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1 The Lebesgue Measure

1.1 Desired Properties of the Lebesgue Measure

In our study of measure theory, we wish to find a function (or measure) that denotes size of sets, some
1(E) €[0,00) for all sets E € R. Let’s write down some intuitive axioms:

1. Normalization of Length. For an open interval E = (a,b), we want u(E) =b - a.

2. Translation Invariance. First note that for some scalar ¢ and a set A, the set A+c={a+c|ac A}.
We want u(E) = u(E +¢) for all ceR.

3. Countable Additivity If F; c R, i € N, then u (U2, E;) < Yooy w(F;). Moreover, if the E;’s are
pairwise disjoint (i.e. E;nE; =@ for all i # j), then p (U2, E;) = Yooy n(E;).

Unfortunately, no such measure satisfying these properties exists. Rats :/

Fact: It’s impossible to define p satisfying (1)-(3) and defined for all (bounded) F c R.

1.2 Null Sets

When working with Riemann integration, there’s an often repeated motto that ”finite sets don’t matter”. In
the field of measure theory, we want to generalize this statement to be that sets of ”generalized length 07,
or measure zero, don’t matter. In fact, we can explore these sets of measure zero without even needing to
properly define the Lebesgue measure (though, of course, we will).

In our search for a measure of satisfactory compatibility with the previously proposed “measure axioms”
of sorts, we will describe the notion of the outer measure, which is defined for all bounded sets of real
numbers, satisfies Properties (1) and (2), and satifies the inequality of Property (3), called subadditivity. The
outer measure fails to be additive (the equality portion of (3)) for certain disjoint sets, so we’ll restrict its
definition to a large collection of nice (measurable) sets to which additivity holds. What’s a measurable set?
Let’s find out!

Before jumping into some definitions, let’s first formalize a notion of length of intervals. We define the
length of an open interval I = (a,b) to be len(I) = b - a. Great! We're all set now.

Definition 1.1 (Lebesgue Outer Measure). Suppose A c R is bounded and % (A) is the set of all countable
coverings of A by open intervals. We define the Lebesgue Outer Measure, p*(A), by

p*(A)y=  inf {zn: len(Un)},

1
{Un}e (A) ;3

where the infimum is taken over the set of all countable coverings of A by open intervals.

I Remark 1.2. It seems silly, but just to be safe, let’s note that inf{co} = oco.

Example 1.3

e Let A =(a,b). Then pu*(A) =b-a. (Clearly, A c (a,b), so p*(A) <b-a. Why does u*(A)>2b-a
hold?).

o Let A=g. Then @ c (0,¢) for all € >0, so u*(A) <inf.len((0,€)) = inf. e = 0.
o Let A={c},whereceR. Then Ac (c—¢,c+¢), so u*(A) =0.
o Let A=Q. Then p*(A) =0. (Why?)
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Proposition 1.4

The outer measure of a closed interval is the same as the outer measure of its correspondent open
interval. In other words, if A = [a,b], then p*(A) =b-a.

Proof. We can encapsulate A inside an open interval: A c (a —¢€,b+ €), which has length b — a + 2¢ for all e.
Thus p*(A) < b-a. Now, note that if {U,} is a cover of A by open intervals, then compactness gives a finite
subcover A c Ui, U;. Thus, it suffices to show that for any finite cover {U;}7,, >7-; len(U;) > b—a. We'll do
so by induction:

The n =1 case is trivial. Now, suppose that for coverings of n — 1 intervals, the (n - 1)-sum of lengths of
the covering open intervals is greater than or equal to b —a. Let A c U}, U;. Since A is connected, then if
AnU; for all 1 <i<n, there are ¢ # j such that U; nU; # @. Reordering without loss of generality, assume
i=1and j=2, and let V = U; uUs (which is also an open interval). Then A c V uUJ.;, which is a union of
n —1 open sets, so we're done by the induction hypothesis. O

Definition 1.5 (Null Sets). A set A c R is said to be a null set provided that pu*(A) = 0.

Remark 1.6. Null sets can also defined without the machinery of the Lebesgue outer measure as follows: If for
all € > 0, there exists a collection of open intervals {U;}{2; such that

Zlen(Ui) <e and AcJU;.
i=1

i=1

then we say A is a null set.

Example 1.7
e & is a null set.

e Finite sets are null sets.

The countable collection of null sets E = U;2; E; c R is a null set.

Countable sets are null sets.

The Cantor 1/3-set is a null set.

The punchline of the tail end of the previous list of null-set examples is that all null sets are measurable, and
for whatever reason, the existence of uncountable null sets implies that describing all measurable sets and
functions is, well... complicated.

1.3 o-algebras

Remark 1.8. Usually, the existence of ¢ in the nomenclature of an object is to denote that countable operations
are allowed.

We’re going to now delve into the wonderful mathematical structures called o-algebras. It turns out that

these will be imperative to the study of measurable sets. In fact, as motivation, we shall see that the following
holds:

The collection of measurable sets has a structure of a o-algebra.
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First, let’s recess quickly for a brief discussion of cardinality: Let X be a set, and write the power set of
X as 2(X)={AcX}. If X is finite and card(X) =/, then card(Z(X)) = 2'. Instead, if X is countably
infinite, then card(£?(X)) is uncountable. (To see why, use a diagonalization argument.)

Definition 1.9 (o-algebra on X). Suppose X is a set and A is a collection of subsets of X, i.e. Ac Z(X).
A is a sigma algebra of subsets of X if

1. @, X €A,
2. A is closed under complements, and

3. Ais closed under countable unions, i.e. if E; c A for i e N, then U2, E; € A.

Remark 1.10. It’s often written as fourth necessary condition that A be closed under countable intersections,
but if E; € A for ¢ € N, then

(=] oo C
N-= (U EZC) €A,
=1 =1

so closure under intersection follows immediately from (2) and (3). Moreover, if U,V € A, then UV =UnV ¢ A.

Example 1.11 (Degenerate o—algebras)
1. (X)),

2. {@,X} (called the trivial o-algebra)

Example 1.12 (The Null-Conull o-algebra)

A more fun (and illuminating) example of a o-algebra is defined as follows: the set A ¢ Z(R) such that
E e A if either E' is a null set or F is a null set.

Definition 1.13. Let # c #(X). The o-algebra generated by #, written o(.%), is the smallest c—algebra
containing .%.

Remark 1.14. Baked into the definition of generated o-algebras is the guarantee that a o—algebra containing
Z exists int he first place! (Proven in homework.)

Example 1.15 (The Borel o-algebra)

Take # ¢ Z(R) to be all open subsets of the real line. Z c o(%), the o—algebra generated by open
sets, is called the Borel o-algebra.

Remark 1.16. Thinking about basic topology of the real line, closure under complements, unions, and
intersections means that there are a lot of interesting structures contained in the Borel o—algebra. A few of the
more interesting ones are as follows:

e Countable unions of closed sets, and

e Countable intersections of open sets.

Indeed,

% = o(open sets) = o(closed sets) = o(open intervals) = o(open intervals of the form (a,o0)).
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Theorem 1.17 (yo this bih kinda slaps)

The o-algebra of Lebesgue-measurable sets is generated by (1) Borel sets and (2) Null sets.

Zoo wee mama! We don’t have sufficient machinery to prove this right now, but it should serve as sufficient
motivation for what’s to come.

1.4 Properties of the Outer Measure p*

So far, we’ve defined the outer measure p* (which isn’t a true measure) and checked that p*([a,b]) =b - a.
At the very beginning, we defined some desired properties of this theoretical notion of a measure, and we’ll
now explore which of these properties the outer measure has.

Proposition 1.18 (Monotonicity)
If Ac BcR, then pu*(A) < p*(B).

Proof. Since A c B, every countable cover of B by open intervals {U,} € Z (B) also covers A. Thus

Zlen(U )< inf Zlen(U)

{U, }e%(A)l 1 {Un}e% (B) ;3
so p*(A) < p*(B). O
We'd previously stated that pu*((a,b)) =b—a. Let’s finish the proof from before:

Proof. Obviously, p*((a,b)) <b—a =len(a,b) since (a,b) c (a,b). Moreover, note that [a +¢,b—¢€] c (a,b)
for all sufficiently small € > 0. So p*((a,b)) 2 u*([a+e,b—€] =b-a+2e. O

Corollary 1.19
p*(R) = +o00 and pi*((a, 00)) = +o0.

Proof. (a,m) c (a,00) for all m >a. Use monotonicity. O

Theorem 1.20 (Translation invariance)

For all subsets E c R and scalars ce R

w(E) = u* (B +c).

Proof. Homework (use intervals). O

Theorem 1.21 (Countable subadditivity)
Given E; c R, p* (U2 E;) < X2, w (EBy).
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Proof. Fix € > 0. For each 4, pick a cover {U>} of E; by open intervals with

i len(Ufl) - ; < (E;) < i len(U?).
n=1 n=1

Let E = U, E;. Now, the set {U! | i,n € N} is a cover of E by countably many open intervals, and

* = & ] * € = *
()< 35 ( S eni) < 3 B0 + )= (S8 e
i=1 \n=1 i i=1
O

Remark 1.22. Unlike our desired measure properties, we might not have equality even if all our subsets are
pairwise disjoint! (this is really sad)

In fact, there exists A, B c [0,1] such that

1. AUB=[0,1],

2. AnB =g, but
3. u(A)+pu*(B)>1.

This defect, of sorts, is why ”outer measure” is not a measure.

1.5 A non-measurable set

To concretely illustrate the shortfall of the Lebesgue outer measure, we’ll construct a non-measurable
set.

(" Theorem 1.23 )
There is no A : Z(R) - [0, 00) satisfying

1. X is translation invariant,

2. monotonicity holds,

3. A([0,1]) =1 (this can be any non-zero, noninfinite value), and

4. countable additivity holds
. J

Remark 1.24. Note that countable additivity in (4) can be split into countable sub-additivity (i.e.
AU E) <321 ME;)), and the equality statement:

EmEj=@Vi¢j:A(UEi):Z/\(Ei)- (%)
i=1 i=1

Moreover, Lebesgue Outer Measure p* satisfies (1)-(3) and countable subadditivity (but not the equality
statement of (4)).

As hinted before, the obvious punchline of Theorem 1.23 is that we will need to restrict the real line R to a
class of sets we "measure”. To prove this theorem, we will ”build” a non-measurable set.

First, let’s define the following equivalence relation: Given z,y € R, say = y if z —y € Q. (Feel free to
check this yourself if the omission of the proof will keep you up at night.) Then, we’ll define the following
equivalence class:

Ey,={yeR|yz}.

5
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Note that x + % x for all € Z, so E, n[0,1] #+ @. For each equivalence class, we will pick a unique
representative Z, € [0,1], where a € A, an uncountable index set.

Definition 1.25 (The "Bad Set”). We will define the following set, and later show that it is unmeasurable:
B={Z,|acA}.

Remark 1.26. Note that

1. If y € R, there exists an index « and rational ¢ € Q such that y = za + q,

UB+g=R.
q€Q

2. If (B+q)n(B+p)+@ for p,qeQ, then p =q. (This is not entirely obvious, so here’s a quick proof: Take
ye(B+q)n(B+p). Then there are o, 8 such that y = Zo +q,y = Zg +p. Thus Zo = Zg+p—q, 80 Za Zga.
Since the representatives in B are unique, Z, = Zg, and thus p = q.

We can now prove Theorem 1.23:

Proof. Note that B c [0,1]. So, A(B) < A([0,1]) < 1. The proof of the theorem is immediate from the
following two propositions:

1. If X satisfies (1)-(3) and countable subadditivity, then A(B) > 0. Proof: Enumerate Q = {¢;} and write
B; = B + ¢, for each i € N. Since R = U2, B;,

1<A(R) < iA(Bi) < iA(B),

so AM(B) > 0.

2. If A satisfies (1)-(4), then A([0,2]) = +oo. Proof: Enumerate Qn[0,1] = {¢;}, and set B; = B +g¢;. Since

Bc[0,1] and 0 < g; <1, translation is limited and thus U2, B; c [0,2] so

A([0,2]) > /\(U Bj) = Z A(Bj) = Z A(B) = +o0.
j=1 j=1 j=1
O
Remark 1.27. Observe the following:

1. Our bad set B is non-measurable. If p is our Lebesgue measure, then pu(B) is undefined.

2. u” satisfies (1)-(3) and countable subadditivity, so 0 < p*(B) < 1.

3. Claim: The set N =[0,1] \ B is also non-measurable and p*(N) = 1. (Think about we’re building
measurable sets up to have structure similar to o-algebras.) So [0,1]= BUN, BnN =@, and p*(B) +
w(N)>1=p"(BUN).

4 Proposition 1.28 (Outer Regularity) A
If AcR is a set with finite outer measure, then for any € > 0, there exists an open set v with
1. AcV, and
2. W (A) <p* (V)< p*(A) +e.
In particular, p*(A) =inf{p* (V)| AcV,V open }.
. J
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Proof. It U = {U,} is a cover by countably many open intervals with Y ; len U, < p*(A) +e. Take
V=Uy1U,. Then AcV and p* (V)<Yo w*(Uy) =202 len Uy, < p*(A) +e. O

Zooming out a bit to gain some perspective, we can see that we’ve found sets A, B such that
p(A) +p*(B) > p* (AuB).
In particular, we found A, B, where p*(An[0,1]) + p*(A° n[0,1]) > 1. We will soon say that A c R is
measurable if for any F c R,
w(ANE)+p (A nE) = p*(E).
1.6 Measurable Sets
Definition 1.29. Let My c Z(R). Denote all sets o7 with the following property: for any X c R,
WANX) (A A X) = g (X). (%)

For a set &/ € My, define the Lebesgue measure of <7 to be u(A) = p*(A).

Proposition 1.30
Let AcR.

1. Ae My (is measurable) if, and only if, A is measurable.

2. A€ M if, and only if, for all X c R, p*(AnX) +p*(A° n X) < p*(X).

Proof. (obvious from definitions) O

1.7 M, the o-algebra generated by Borel sets and Null sets

Surprise! My is a o—algebra, M = My, and p defined on M = My has the desired properties of a measure
outlined in the beginning of the chapter.

Definition 1.31. M, (which we’ll later show to be exactly M) is the o—algebra of Lebesgue measurable
sets.

Recall that p*(An X) + p* (A n X) > u*(X). To show My is Lebesgue measurable, it therefore suffices
to check () for sets with bounded outer measure. By countable subadditivity, it further suffices to check for
only bounded sets; in fact, it’s enough to check (x) when X is an open set or interval. (Shown in week 2
problem set).

Proposition 1.32

IF A c My is bounded (or even u*(A) < o), then there exists a Borel set B and a null set N = A n B
such that A= B\ N.

Proof. For € > 0, there exists an open set V. with

e AcV,, and
o w(A)<p (Vo) <p*(A) +e
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Set B = nzil Vl/k' Then
e B is Borel,
e Ac BcVy for all k, and

o p*(A) <p*(B) < p*(A)+ 1 for all k.

So p*(A) = p*(B). Let N=B~ A, so p*(AnB) +p* (A n B) = p*(B). Since p*(A) = u*(B) = p*(An B),
we have pu*(N) = u*(A° nB) = 0. O

Proposition 1.33
A cRis null if, and only if, A € My and u(A) = 0.

Proof. If A € My and u(A) =0, then p*(A) =0, so A is null. On the other hand, suppose A is null, so
1 (A) =0. Fix X c R. Then monotonicity gives

P (ANX) +p* (A% 0 X) <t (A) + p* (X) = p* (X).

O
Proposition 1.34
If A, B e My, then Au B and An B € M.
I Remark 1.35. Since An B = (Ac UBC)C, it suffices to show A U B € Mj.
Proof. Fix A, B € My and pick any X c R. Note that
1. (AuB)nX =(BnX)u(AnBYnX), ad
2. (AuB)°nX=A4°nBYnX.
So
p((AuB)NX)+p* ((AuB)Y nX) < " (Bn X))+ (AnBY n X) + * (A° n B¢ n X)
= (BnX)+u (B°nX)
= p*(X).
O

I Remark 1.36. If A; are in Mo, so are Ujx; A; and Nj~; A;. (To prove, induct on n)

Proposition 1.37

All intervals are in M.
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Remark 1.38. Using complements and finite intersections/unions, we can build any interval from intervals of
the form (—oo0,a],[b, ).

Example 1.39
(1,7] = (=00, 7] N ((~00,1]) .

This finally leads to the following claim: If U is an interval, set U~ = (=o00,b) nU and U* = [b,00) nU. Then
w(U)=len U, p*(U")=len U™, and p*(U*) =len U*. So by additivity of length,

pr(U)=len U=p"(U")+p"(U).

1.8 TA recitation 1

Definition of outer measure can take open intervals disjoint (uses lemma: any open U c R is countable union
of disjoint intervals)

1.9 An equivalence of g-algebras

An equivalence that we’ll end up using naively, going forward is that the oc—algebra generated by Borel sets
and Null sets is exactly the same set as the o—algebra of measurable sets. In other words, M = M.

Proposition 1.40
Intervals are in M.

Proof. By the magic of complements, countable unions, and the like, it suffices to show that [b, 00) € My (and
(—o00,a] € My). Since the argument to prove either is the same, we’ll proceed by showing [b,00) € My. Let
A =[a,0),X cR. Fix € >0 and countably many open intervals N,, such that

XcJU, and p*(X)< ) lenU, <p*(X)+e

n=1 n=1

Set X*=AnX, X =A°nX, U} =U,nX, U, =US nX. Note that U,, is an open interval and U, is a
half-open interval, so len U} +1len U,, =len U,. So

WX € U) = Y len U
n=1 n=1
W (X) < i W (U;) = nilen U,
thus
W (AR X) " (A 0 X) = (X 4 (X7)
< i len U +1len U,
n=1

=p (X)) +e.
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Proposition 1.41 (Finite additivity, of sorts)

Let A e My. Fix B, X cR. Suppose that AnB =@ Then p*(AnX)+p*(BnX)=p*((AuB)nX).
In particular, if A, B € My, then p(A) + u(B) = u(Au B).

Proof. Notice that
An((AuB)nX)=AnX,

and because An B =@,
AN ((AuB)nX)=BnX.

Thus,

p((AUB)NX) = (An((AuB)n X)) +p* (A n ((AuB)n X)
=p (AnX)+u*(BnX).

Corollary 1.42
Given countably many FE; € My such that E;nE; = @ for all i # j and X c R,

,LL*(CJEIOX)ZiM*(ElﬂX)

1=1 i=1

Great, so we now have everything we need to proceced with the main proof of the section!

Theorem 1.43
M, is a o-algebra.

Proof. By definition, if A ¢ My, then A® c My. Moreover, R, @ € My since p*(Rn X) + p*(@n X) = p*(X).
With the first two conditions out of the way, we just need to show that My closed under countable unions.
Take countably many A; € My, and let E,, = U, A;. Set By = Ay, and Bpy1 = Apy1 N E,. (This constructs
pairwise disjoint sets from {F;}.) Then E,,; = E,, U By41 and E, N By = @. Both E,, B, € My. If i< j
and B;cE;c Ej—17 then B;n Bj =d.

Now, let E = U2, A; = U, B = UZ, E;. Note that E€ =N, BS c N, BE = (U, B;)° = ES. Fix any
X cR. Then for any n, Proposition 1.41 and E, € M, gives

(i,u*(Bi nX)) + 1 (ECnX)=p (EpnX) +p*(EY nX)
i=1

<p(EpnX)+p (ES nX)
= p (X).

So N

(zu*(Bi nX)) (S 0 X) < (X)

i=1

10
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and thus
p(EnX)+p (ECnX)=pu" (U B; mX) + 1 (B9 nX)
i=1
< (Zu*(Bi mX)) +u* (EcnX)
i=1
<pi(X).
SOE:UiAiZUiBiEMQ. O

Corollary 1.44
My =M.

Proof. First note that both are o—algebras.

1. Since null sets are in My and open intervals—and all open sets—are in My, so M c M.

2. Fix Ae My. Given n € Z, set An] =[n,n+1]n A. Since [n,n +1], A, € My, A, € M. (We've showed
before that bounded measurable sets are in M.) In particular, there is a Borel set B,, and Null set NV,
such that A, = B, N\ N,. So A=Upez An € M. So Myc M.

O

It might be helpful to take a step back and list some notes that might be helpful going forward:

e M (= My) is the o—algebra of Lebesgue measurable sets.
e AcRis measurable if Aec M.

e M is generated by Borel sets and null sets.

In particular, the following are measurable

Intervals,
— Open sets,
— Closed sets (like the Cantor middle 1/3 set!),

— Null sets (and thus countable sets).

Define the Lebesgue measure p: M — [0,00), u(A) = u*(A). If A, B e M, then

p(AnB) +p(A° 0 B) = u(B).

11
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Example 1.45
Suppose A;, B;€ M, Ay c Ay c Az c-+, and By > By > B3 2. Set A=U2, A; and B =N, B;.
1. Show p(A;) - p(A).
e Set Ej = Aj\ Aj_1. Then Ej are pairwise disjoint and E; € M, A=U37,; E;. So
1(An) <p(A) = p (U E) < 2 u(E) = lim 37 u(E;) = lim p(Ay).
i=1 i=1 i=1
Note that the last equality holds because the F;’s are measurable.
2. If u(By) < oo, show u(B;) - u(B).
e Set Fj = By \ Bj, so Iy c Fy c---. Then

U Fj = Bi ~ B =B (inside By).
j=1

By bullet (1) above,

p(F;) = p(Bi~ B) = p(B1) - p(B).
Also,

p(Fi) = p(Bi N B;i) = w(B1) - u(Bi),

so (u(Bi1) = u(Bi)) = p(B1) - u(B).
3. If u(A) < oo, show u(AN A,) =0.
e Set G,, = A\ A,. Since Gy > G2 2+, notice Ny G, = @. By bullet (2),

1(AN An) = p(Gr) —» (@) =0.

Remark 1.46. In (2) of the previous example, the assumption that p(B; < oo is imperative. To see why, set
B, =[n, o). Notice that

1. Npz1 =9, and
2. u(By) = o0, but pu(B) = 0.

Clearly, this is an issue.
Remark 1.47. Similarly, in (3) of the previous example, the assumption that u(A) < oo is also necessary. Set
A, =[-n,n]. Then the union over all n is Up-; An =R = A, but

H(AN Ay) = (=00, -n) U (1, 00)) = 00 0.

With the results from Example 1.45 under our belt, we can now prove that the Lebesgue Measure actually
exists, and is not instead some wacky figment of our horribly rotten mathematical brains:

12
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)

(" Theorem 1.48 (Existence of the Lebesgue Measure)

Specifically, there exists a measure (function) p: M — [0, 00) satisfying:

1. u((a,b)) =b-a,
2. translation invariance, and

3. countable additivity.
Moveover, from (1)-(3), we get the following for free:

¢ Monotonicity,

e the null sets are measurable, and

e outer regularity: If A e M, then p(A) = inf{u(U) |U open, U > A}.
- J

Proof. We've pretty much proved everything here except countable additivity, so we’ll say that it suffices to
show (3) holds.

If A=Uj2; A;, then p(A) < Y52 1(A;) by subadditivity of outer measure. Moreover, if A; pairwise disjoint,
then o (UZ) Ai) 2 (Ui 4i) = iy p(A)- So T2y u(As) < (UiZy Ai). And thus p(UZy A) = EiZ4 p(As)
if A; are pairwise disjoint. O

Remark 1.49. Note that R conventionally has measure u(R) = +co0. But sometimes we want to restrict to a
total space of finite measure. Arbitrarily, fix I = [0,1] (any other bounded closed interval will also do!). Then
we write

M{I)={AnI|AeM}c M.
If we do this, then we’re restricting p to M (1), so 0 < u(A) <1 for all Ae M(I). It’s important to be aware of
context, as one might be working in either R or I, and it’s often up to the reader to figure out the total space
when taking complements of sets, and the like.

Example 1.50
Say Ae M(I). Then A® =T\ A, and we can do things like

p(AC) = (1) = p(A) = 1= p(A).

(" Proposition 1.51 (Inner Regularity) )
Suppose that A € M (I). Then for any e > 0, there exists a closed set C'c A where
1(A) —e<pu(C) < p(A).
In particular,
w(A) =sup{u(C) | C c A is closed}.
. J

Proof. Pick an open U (in either R or I) with A°c U. Then A° =T~ A and u(U) < u(A°) +¢. Set C =U*
(=INU). Then C is closed, C'=U°c (A°)° = A, and

() = p(U°) = 1= p(U) > 1= (u(A) + €) > 1 - p(A°) — € = p(A) €.

13



Elliott Yoon 1 The Lebesgue Measure

1.10 A slightly upsetting freak of nature

Let’s restrict our perspective to that of I = [0,1] and say we have a set A c I, with u(A) =2/3. Now, if we
pick a point in A and examine a small neighborhood of this point, what should we expect to be the density
(in the non-mathematical sense) of points of A in this neighborhood? If you have more than two brain cells,
you’d probably guess 2/3, 66%, whatever. Unfortunately, Lebesgue definitely only had one.

Theorem 1.52

Define
uw((xz-0,z+9)nA) _ ((x—é,:c+6)mA).

w(x—06,z+0) 20
For any typical (whatever that means...) z € A, fx 4(d) >1as J - 0.

fax(8) =

Proof. Our professor didn’t prove this for us, so I won’t for you. Because fuck you, that’s why. (Did I mention
how mad this theorem makes me?) O

Theorem 1.53

Let A be measurable with 0 < u(A) < oco. Given 0 < p < 1, there is an open interval U such that
u(UnA)2p-pu(U).

Proof. Yea, this is a proof by contradiction. Enjoy reading through this joke of a proof that’s less illuminating
than a snuffed out candle. That being said, fix 0 <p< 1, set 0<e = (1-p)u(A) < oo, and pick disjoint open
intervals {U, } such that

Ac|JU; and u(UUi) <u(A) +e
i1

=1

Suppose p(U, n A) <p-u(U,) for all n. Then

)= (0400, = 5 A0 < 3 p @) <al) + 0.

Then (1-p)u(A) <p-e. € is stupidly defined, so 1 < p. Oh wait—that’s bad, isn’t it? Whatever. O

14



Elliott Yoon 2 Measurable Functions

INTEGRATE A FUNCTION :
WHICH FAILS THE MONOTONE ~ haha Lebesgue integral go brrrrr

NOOO!! YOU CANT JUST INTEGRATE 1
ON STRUCTURES IN NON- EUCLIDIAN fEf = fﬁ, flz)duiz)

YOU CANT JUST INTEGRATE for measurable real-valued functions f defined on E.
UNBOUNDED INTEGRALS
WITHOUT TAKING A LIMITHHnmm f fdp = sup { f sdp:0< s < f, ssimple }
E E

2 Measurable Functions

Now that we’ve properly formulated the Lebesgue Measure, it’s time to do stuff with it—integrate, specifically.
Whereas Riemann integration uses step functions as its auxiliary approximations, Lebesgue integration will
utilize a much broader class of functions called simple functions.

2.1 Simple Functions

Before defining simple functions, we need a few elementary pieces of machinery:

Definition 2.1. Given A c R, the characteristic function of A is defined by

N

Definition 2.2. A finite measurable partition of 7 = [0,1] is a collection {A;}!_;] such that

LU A =1,
2. {4;} are pairwise disjoint, and
3. A; € M (is measurable).

For convenience, we’ll allow some A; = @.

Now that we have the Characteristic function formulated and the notion of a finite measurable partition,
we’re ready to define the class of simple functions:

15



Elliott Yoon 2 Measurable Functions

Definition 2.3. A function 6 :[0,1] —» R is simple if the following are satisfied:

1. There exists a measurable partition {4;}|'_, of [0,1], and

2. r; eR for 1 <i<lsuchthat f=%'r;X,,.

While your mathematical spidey senses tingle, you might be tempted to define an integral over simple
functions as your intuition suggests—and for once, you would be correct. If f = Zi»:l r; X 4, is simple, we can

define . l
A f=f1f=ffdu:=;mu(z4¢),

where the dy is notational sugar to remind us that we’re working with the Lebesgue measure.

I Remark 2.4. If f = %! 7, X4, is simple, f™((a,0)) = Up;>q Ai. So f((a,)) is measurable for all a.

Remark 2.5. Simple functions form a vector space; i.e. if f = 22:1 riXa,, g=X7 5;Xp; are simple:

e ( is simple,

e cf is simple for all c € R, and

e f+g is simple.
Proof. Everything is trivial except for closure under addition; write C;; = A; n B;. Then {C}; }Z:g ;? Visa
finite measurable partition of I = [0,1]. So

I m
(f+9)= Z Z(Tl +s5)Xc,,;-
i=15=1

O
(" Lemma 2.6 (Properties of integration on simple functions) )
Let f,g: I — R be simple functions. Then
1. Linearity: [c1f+cogdu=c1 [ fdp+co [ gdp,
2. If f<g, then [ fdu< [ gdpu,
3. |f] is simple and |[ fdu| < [ |f|dp.
J

Proof. Write f = Z§=1 riXa, g= ZT:l 5;Xp,, cif +cag =%, j(ciri + cag2) Xc,;, where Cy; = A;n Bj. Then

1. Notice that ¥, u(Ci; = u(A;) and vice versa, so

/ cif +cagdp = Z(cm + ¢85 )1u(Cij)

= Z (Z Cc17; /L(Cw)) + Z (Z CQS][L(CW))
= 2017% (Z M(Cij)) + 20289' (Z M(Cij))
=C1 ZTLUJ(AZ) + Co ZSJN(BJ)

16



Elliott Yoon 2 Measurable Functions

2. If f<g,theng—-f>0,s0 [(g-f)du>0. By (1), fg- [ f>0.

3. Notice that |f| = X!, |r; X 4,. By the triangle inequality,

|f dp| =

! l
S ()| < Y Irlu(4) = [ |fld
i=1 i=1

2.2 The simple to measurable pipeline goes brazy

An observation of notation: we will notate the extended real line as R = Ru {co} U {~o0}.

( Proposition 2.7
Let X cR (or [0,1], it doesn’t matter) and f: X — R. The following are equivalent for all x € R:
1. fY([~o0,a]) e M,
2. [ ([-o0,a)) € M,
3. f1([a,0]) e M,
4. fY((a,00]) e M.

.

Proof. Assume statement (1) holds for all a. Note that [~00,a) =U,[-00,a - 2], so
_ _ 1
FH(leesal) =U F ([mo0sa-—]) € M,

Thus f~!([~o0,a]) € M. Now, assume (2) holds. Note that f~(X) = (f~(z))%, so

FHlase0]) = fH([=e0,a)) = f7H([00,)) .

We’ve thus shown that (1) implies (2), which implies (3). The other two implications are identical arguments.

Definition 2.8. A function f: X — R is measurable if any of the conditions in Proposition 2.7 hold.

I Remark 2.9. f: X - R is measurable if f™'((a, 00)) is a measurable set for all a € R.

Proposition 2.10
Let f,g:[a,b] » R be functions. Let A c [a,b] be a null set.

1. Suppose f(x) =0 for all x € A. Then f is measurable.

2. If f measurable and f(x) = g(z) for all x ¢ A, then g is measurable.

Proof. FixaeR. Ifa <0, then f~1([-o00,a]) c A. Since A is a null set, f~*([~o0,a]) is null, hence measurable.
If a >0, then f1([-00,a]) = f1((a,]%) = (f1((a,00]))¢. Note f1((a,00))c Aso f1((a,o0]) is a null

17



Elliott Yoon 2 Measurable Functions

set. Since M is closed under complements (friendly reminder that it’s a o—algebra!), f~1([-o0,a]) € M. To
show (2), judiciously use the o—algebra properties of M with the observation that

g ([~e0,a]) = (97 ([~o0,al) n A) U (97" ([~o0,a]) N A7).
O

Remark 2.11. Recall from previous discussions in real analysis that continuity, differentiability, and integrability
are not preserved under pointwise convergence of functions. However, pointwise convergence does preserve
measurability!

(" Theorem 2.12 A

Let {fn}22, be a sequence of measurable functions. The following extended real number valued functions
are measurable:

1. g1 =sup, I
2. go =inf, f,,
3. g3 =limsup,,_, . fn,
4. g4 =liminf, o fr.
. J

Proof. For (1), fix a € R. If g;(x) > a, then there exists n € N such that f,(z) > a. So g7'([a,0]) =
Un f1([a,00]). So g'([a,0]) € M. The proof of (2) is identical. Notice now that limsup,,_, ., a, =
infn (Sup,.n @n) = UMy o SUP,s Gn. Then gz(z) = infysup,.y fn(z) = infy (An(z)), where hy is a
measurable function, by (1). So g3 is measurable by (2). The proof of (4) is identical. O

Remark 2.13. We now have that the pointwise limit of a measurable functions is measurable! Furthermore,
if g1,...,q are measurable, then max{gi,...,q} is measurable. Moreover, if f measurable, then |f| also
measurable.

(" Theorem 2.14 A

The set of measurable functions
{f:[0,1] =R measurable}

is a vector space. Furthermore,

1. The set of bounded measurable functions is a sub-vector space of the first set, and

2. If f,g:[0,1] > R measurable, so is the pointwise product fg:[0,1] - R (defined as (fg)(z) =
f(z)g(z)).

J

Proof. The first two statements are trivial. Now, fix a € Q, and enumerate Q = {¢,}. Suppose now
that f(x) + g(z) > a. Then f(x) > a - g(z). Because Q is dense in R, there exists a ¢, € Q such that
f(x) > qn >a-g(x). In other words, f(z)> ¢, and g(z) >a - g,. Thus, z € f1((gn,0)) ng ((a - gn,)).
Set

Ua=(f+9)7((a,00)) = {z| f(z) + g(2) > a,
SO

Us c U ((gns00)) n g™ ((a = gn, 00)).

18



Elliott Yoon 3 Building the theory of integration

On the other hand, if y € Uy, f7*((gn, o)) N g7 ((a@ — gn, o)), then there exists n € N such that f(y) > ¢, and
9(y) >a-qn. So f(y) +g(y) >a. Thus

U S ((gn,0)) n g™ ((a = gn,0)) € U,.

So Uy = (f +g9) (a, ) is measurable. O

3 Building the theory of integration

We’ll delve into integrating by building up its theory on subsets of measurable functions:

1. Bounded measurable functions on [0, 1],
2. Non-negative (measurable) functions on [0,1], and finally,

3. General measurable functions on [0,1].

3.1 Integration of bounded measurable functions f:[0,1] - R.

(" Theorem 3.1 )
Let f:[0,1] > R be bounded. The following are equivalent:

1. f is measurable.

2. There is a sequence of simple functions {g,} such that g, converges uniformly on [0,1].

3. Let
%M(f) ={u:[0,1] > R | u simple, u > f}
and
Z,(f)={v:[0,1] > R |v simple, v < f}.
Then
sup vdp = inf / U du.
VeZ(f) Ue¥
~ 4
Proof. This is very long. I'll come back to it 0

Definition 3.2. Let f =[0,1] » R be bounded and measurable. We define

ffd,u: sup vd.
veZ(f)

( Proposition 3.3 )

Let { g, } be simple functions converging uniformly to f on [0,1]. (We know f is bounded and measurable.)
Then

1. limy e J g dp exists, and

2. limyeo [ gndp = [ fdp.
. J
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Elliott Yoon 3 Building the theory of integration

Proof. The main trick is that ¢,92) — € < f(x) < gn(x) + ¢, for some €, - 0. The full proof is in Frank’s
(Terse) Introduction to Lebesgue Integration, Proposition 3.2.3. O

Summing up what we’ve already synthesized:

(" Theorem 3.4 (Nothing New) A
Let f,9:[0,1] = R be bounded and measurable. Then

fclf+czgdu:clffdu+02fgdu.
2. If f<g,then [ f<[g

3. If | f| measurable, then |[ f| < [ |f]

1. For all ¢1,co € R,

4. If f(x) = g(z) for all x outside a null set, then

ffdu:fgdu~

- J

3.2 Bounded Functions

Definition 3.5. Let f:[0,1] = R be bounded and measurable and E c [0,1] measurable. The we define

[rdu= [ xerdn

Proposition 3.6

If £ =U;2, E; is the union of pairwise disjoint measurable sets, then

[Efdu:g[&fdu.

Proof. Notice xgf = Zﬁ\il XE; f- O

Proposition 3.7

If f:[0,1] = R is a bounded and Riemann-integrable function, then f is Lebesgue measurable and the
Riemann integral and Lebesgue integrals coincide.

Proof. Define
Lr(f) = Sup{[ v(z)dz | v < f,vis a step function},

and
Ly = sup{f vdu | v < f,vis a simple function},

and Ug(f),Uu(f) defined similarly with inf’s in lieu of sup’s. Then
Lr(f) < Lugyy < Upsy <UR(S)-
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Elliott Yoon 3 Building the theory of integration

3.3 The Bounded Convergence Theorem

Example 3.8

Let
n O<z<i
n

0 otherwise

fn(x) :{

Notice that f, - 0 pointwise, but [ f,, du =1 and [ lim f,, du =0, so

lim[fnduzflimfn

need not hold!

Question 3.9. Is there a sufficient condition for pointwise convergence to imply the convergence of integrals?
Let’s examine the problem with Example 3.8. Fix € > 0 and examine the ” bad sets”, defined as
B, ={z||fn(x) - 0] > € for some n >m}

. Then -
(1Bn=2 and u(B,) -0
n=0

on B, = (0, %), 0 fm =m. To get lim [ f, = [ lim f,,, we need to simultaneously control

e measure of "bad sets”,

e value of functions f,

(" Theorem 3.10 (Bounded Convergence Theorem) A

Let {fn}o2, be a sequence of measurable functions be defined f, : [0,1] - R. Suppose there is M >0
such that |f,(x)] £ M for all z and all n, and suppose f,, - f pointwise. Then

1. f is bounded and measurable, and

2. limyeo [ frdu=[ fdu.
. J

Proof. For (1), the pointwise limit of measurable function is measurable. Also,

lim |f, ()| < M
n—00

so |f(z)| < M. To prove (2), we want to show lim, e [ frdu = [ fdu, or lim, e | frdu— [ fdu| =0, or
limy oo [ |fn = fldu=0since |[ frdu— [ fdul < [|fn— fldu. Okay, let’s actually get into it: fix € > 0. Set

En = {z]fa(@) - f@)] <5 V¥nzm).

Since f,, — f pointwise,

U En= [Oa 1]
m=1
Also, Ey, € Epi1, 80 (B ) — p([0,1]) = 1. Pick m such that
€
E)>1-—.
n(E) e
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Elliott Yoon 3 Building the theory of integration

(Note that 1([0,1] N Epn) < 35.) Then for all n > m,

[ g~ [

< [ 1fa- fldp

= [ M=t [ =11

€
< —d +f 2md
S, 50 o 2ma
< (B + 2mp(ES)

2me

S 2
€

<7 [
2 4m

= €.

O

Okay, so what’s the punchline of the Lebesgue Integral? We can always ignore behavior on a null
set!

Example 3.11

7T z¢Q
0 x€Q,
Riemann integrable.

Define f(z) = and g(z) =7. Then g(x) = f(x) except on a null set Q. Note that f(z) is not

Definition 3.12. A property holds almost everywhere or for almost every z if it holds for all x outside a
null set.

Example 3.13

T wfQ
Let f:[0,1] = R, f(z)=41/z xeQ~{0} f is not bounded, but for almost every z, |f(z)| <2 so we
0 z=0

can say f is essentially bounded.

(" Theorem 3.14 A

Let f,, :[0,1] = R be measurable functions, suppose there exists M such that |f,(z)| < M for all n and
almost every x. Suppose f,(z) > f(x) for almost every x. Then f is

1. measurable,

2. bounded on a null set, and

3. limyoo [ frndp= [ fdu.
. J

Proof. Set A = {z | lim|f,(x) - f(x)| # 0, B ={z | |fu(z)| 2 M}, E = AuU;>, By, and notice u(E) = 0.
Letting g, = xgc fn and g = xge f, notice g,,g are bounded and measurable, and g, () - g(z) for all z. So

lim fnzlimfgn:fg:ff.
n—o0 n—o0
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HELP ME FIGURE OK, ASSIGN THE ANSWER A | THAT LEAVES YOU WITH THREE

QUT THIS HOME- VALUE OF "X" "X” AUNMS  |ON THIS SIDE, SO WHAT TINES

WORK MEANS MULTIPLY, SO TAKE  |THREE EQUALS E\GHT # THE
TME NUMERATOR (THATS LD

FOR "NUMBER EIGHTER") AND

PANSHER, OF COURSE., |S SIK.

OOH, THATS A TRICKY ONE
YOU HAVE. TO USE CALQULS
AND IMAGINARY NUMBERS
R THIS.
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1 Chapter 2, Appendix B

1.1 Properties and construction of the Lebesgue measure on R
1.2 Properties of Lebesgue outer measure
1.3 Definition of Measurable Sets using Outer measure

1.4 Properties of Lebesgue Measure

2 Chapter 3

2.1 Measurable Functions

We wish to define the Lebesgue integral in a fashion similar to that of the Riemann (and
the regulated) integral. However, instead of using step functions to approximate a given
function, we use a much more general class of functions called simple functions.

Definition 2.1. If A c [0, 1], its characteristic function 1 4(z) is defined by

1 z€A
1 = ’
A7) {O otherwise.

Definition 2.2. A finite measurable partition of [0,1] is a collection {4;}?, of measurable subsets which
are pairwise disjoint and whose union is [0,1].

Definition 2.3. A function f:[0,1] - R is called Lebesgue simple, or simple, provided there exist a finite
measurable partition A;;; and real numbers {r;} such that

F@) =3 rila,.
-1

The Lebesgue integral of a simple function is defined by

[ fdu= irm(Ai).
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N

(" Lemma 2.4 (Properties of simple functions)

The set of simple functions is a vector space and the Lebesgue integral of simple functions satisfies the
following properties:

1. Linearity: If f, g are simple functions and cy,cs € R, then

fclf+029du:0ffdu+02fgdu-

2. Monotonicity: If f, g are simple and f(z) < g(z) for all z, then

ffd,usfgd,u.

3. Absolute value: If f is simple, then |f| also simple and

|/ rau|< [ 1r1dn.

. J

If f:[0,1] > Ru{oco}u{-oo} is called an extended real valued function. For a € R we denote the set
(—o0,a]u{-o0} by [-00,a] and the set [a,o0) U {0} by [a, o]

( Proposition 2.5 )

If £:[0,1] » R is an extended real valued function, then the following are equivalent:

1. For any a € [~00,00], the set f~!([~00,a]) is Lebesgue measurable.

2. For any a € [~00,00], the set f~!([00,a)) is Lebesgue measurable.

3. For any a € [0, 0

[0, o] [
[0, o] [
[~00, 0], the set f~1([a,o0]) is Lebesgue measurable.
4. For any a € [~o00, 00], the set f~((a,]) is Lebesgue measurable.’

. J

Definition 2.6. An extended real valued function f is called Lebesgue measurable if it satisfies one (and
hence all) of the properties of Proposition 2.5.

Proposition 2.7

If f(x) is a function which has the value 0 except on a set of measure 0, then f(x) is measurable.
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(" Theorem 2.8 )
Let {f.}2, be a sequence of measurable functions. Then the extended real valued functions
91(2) = sup fn(2)
g92(z) = inf f,.(z)
neN
g3(x) = limsup f,(z)

n—o00

ga(x) = lim nf f,,(x)

are all measurable.

J

Theorem 2.9 A

The set of Lebesgue measurable functions from [0,1] to R is a vector space. The set of bounded Lebesgue
measurable functions is a vector subspace.

J

2.2 Lebesgue integration of Bounded measurable functions

(" Theorem 2.10 )
If f:[0,1] - R is a bounded function, then the following are equivalent:

1. The function f is Lebesgue measurable.

oo

2. There is a sequence of simple functions {f,,}2>; which converges uniformly to f.

3. If %,(f) denotes the set of all simple functions u(z) such that f(x) <u(z) for all z and if .Z,,(f)
denotes the set of all simple functions v(z) such that v(z) < f(z) for all x, then

su vd}: inf {fud }
veff()f){[ a ue?, (f) H

- J

Definition 2.11. If f:[0,1] - R is a bounded measurable function, then we define its Lebesgue integral by

dp= inf {fud }

/f s ue?, (f) H

ffdu= sup {fudu},
veZ, (f)

or equivalently,

Proposition 2.12

If {gn}or, is any sequence of simple functions converging uniformly to a bounded measurable function
f, then lim, e [ g5 dpu exists and is equal to [ fdu.
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4 Theorem 2.13 A

The Lebesgue integral, defined on the vector space of bounded Lebesgue measurable functions on [0, 1]
satisfies the following properties:

1. Linearity: If f, g are Lebesgue measurable functions and c¢j,co € R, then

fc1f+029du:clffd,u+62/9d#-

2. Monotonicity: If f, g are Lebesgue measurable and f(z) < g(z) for all z, then [ fdu< [ gdp.
3. Absolute Value: If f is Lebesgue measurable, then |f| is as well and |/ fdu| < [ |f|dp.

4. Null Sets: If f,g are bounded functions and f(z) = g(z) except on set of measure zero, then f is
measurable if, and only if, g is measurable. If they are measurable, then [ fdu = [ gdu.

.

Definition 2.14. If E c [0,1] is a measurable set and f is a bounded mesaurable function we define the

Lebesgue integral of f over E by
[ rdu= [ ripdu.

( Proposition 2.15 )
If E, F are disjoint measurable subsets of [0, 1], then

[ rdu= [ pau+ [ rdu.

. J

4 Proposition 2.16 (Riemann integrable functions are Lebesgue integrable.) )

Every bounded Riemann integral function f:[0,1] — R is measurable and hence Lebesgue integrable.
The values of the Riemann and Lebesgue integrals coincide.

. J

2.3 The Bounded Convergence Theorem

Example 2.17

Let
1 2]7

n’n

n xel

fn(m) :{

0 otherwise

Then f is a step function equal to n on an interval of length % and 0 elsewhere. Thus

1
ffnd,u:nle.
n

But for any z € [0,1], we have f,,(x) =0 for all sufficiently large n. Thus the sequence {f,}$° converges

pointwise to the 0 function. Hence
f ( lim fn(:zz)) du=0

lim [ f,du=1.

n—oo

but
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Theorem 2.18 (The Bounded Convergence Theorem)

Suppose that {f,}{° is a sequence of measurable functions which converges pointwise to a function f
and there is a constant M > 0 such that |f,(z)| < M for all n and all z € [0,1]. Then f is a bounded

measurable function and
tim [ fudu= [ fdp
n—oo

Definition 2.19. If a property holds for all z except on a set of measure zero, we say that it holds almost
everywhere or for almost all values of z.

(" Theorem 2.20 (The Better Bounded Convergence Theorem) A

Suppose {f,}5° is a sequence of bounded measurable functions and f is a bounded function such that
Tim f,(2) = f(x)
for almost all . Suppose also that there exists a constant M > 0 such that for each n > 0,

()l < M

for almost all z € [0,1]. Then f is a measurable function, satisfying |f(z)| < M for almost all z € [0,1],

and
limffndu:ffd,u.
. J

3 Chapter 4

3.1 Integration of non-negative functions

Definition 3.1. If f:[0,1] - R is a non-negative Lebesgue measurable function, we let f,, () = min{f(z),n}.
Then f,, is a bounded measurable function and we define

[ fau=tim [ fudp

If [ fdp< oo, wesay f is integrable.

Proposition 3.2 )
If f is a non-negative integrable function and A = {z | f(x) = +co}, then pu(A) =0.

J

( Proposition 3.3 )

Suppose f, g are non-negative measurable functions with g(z) < f(z) for almost every x. If f is integrable,

then g is integrable and
f gdu < f fdu.

In particular, if g = 0 almost everywhere, then [ gdu =0.
. J
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Corollary 3.4
If f:[0,1] » R is a non-negative integrable function and [ fdu =0, then f(z) =0 for almost all z.

Theorem 3.5 (Absolute Continuity)

Suppose f is a non-negative integrable function. Then for any € > 0, there exists a § > 0 such that
J4 fdp < € for every measurable A c [0,1] with p(A) < 4.

Corollary 3.6 (Continuity of the Integral)

If f:[0,1] - R is a non-negative integrable function and we define F(x) = f[o 21 f dp, then F(x) is
continuous.

3.2 Convergence Theorems

We can generalize the aforementioned Bounded Convergence Theorem to the following results, where instead
of having a constant bound on the functions f,,, we bound them by an integrable function g. (We can do this
because of absolute continuity!)

Theorem 3.7 (Lebesgue Convergence for Non-negative functions)

Suppose f, is a sequence of non-negative measurable functions and ¢ is a non-negative integrable
function such that f,(z) < g(x) for all n and almost all z. If lim f,,(z) = f(z) for almost all =, then f is

integrable and
ffd/iz lim ffnd,u.

(" Theorem 3.8 (Fatou's Lemma) )
Suppose g, is a sequence of non-negative mueasruable functions defined on [0,1]. If lim g, (z) = f(z)
for almost all z, then

/ fdp <liminf f Gn dt.
n—oo
In particular, if liminf [ g,, dp < +00, then f is integrable.
- J

N

(" Theorem 3.9 (Monotone Convergence Theorem)

Suppose g, is an increasing sequence of non-negative measurable functions. If lim g,(x) = f(x) for

almost all z, then
ffdu: lim /gndy.

In particular, f is integrable if, and only if, lim [ g,, du < +00.
\- J
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Corollary 3.10 (Integral of infinite series)

Suppose u,, is a non-negative measurable function and f is a non-negative function such that >, ; u, () =
f(z) for almost all . Then

f fdu= Z Uy, At
n=1

3.3 General Integrable Functions

Recall that a collection o7 of subsets of I is called a o—algebra provided it contains the set I and is closed
under taking complements, countable unions, and countable intersections.

Definition 3.11. If &7 is a o—algebra of subsets of I, then a function v : &/ — R is called a finite measure
provided

o v(A) 20 for every Ae o7,
e v(2) =0, v(I)< oo, and
e v is countably additive, i.e. if {A4,}52; are pairwise disjoint sets in A, then

v(gAn) = 3 u(4y).

n=1

Definition 3.12. Let v be a finite measure defined on the o—algebra M (I). If f(z) =Y, r;14, is a simple
function then its integral with respect to v is defined by

/ fdv= ;riv(Ai).

If g:[0,1] - R is a bounded measurable function, then we define its integral with respect to v by

fgdv: inf {fudv}.
ue?,(9)

If h is a non-negative extended measurable function we define
f hdv = lim [ min{h,n}dv.

Definition 3.13. If v is a measure defined on M (I), the Lebesgue measurable subsets of I, then we say v is
absolutely continuous with respect to Lebesgue measure p if p1(A) = 0 implies v(A) = 0.

(" Theorem 3.14 A

If v is a measure defined on M (I) which is absolutely continuous with respect to Lebesgue measure,
then for any € > 0, there exists a § > 0 such that v(A4) < € whenever p(A4) = 4.
. J

( Proposition 3.15 )

If f is a non-negative integrable function on I and we define

vs(A) = fA fap,

then vy is a measure with o—algebra M (1) which is absolutely continuous with respect to Lebesgue
measure U.

- J
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(" Theorem 3.16 (Radon-Nikodym) A

If v is a measure with o—algebra M (I) which is absolutely continuous with respect to Lebesgue measure
i, then there is a non-negative integrable function f on [0,1] such that

U(A):fAfdu.

The function f is unique up to measure zero, i.e. if g is another function with these properties, then
f = g almost everywhere.

J

Remark 3.17. The function f is called the Radon-Nikodym derivate of v with respect to p. In fact, the
Radon-Nikodym Theorem is more general than stated, as it applies to any two finite measures v and p defined
on a o—algebra &/ with v absolutely continuous with respect to pu.

We will now consider extended measurable functions which may be unbounded both above and below. Define

fT(x) = max{f(z),0} and f~9x) = -min{f(x),0}.

Definition 3.18. if f:[0,1] - R is a measurable function, then we say f is Lebesgue integrable provided
both f* and f~ are integrable (as non-negative functions). If f is integrable, we define

[ rau= [ frau- [ 1

Proposition 3.19

Suppose f, g are measurable functions on [0,1] and f = g almost everywhere. Then if f is integrable, so
is g and [ fdp= [ gdp. In particular, if f =0 almost everywhere [ fdu =0.

( Proposition 3.20 )
The measurable function f:[0,1] — R is integrable if, and only if, the function |f| is integrable.

. J
(" Theorem 3.21 (Lebesgue Convergence Theorem) A
Suppose f, is a sequence of measurable functions and ¢ is a non-negative integrable function such that
|frn(2)| < g(z) for all n and almost all x. if lim f,,(«) = f(z) for almost all z, then f is integrable and
ffdu - lim f m
n—oo
. J
(" Theorem 3.22 )

If f:[0,1] - R is an integrable function, then given € > 0, there is a step function ¢g:[0,1] - R and a
measurable subset A c [0,1] such that u(A) < e and

[f(z) —g(z)| <€

for all x ¢ A. Moreover, if |f(x)] < M for all z, then we may choose g with this same bound.
- J
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(" Theorem 3.23 A

The Lebesgue integral satisfies the following properties:

1. Linearity: If f, g are Lebesgue measurable functions and ¢, cy € R, then

fclf+t:zgdu=clffdu+62fgdu-

2. Montonicity: If f,g are Lebesgue measurable and f(z) < g(z) for all z, then [ fdu< [ gdp.
3. Absolute value: If f is Lebesgue measurable, then |f]| is also and |[ fdu| < [ |f]dpu.

4. Null sets: If f,g bounded functions and f(z) = g(x) except on a set of measure zero, then ff is
measurable if and only if g is measurable. If they are measurable, then [ fdu = [ gdu.

. J
4 Chapter 5
Let X be a finite set with n elements, like X = {1,2,3,...,n} and we define a measure v on X which is called

the counting measure. More precisely, we take a o—algebra the family of all subsets of X and for any A c X,
we define v(A) to be the number of elements in the set A. Clearly, any function f: X — R is measurable.
Since there is a partition of X given by A; = {i}, and f is constant on each A; (thus f =Y, r;1a,, 7 = f(i)),
any function is a simple function. Thus

[ 10=3raa) =3 6.

We will denote the collection {f | f: X — R} by L?(X). More formally, there is a vector space isomorphism
of L?(X) and R"™ given by f «— (21, %2,...,2,), where z; = f(i). If f,g € L?(X) correspond to the vectors
x,y, respectively, then x; = f(4),y; = g(4), so

<y Y= f@e) = [ fodv
=1 =1
and

J2? =< 2,2 >= Y a2 = Y £(i)? = f 72 do.
=1 =1

Definition 4.1. a measurable function f:[-1,1] — R is called square integrable if f(z)? is integrable. We
denote the set of all square integrable functions by L?[~1,1], and the norm of f € L?[-1,1] by

= ( [ r2an) "

Proposition 4.2

The norm | | on L?[-1,1] satisfies |af| = |a||f|| for all a € R and all f € L?[-1,1]. Moreover, for all f,
[f] =0 with equality only if f =0 almost everywhere.
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(" Lemma 4.3 A
If f,g € L?[-1,1], then fg is integrable and

2 [ 1fgldu< | £12 + IgI?

Equality holds if, and only if, | f| = |g| almost everywhere.

- J
(" Theorem 4.4 )
L?[-1,1] is a vector space.
J
(" Theorem 4.5 (Holder Inequality) A
If f,g e L?[-1,1], then
[ 17gld<1£11g]
Equality holds if, and only if, there is a constant ¢ such that |f(z)| = c|g(«)| or |g(z)| = ¢|f(z)| almost
everywhere.
- J
(" Corollary 4.6 )
If f,g e L*[-1,1], then
|/ fodu] <1119
- J
(" Theorem 4.7 (Minkowski's Inequality) )
If f,g e L?[-1,1], then
|7 +gl <171+ 19l
- J
Definition 4.8. If f,g e L?[~1,1], then we define their inner product by
(f.9) = f fgdp.
(" Theorem 4.9 )

For any fi, fo,g € L?[-1,1] and any c;,cy € R, the inner product on L?[~1,1] satisfies the following
properties:

1. Commutativity: (f,g) = (g, f)-

2. Bilinearity: (c1f1 + cafa,9) = c1{f1,9) + c2{f2,9).

3. Positive definiteness: (g,g) = |g]? > 0 with equality if, and only if, g = 0 almost everywhere.
. J

4.1 Convergence in [?

Note that dist(f,g) =0 if, and only if, f = g almost everywhere, so if we wish to be pedantic, the metric space
L?[-1,1] is really just the equivalence classes of functions which are equal almost everywhere.

10
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Definition 4.10. If {f,,}2, is a sequence in L?[~1, 1], then it is said to converge to in measure of order 2 or
to converge in L?[~1,1] if there is a function f € L?[-1,1] such that

T | - ] 0.

(" Lemma 4.11 (Density of Bounded Functions) )
If we define
n flx)>n
fu(z) =4 f(2) —n< f(z)<n
-nf(x)<-n
then
lim | = fu] = 0.

Proposition 4.12 (Density of Step Functions and Continuous Functions)

The step functions are dense in L?[-1,1]. That is, for any € > 0 and for any f € L?[-1, 1], there is a step
function g :[-1,1] - R such that |f — g| < e. Likewise, there is a continuous function h:[-1,1] - R
such that |f — h|| < e. The function & may be chosen so h(-1) = h(1).

Definition 4.13. An inner product space (¥, |, |) which is complete (i.e. in which Cauchy sequences
converge) is called a Hilbert space.

Theorem 4.14
L?[-1,1] is a Hilbert space.

4.2 Real Hilbert Space

If 2 is a Hilbert spcae and {x,} is a sequence, then lim,,_, . =, =  means that for any € > 0, there is an
N > 0 such that |z - z,| < € whenever n > N. If {x,} is a sequence in J#, then Y, _; u,;, = s means that
the limit of partial sums s, = 3, _; un, converges to s. As expected, a series Yo _; u,, converges absolutely
provided that Y or_; [lw., | converges.

Proposition 4.15

If a series in a Hilbert space converges absolutely, then it converges.

We say x,y € S is perpendicular (but fr let’s just say orthogonal) if (z,y) = 0.

Theorem 4.16 (Pythagorean Theorem)

If x1,xs,...,x, are mutually orthogonal elements of a Hilbert space, then

2 n
= ],
i=1

n
2.
i=1

11
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Definition 4.17. If J7 is a Hilbert space, a bounded linear functional on /7 is a function L : 5 — R such
that for all v,w € # and c¢1,¢0 € R, L(c1v + cow) = ¢1 L(v) + coL(w) and such that there is a constant M
satisfying |L(v)| < M|v]| for all v e 7.

4 Proposition 4.18 (Cauchy-Schwartz Inequality) A
If (#,(,)) is a Hilbert space and v,w € #, then

(v, w)| < o] |w],

with equality if, and only if, v and w are multiples of a single vector.
. J

(" Lemma 4.19 A

Suppose 7 is a Hilbert space and L : 57 — R is a bounded linear functional which is not identically 0.
If ¥ = L7!(1), then there is a unique = € ¥ such that

= inf |v|.
] = inf o]

That is, there is a unique vector in ¥ closest to 0. Moreover, the vector x is orthogonal to every element
of L71(0), i.e. if v e # and L(v) = 0, then (z,v) = 0.

J

Theorem 4.20

If 7 is a Hilbert space and L : 7 — R is a bounded linear functional, then there is a unique x € 57
such that L(v) = (v, z).

4.3 Abstract Fourier Series

It is not generally possible to find vectors {u, }°>; in a Hilbert space # such that any v € 5 can be expressed
as a finite linear combination of the u,,’s. Instead we want to write v € 7 as an infinite series

oo
v = z a; Us;.
i=1

Definition 4.21. A family of vectors {u,} in a Hilbert space  is called orthonormal if for each n,
[un| =1 and (up,uy) =0 if 0+ m.

(" Theorem 4.22 A

If {un, }, is a finite orthonormal family of vectors in a Hilbert space .# and w € 7, then the minimum

value of
N
w — Z CpUnp,
n=1

for all choices of ¢, R occurs when ¢, = (w, u,).

- J

Definition 4.23. If {u, }> is an orthonormal family of vectors in a Hilbert space S, it is called complete
if every w € S can be written as an infinite series

o0
w = Z Cpln
n=0

12
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for some chloice of the numbers ¢, € R.

Definition 4.24. The n'" Fourier coefficient of w with respect to an orthonormal family {u,}%, is the
number (w,u,). The infinite series

M3

(w, up )un,

n=0

is called the Fourier series of w.

(" Theorem 4.25 (Bessel’s Inequality) A

If {u;}:2, is an orthonormal family of vectors in a Hilbert space ¢ and w is any element of %, then

— 2 2
> w, ui)* < .

=0
In particular, this series converges.

. J
4 Proposition 4.26 (Fourier series converge) A
If {un}so, is an orthonormal family of vectors in a Hilbert space % and w € ¢, then the Fourier series
Z(wa ui>ui

i=0
with respect to {u; }2, converges. If the orthonormal family is complete, then it converges to w. Morever,
it is unique in the sense that if Y72 c;u; = w, then ¢; = (w, u;).
. J
(" Theorem 4.27 (Parseval's Theorem) A
If {u,}o2, is an orthonormal family of vectors in a Hilbert space ¢ and w € S, then
- 2 2
2w, uwa)l* = Jw]
i=0
if, and only if, the Fourier series with respect to {u, }o>, converges to w, i.e.
Y (w, uihu; = w.
i=0
. J

5 Chapter 6

5.1 Pointwise convergence of classical Fourier Series

Definition 5.1. We define the inner product (, ) on L?[-7, 7], the vector space of square integrable functions
on [-m, 7] by

1 T
(f.9) = ;[ﬂ fgdp.

13
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Theorem 5.2

The family of functions

oo

7 = Lcosnx sin(nx
7 = { Jgscostu) sin(u)

n=1

is an orthonormal family on L?[-7,7].

Definition 5.3. If f is an element of L?[-7, 7], then its classical Fourier coefficients are
1
AO = ?/f(x)dﬂ’a
T
1
— / f(x)cos(nz) du
™
1
— / f(x)sin(nz) du
™

An

By,
for n > 0. The Fourier series of f is

Ag+ Y, Apcos(nz) + Y Bysin(nz).
n=1 n=1

I Remark 5.4. The orthonormal family .# is complete.

We will be particularly interested in the set which is the unit circle in R? and which we denote by T. Futhermore,
we consider C(T) as the set of continuous functions b : [-7, 7] — R which satisfy h(-m) = h(m).

(" Theorem 5.5 (Stone-Weierstrass) )

Suppose A c C(T) is an algebra (vector space with multiplicative closure) satisfying

1. the constant function 1 is in A, and

2. A separates points, i.e. for any distinct 6y and 61 in T, there is p € A such that p(6y) # p(67).

Then given any € >0 and any f € C(T), there is p € A such that |f(6) - p(0)| < € for all § € T.
- J

What we use from this theorem is that any f € C'(T) can be approximated by a ”trigonometric polyno-
mial”.

( Corollary 5.6 )

Suppose that g is a continuous function defined on [-, 7] such that g(-m) = g(7). If € > 0, then there
are N >0 and an, by, € R, 1 <n < N such that |g(z) — p(z)| < € for all z, where

N N
p(z) =ag+ Y, ancos(nz) + Y. by sin(nz).

n=1 n=1
. J
Theorem 5.7 (Fourier Series converge in L?) )
Suppose that f € L?[-m,7]. Then the Fourier series for f with respect to the orthonormal family .%#
converges to f in L?[-m,7]. In particular, the orthonormal family .# is complete.
J

14
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(" Theorem 5.8 (Carleson's theorem) A
Suppose f € L?[-m, 7] and
Ao+ Y. Ay cos(nz) + Y By sin(nz)

n=1 n=1

is its classical Fourier series. Then this series converges to f(x) for almost all values of z € [-7,7].

- J

(" Theorem 5.9 A

If f:[-m, m] » R is differentiable at x¢ € (-7, 7), then the Fourier series of f at xg,
A + Z A, cos(nxg) + Z B, sin(nxy),
n=1 n=1

converges to f(xg). IF the right and left derivatives of f exist at —m and 7 respectively, then the Fourier
series evaluated at either —m or 7 converges to W

. J

5.2 Using Fourier Coefficients/Series to Evaluate Infinite Series

5.3 Complex Hilbert Space

15
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