XA, let

gx:B
-IRbe defined by gx(y)

=f(xxy) and let

f(x) =10gx =1,fayIdy
-

U(x) =Jnsx=J,f(xcy) dy
Then8(x),M(x) =RCA), and

*12:Elfayayax;t(:I,txay(ax.
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