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Elliott Yoon 1 The Lebesgue Measure

1 The Lebesgue Measure

1.1 Desired Properties of the Lebesgue Measure

In our study of measure theory, we wish to find a function (or measure) that denotes size of sets, some
µ(E) ∈ [0,∞) for all sets E ∈ R. Let’s write down some intuitive axioms:

1. Normalization of Length. For an open interval E = (a, b), we want µ(E) = b − a.

2. Translation Invariance. First note that for some scalar c and a set A, the set A + c = {a + c ∣ a ∈ A}.
We want µ(E) = µ(E + c) for all c ∈ R.

3. Countable Additivity If Ei ⊂ R, i ∈ N, then µ (⋃∞i=1Ei) ≤ ∑
∞
i=1 µ(Ei). Moreover, if the Ei’s are

pairwise disjoint (i.e. Ei ∩Ej = ∅ for all i ≠ j), then µ (⋃∞i=1Ei) = ∑
∞
i=1 µ(Ei).

Unfortunately, no such measure satisfying these properties exists. Rats :/

Fact: It’s impossible to define µ satisfying (1)-(3) and defined for all (bounded) E ⊂ R.

1.2 Null Sets

When working with Riemann integration, there’s an often repeated motto that ”finite sets don’t matter”. In
the field of measure theory, we want to generalize this statement to be that sets of ”generalized length 0”,
or measure zero, don’t matter. In fact, we can explore these sets of measure zero without even needing to
properly define the Lebesgue measure (though, of course, we will).

In our search for a measure of satisfactory compatibility with the previously proposed “measure axioms”
of sorts, we will describe the notion of the outer measure, which is defined for all bounded sets of real
numbers, satisfies Properties (1) and (2), and satifies the inequality of Property (3), called subadditivity. The
outer measure fails to be additive (the equality portion of (3)) for certain disjoint sets, so we’ll restrict its
definition to a large collection of nice (measurable) sets to which additivity holds. What’s a measurable set?
Let’s find out!

Before jumping into some definitions, let’s first formalize a notion of length of intervals. We define the
length of an open interval I = (a, b) to be len(I) = b − a. Great! We’re all set now.

Definition 1.1 (Lebesgue Outer Measure). Suppose A ⊂ R is bounded and U (A) is the set of all countable
coverings of A by open intervals. We define the Lebesgue Outer Measure, µ∗(A), by

µ∗(A) = inf
{Un}∈U (A)

{
n

∑
i=1

len(Un)} ,

where the infimum is taken over the set of all countable coverings of A by open intervals.

Remark 1.2. It seems silly, but just to be safe, let’s note that inf{∞} =∞.

Example 1.3

• Let A = (a, b). Then µ∗(A) = b − a. (Clearly, A ⊂ (a, b), so µ∗(A) ≤ b − a. Why does µ∗(A) ≥ b − a
hold?).

• Let A = ∅. Then ∅ ⊂ (0, ϵ) for all ϵ > 0, so µ∗(A) ≤ infϵ len((0, ϵ)) = infϵ ϵ = 0.

• Let A = {c},wherec ∈ R. Then A ⊂ (c − ϵ, c + ϵ), so µ∗(A) = 0.

• Let A = Q. Then µ∗(A) = 0. (Why?)

1



Elliott Yoon 1 The Lebesgue Measure

Proposition 1.4

The outer measure of a closed interval is the same as the outer measure of its correspondent open
interval. In other words, if A = [a, b], then µ∗(A) = b − a.

Proof. We can encapsulate A inside an open interval: A ⊂ (a − ϵ, b + ϵ), which has length b − a + 2ϵ for all ϵ.
Thus µ∗(A) ≤ b − a. Now, note that if {Un} is a cover of A by open intervals, then compactness gives a finite
subcover A ⊂ ⋃n

i=1Ui. Thus, it suffices to show that for any finite cover {Ui}
n
i=1, ∑

n
i=1 len(Ui) ≥ b− a. We’ll do

so by induction:

The n = 1 case is trivial. Now, suppose that for coverings of n − 1 intervals, the (n − 1)-sum of lengths of
the covering open intervals is greater than or equal to b − a. Let A ⊂ ⋃n

i=1Ui. Since A is connected, then if
A ∩Ui for all 1 ≤ i ≤ n, there are i ≠ j such that Ui ∩Uj ≠ ∅. Reordering without loss of generality, assume
i = 1 and j = 2, and let V = U1 ∪U2 (which is also an open interval). Then A ⊂ V ∪⋃n

i=3, which is a union of
n − 1 open sets, so we’re done by the induction hypothesis.

Definition 1.5 (Null Sets). A set A ⊂ R is said to be a null set provided that µ∗(A) = 0.

Remark 1.6. Null sets can also defined without the machinery of the Lebesgue outer measure as follows: If for
all ϵ > 0, there exists a collection of open intervals {Ui}

∞

i=1 such that

∞

∑
i=1

len(Ui) < ϵ and A ⊂
∞

⋃
i=1

Ui.

then we say A is a null set.

Example 1.7

• ∅ is a null set.

• Finite sets are null sets.

• The countable collection of null sets E = ⋃∞i=1Ei ⊂ R is a null set.

• Countable sets are null sets.

• The Cantor 1/3-set is a null set.

The punchline of the tail end of the previous list of null-set examples is that all null sets are measurable, and
for whatever reason, the existence of uncountable null sets implies that describing all measurable sets and
functions is, well... complicated.

1.3 σ-algebras

Remark 1.8. Usually, the existence of σ in the nomenclature of an object is to denote that countable operations
are allowed.

We’re going to now delve into the wonderful mathematical structures called σ-algebras. It turns out that
these will be imperative to the study of measurable sets. In fact, as motivation, we shall see that the following
holds:

The collection of measurable sets has a structure of a σ-algebra.
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First, let’s recess quickly for a brief discussion of cardinality: Let X be a set, and write the power set of
X as P(X) = {A ⊂ X}. If X is finite and card(X) = l, then card(P(X)) = 2l. Instead, if X is countably
infinite, then card(P(X)) is uncountable. (To see why, use a diagonalization argument.)

Definition 1.9 (σ-algebra on X). Suppose X is a set and A is a collection of subsets of X, i.e. A ⊂P(X).
A is a sigma algebra of subsets of X if

1. ∅,X ∈ A,

2. A is closed under complements, and

3. A is closed under countable unions, i.e. if Ei ⊂ A for i ∈ N, then ⋃∞i=1Ei ∈ A.

Remark 1.10. It’s often written as fourth necessary condition that A be closed under countable intersections,
but if Ei ∈ A for i ∈ N, then

∞

⋂
i=1

= (
∞

⋃
i=1

EC
i )

C

∈ A,

so closure under intersection follows immediately from (2) and (3). Moreover, if U,V ∈ A, then U∖V = U∩V C
∈ A.

Example 1.11 (Degenerate σ−algebras)

1. P(X),

2. {∅,X} (called the trivial σ-algebra)

Example 1.12 (The Null-Conull σ−algebra)

A more fun (and illuminating) example of a σ-algebra is defined as follows: the set A ⊂P(R) such that
E ∈ A if either E is a null set or E is a null set.

Definition 1.13. Let F ⊂P(X). The σ-algebra generated by F , written σ(F ), is the smallest σ−algebra
containing F .

Remark 1.14. Baked into the definition of generated σ-algebras is the guarantee that a σ−algebra containing
F exists int he first place! (Proven in homework.)

Example 1.15 (The Borel σ-algebra)

Take F ⊂P(R) to be all open subsets of the real line. B ⊂ σ(F ), the σ−algebra generated by open
sets, is called the Borel σ-algebra.

Remark 1.16. Thinking about basic topology of the real line, closure under complements, unions, and
intersections means that there are a lot of interesting structures contained in the Borel σ−algebra. A few of the
more interesting ones are as follows:

• Countable unions of closed sets, and

• Countable intersections of open sets.

Indeed,

B = σ(open sets) = σ(closed sets) = σ(open intervals) = σ(open intervals of the form (a,∞)).
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Theorem 1.17 (yo this bih kinda slaps)

The σ−algebra of Lebesgue-measurable sets is generated by (1) Borel sets and (2) Null sets.

Zoo wee mama! We don’t have sufficient machinery to prove this right now, but it should serve as sufficient
motivation for what’s to come.

1.4 Properties of the Outer Measure µ∗

So far, we’ve defined the outer measure µ∗ (which isn’t a true measure) and checked that µ∗([a, b]) = b − a.
At the very beginning, we defined some desired properties of this theoretical notion of a measure, and we’ll
now explore which of these properties the outer measure has.

Proposition 1.18 (Monotonicity)

If A ⊂ B ⊂ R, then µ∗(A) ≤ µ∗(B).

Proof. Since A ⊂ B, every countable cover of B by open intervals {Un} ∈ U (B) also covers A. Thus

inf
{Un}∈U (A)

∞

∑
i=1

len(Un) ≤ inf
{Un}∈U (B)

∞

∑
i=1

len(Un),

so µ∗(A) ≤ µ∗(B).

We’d previously stated that µ∗((a, b)) = b − a. Let’s finish the proof from before:

Proof. Obviously, µ∗((a, b)) ≤ b − a = len(a, b) since (a, b) ⊂ (a, b). Moreover, note that [a + ϵ, b − ϵ] ⊂ (a, b)
for all sufficiently small ϵ > 0. So µ∗((a, b)) ≥ µ∗([a + ϵ, b − ϵ] = b − a + 2ϵ.

Corollary 1.19

µ∗(R) = +∞ and µ∗((a,∞)) = +∞.

Proof. (a,m) ⊂ (a,∞) for all m > a. Use monotonicity.

Theorem 1.20 (Translation invariance)

For all subsets E ⊂ R and scalars c ∈ R

µ∗(E) = µ∗(E + c).

Proof. Homework (use intervals).

Theorem 1.21 (Countable subadditivity)

Given Ei ⊂ R, µ∗ (⋃∞i=1Ei) ≤ ∑
∞
i=1 µ

∗(Ei).
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Proof. Fix ϵ > 0. For each i, pick a cover {U i
n} of Ei by open intervals with

∞

∑
n=1

len (U i
n) −

ϵ

2i
≤ µ∗(Ei) ≤

∞

∑
n=1

len(U i
n).

Let E = ⋃∞i=1Ei. Now, the set {U i
n ∣ i, n ∈ N} is a cover of E by countably many open intervals, and

µ∗(E) ≤
∞

∑
i=1

(
∞

∑
n=1

len(U i
n)) ≤∑

i

(µ∗(Ei) +
ϵ

2i
) = (

∞

∑
i=1

µ∗(Ei)) + ϵ.

Remark 1.22. Unlike our desired measure properties, we might not have equality even if all our subsets are
pairwise disjoint! (this is really sad)

In fact, there exists A,B ⊂ [0,1] such that

1. A ∪B = [0,1],

2. A ∩B = ∅, but

3. µ∗(A) + µ∗(B) > 1.

This defect, of sorts, is why ”outer measure” is not a measure.

1.5 A non-measurable set

To concretely illustrate the shortfall of the Lebesgue outer measure, we’ll construct a non-measurable
set.

Theorem 1.23

There is no λ ∶P(R)→ [0,∞) satisfying

1. λ is translation invariant,

2. monotonicity holds,

3. λ([0,1]) = 1 (this can be any non-zero, noninfinite value), and

4. countable additivity holds

Remark 1.24. Note that countable additivity in (4) can be split into countable sub-additivity (i.e.
λ (⋃

∞

i=1Ei) ≤ ∑
∞

i=1 λ(Ei)), and the equality statement:

Ei ∩Ej = ∅ ∀i ≠ j ⇒ λ(
∞

⋃
i=1

Ei) =
∞

∑
i=1

λ(Ei). (⋆)

Moreover, Lebesgue Outer Measure µ∗ satisfies (1)-(3) and countable subadditivity (but not the equality
statement of (4)).

As hinted before, the obvious punchline of Theorem 1.23 is that we will need to restrict the real line R to a
class of sets we ”measure”. To prove this theorem, we will ”build” a non-measurable set.

First, let’s define the following equivalence relation: Given x, y ∈ R, say x y if x − y ∈ Q. (Feel free to
check this yourself if the omission of the proof will keep you up at night.) Then, we’ll define the following
equivalence class:

Ex = {y ∈ R ∣ y x}.
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Note that x + k
107

x for all x ∈ Z, so Ex ∩ [0,1] ≠ ∅. For each equivalence class, we will pick a unique
representative Zα ∈ [0,1], where α ∈∆, an uncountable index set.

Definition 1.25 (The ”Bad Set”). We will define the following set, and later show that it is unmeasurable:

B = {Zn ∣ α ∈∆}.

Remark 1.26. Note that

1. If y ∈ R, there exists an index α and rational q ∈ Q such that y = zα + q,

⋃
q∈Q

B + q = R.

2. If (B + q) ∩ (B + p) ≠ ∅ for p, q ∈ Q, then p = q. (This is not entirely obvious, so here’s a quick proof: Take
y ∈ (B + q)∩ (B + p). Then there are α,β such that y = Zα + q, y = Zβ + p. Thus Zα = Zβ + p− q, so Zα Zβ .
Since the representatives in B are unique, Zα = Zβ , and thus p = q.

We can now prove Theorem 1.23:

Proof. Note that B ⊂ [0,1]. So, λ(B) ≤ λ([0,1]) ≤ 1. The proof of the theorem is immediate from the
following two propositions:

1. If λ satisfies (1)-(3) and countable subadditivity, then λ(B) > 0. Proof: Enumerate Q = {qi} and write
Bi = B + qi for each i ∈ N. Since R = ⋃∞i=1Bi,

1 ≤ λ(R) ≤
∞

∑
i=1

λ(Bi) ≤
∞

∑
i=1

λ(B),

so λ(B) > 0.

2. If λ satisfies (1)-(4), then λ([0, 2]) = +∞. Proof: Enumerate Q∩ [0, 1] = {qj}, and set Bj = B + qj . Since
B ⊂ [0,1] and 0 ≤ qj ≤ 1, translation is limited and thus ⋃∞j=1Bj ⊂ [0,2] so

λ([0,2]) ≥ λ(
∞

⋃
j=1

Bj) =
∞

∑
j=1

λ(Bj) =
∞

∑
j=1

λ(B) = +∞.

Remark 1.27. Observe the following:

1. Our bad set B is non-measurable. If µ is our Lebesgue measure, then µ(B) is undefined.

2. µ∗ satisfies (1)-(3) and countable subadditivity, so 0 ≤ µ∗(B) < 1.

3. Claim: The set N = [0,1] ∖ B is also non-measurable and µ∗(N) = 1. (Think about we’re building
measurable sets up to have structure similar to σ-algebras.) So [0,1] = B ∪N , B ∩N = ∅, and µ∗(B) +
µ∗(N) > 1 = µ∗(B ∪N).

Proposition 1.28 (Outer Regularity)

If A ⊂ R is a set with finite outer measure, then for any ϵ > 0, there exists an open set v with

1. A ⊂ V , and

2. µ∗(A) ≤ µ∗(V ) ≤ µ∗(A) + ϵ.

In particular, µ∗(A) = inf{µ∗(V ) ∣ A ⊂ V,V open }.
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Proof. If U = {Un} is a cover by countably many open intervals with ∑
∞
n=1 len Un ≤ µ∗(A) + ϵ. Take

V = ⋃∞n=1Un. Then A ⊂ V and µ∗(V ) ≤ ∑
∞
n=1 µ

∗(Un) = ∑
∞
n=1 len Un ≤ µ

∗(A) + ϵ.

Zooming out a bit to gain some perspective, we can see that we’ve found sets A,B such that

µ∗(A) + µ∗(B) > µ∗(A ∪B).

In particular, we found A,B, where µ∗(A ∩ [0,1]) + µ∗(AC ∩ [0,1]) > 1. We will soon say that A ⊂ R is
measurable if for any E ⊂ R,

µ∗(A ∩E) + µ∗(AC
∩E) = µ∗(E).

1.6 Measurable Sets

Definition 1.29. Let M0 ⊂P(R). Denote all sets A with the following property: for any X ⊂ R,

µ∗(A ∩X) + µ∗(AC
∩X) = µ∗(X). (⋆)

For a set A ∈M0, define the Lebesgue measure of A to be µ(A) = µ∗(A).

Proposition 1.30

Let A ⊂ R.

1. A ∈M0 (is measurable) if, and only if, AC is measurable.

2. A ∈M0 if, and only if, for all X ⊂ R, µ∗(A ∩X) + µ∗(AC ∩X) ≤ µ∗(X).

Proof. (obvious from definitions)

1.7 M , the σ−algebra generated by Borel sets and Null sets

Surprise! M0 is a σ−algebra, M =M0, and µ defined on M =M0 has the desired properties of a measure
outlined in the beginning of the chapter.

Definition 1.31. M0 (which we’ll later show to be exactly M) is the σ−algebra of Lebesgue measurable
sets.

Recall that µ∗(A ∩X) + µ∗(AC ∩X) ≥ µ∗(X). To show M0 is Lebesgue measurable, it therefore suffices
to check (⋆) for sets with bounded outer measure. By countable subadditivity, it further suffices to check for
only bounded sets; in fact, it’s enough to check (⋆) when X is an open set or interval. (Shown in week 2
problem set).

Proposition 1.32

IF A ⊂M0 is bounded (or even µ∗(A) <∞), then there exists a Borel set B and a null set N = AC ∩B
such that A = B ∖N .

Proof. For ϵ > 0, there exists an open set Vϵ with

• A ⊂ Vϵ, and

• µ∗(A) ≤ µ∗(Vϵ) ≤ µ
∗(A) + ϵ.
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Set B = ⋂∞k=1 V1/k. Then

• B is Borel,

• A ⊂ B ⊂ V1/k for all k, and

• µ∗(A) ≤ µ∗(B) ≤ µ∗(A) + 1
k
for all k.

So µ∗(A) = µ∗(B). Let N = B ∖A, so µ∗(A ∩B) + µ∗(AC ∩B) = µ∗(B). Since µ∗(A) = µ∗(B) = µ∗(A ∩B),
we have µ∗(N) = µ∗(AC ∩B) = 0.

Proposition 1.33

A ⊂ R is null if, and only if, A ∈M0 and µ(A) = 0.

Proof. If A ∈ M0 and µ(A) = 0, then µ∗(A) = 0, so A is null. On the other hand, suppose A is null, so
µ∗(A) = 0. Fix X ⊂ R. Then monotonicity gives

µ∗(A ∩X) + µ∗(AC
∩X) ≤ µ∗(A) + µ∗(X) = µ∗(X).

Proposition 1.34

If A,B ∈M0, then A ∪B and A ∩B ∈M0.

Remark 1.35. Since A ∩B = (AC
∪BC

)
C
, it suffices to show A ∪B ∈M0.

Proof. Fix A,B ∈M0 and pick any X ⊂ R. Note that

1. (A ∪B) ∩X = (B ∩X) ∪ (A ∩BC ∩X), ad

2. (A ∪B)C ∩X = AC ∩BC ∩X.

So

µ∗((A ∪B) ∩X) + µ∗((A ∪B)C ∩X) ≤ µ∗(B ∩X) + µ∗(A ∩BC
∩X) + µ∗(AC

∩BC
∩X)

= µ∗(B ∩X) + µ∗(BC
∩X)

= µ∗(X).

Remark 1.36. If Ai are in M0, so are ⋃
n
i=1Ai and ⋂

n
i=1Ai. (To prove, induct on n)

Proposition 1.37

All intervals are in M0.
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Remark 1.38. Using complements and finite intersections/unions, we can build any interval from intervals of
the form (−∞, a], [b,∞).

Example 1.39

(1,7] = (−∞,7] ∩ ((−∞,1])
C
.

This finally leads to the following claim: If U is an interval, set U− = (−∞, b) ∩U and U+ = [b,∞) ∩U . Then
µ∗(U) = len U , µ∗(U−) = len U−, and µ∗(U+) = len U+. So by additivity of length,

µ∗(U) = len U = µ∗(U−) + µ∗(U+).

1.8 TA recitation 1

Definition of outer measure can take open intervals disjoint (uses lemma: any open U ⊂ R is countable union
of disjoint intervals)

1.9 An equivalence of σ-algebras

An equivalence that we’ll end up using naively, going forward is that the σ−algebra generated by Borel sets
and Null sets is exactly the same set as the σ−algebra of measurable sets. In other words, M =M0.

Proposition 1.40

Intervals are in M0.

Proof. By the magic of complements, countable unions, and the like, it suffices to show that [b,∞) ∈M0 (and
(−∞, a] ∈M0). Since the argument to prove either is the same, we’ll proceed by showing [b,∞) ∈M0. Let
A = [a,∞),X ⊂ R. Fix ϵ > 0 and countably many open intervals Nn such that

X ⊂
∞

⋃
n=1

Un and µ∗(X) ≤
∞

∑
n=1

len Un ≤ µ
∗
(X) + ϵ.

Set X+ = A ∩X, X− = AC ∩X, U+n = Un ∩X, U−n = U
C
n ∩X. Note that U−n is an open interval and U+n is a

half-open interval, so len U+n + len U−n = len Un. So

µ∗(X+) ≤
∞

∑
n=1

µ∗(U+n) =
∞

∑
n=1

len U+n

µ∗(X−) ≤
∞

∑
n=1

µ∗(U−n) =
∞

∑
n=1

len U−n ,

thus

µ+(A ∩X) + µ∗(AC
∩X) = µ∗(X+) + µ∗(X−)

≤
∞

∑
n=1

len U+n + len U−n

= µ∗(X) + ϵ.
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Proposition 1.41 (Finite additivity, of sorts)

Let A ∈M0. Fix B,X ⊂ R. Suppose that A ∩B = ∅ Then µ∗(A ∩X) + µ∗(B ∩X) = µ∗((A ∪B) ∩X).
In particular, if A,B ∈M0, then µ(A) + µ(B) = µ(A ∪B).

Proof. Notice that
A ∩ ((A ∪B) ∩X) = A ∩X,

and because A ∩B = ∅,
AC
∩ ((A ∪B) ∩X) = B ∩X.

Thus,

µ∗((A ∪B) ∩X) = µ∗(A ∩ ((A ∪B) ∩X)) + µ∗(AC
∩ ((A ∪B) ∩X)

= µ∗(A ∩X) + µ∗(B ∩X).

Corollary 1.42

Given countably many Ei ∈M0 such that Ei ∩Ej = ∅ for all i ≠ j and X ⊂ R,

µ∗ (
n

⋃
i=1

Ei ∩X) =
n

∑
i=1

µ∗(Ei ∩X).

Great, so we now have everything we need to proceced with the main proof of the section!

Theorem 1.43

M0 is a σ-algebra.

Proof. By definition, if A ⊂M0, then AC ⊂M0. Moreover, R,∅ ∈M0 since µ∗(R ∩X) + µ∗(∅ ∩X) = µ∗(X).
With the first two conditions out of the way, we just need to show that M0 closed under countable unions.
Take countably many Ai ∈M0, and let En = ⋃

n
i=1Ai. Set B1 = A1, and Bn+1 = An+1 ∖En. (This constructs

pairwise disjoint sets from {Ei}.) Then En+1 = En ∪Bn+1 and En ∩Bn+1 = ∅. Both En,Bn ∈M0. If i < j
and Bi ⊂ Ei ⊂ Ej−1, then Bi ∩Bj = ∅.

Now, let E = ⋃∞i=1Ai = ⋃
∞
i=1Bi = ⋃

∞
i=1Ei. Note that EC = ⋂

∞
i=1B

C
i ⊂ ⋂

n
i=1B

C
i = (⋃

n
i=1Bi)

C
= EC

n . Fix any
X ⊂ R. Then for any n, Proposition 1.41 and En ∈M0 gives

(
n

∑
i=1

µ∗(Bi ∩X)) + µ
∗
(EC

∩X) = µ∗(En ∩X) + µ
∗
(EC

∩X)

≤ µ∗(En ∩X) + µ
∗
(EC

n ∩X)

= µ∗(X).

So

(
∞

∑
i=1

µ∗(Bi ∩X)) + µ
∗
(EC

∩X) ≤ µ∗(X)
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and thus

µ∗(E ∩X) + µ∗(EC
∩X) = µ∗ (

∞

⋃
i=1

Bi ∩X) + µ
∗
(EC

∩X)

≤ (
∞

∑
i=1

µ∗(Bi ∩X)) + µ
∗
(EC ∩X)

≤ µ∗(X).

So E = ⋃iAi = ⋃iBi ∈M0.

Corollary 1.44

M0 =M .

Proof. First note that both are σ−algebras.

1. Since null sets are in M0 and open intervals—and all open sets—are in M0, so M ⊂M0.

2. Fix A ∈M0. Given n ∈ Z, set A[n] = [n,n + 1] ∩A. Since [n,n + 1],An ∈M0, An ∈M . (We’ve showed
before that bounded measurable sets are in M .) In particular, there is a Borel set Bn and Null set Nn

such that An = Bn ∖Nn. So A = ⋃n∈ZAn ∈M . So M0 ⊂M .

It might be helpful to take a step back and list some notes that might be helpful going forward:

• M (=M0) is the σ−algebra of Lebesgue measurable sets.

• A ⊂ R is measurable if A ∈M .

• M is generated by Borel sets and null sets.

• In particular, the following are measurable

– Intervals,

– Open sets,

– Closed sets (like the Cantor middle 1/3 set!),

– Null sets (and thus countable sets).

• Define the Lebesgue measure µ ∶M → [0,∞), µ(A) = µ∗(A). If A,B ∈M , then

µ(A ∩B) + µ(AC
∩B) = µ(B).

11
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Example 1.45

Suppose Ai,Bi ∈M , A1 ⊂ A2 ⊂ A3 ⊂⋯, and B1 ⊃ B2 ⊃ B3 ⊃⋯. Set A = ⋃
∞
i=1Ai and B = ⋂∞i=1Bi.

1. Show µ(Ai)→ µ(A).

• Set Ej = Aj ∖Aj−1. Then Ej are pairwise disjoint and Ej ∈M , A = ⋃∞j=1Ej . So

µ(An) ≤ µ(A) = µ(
∞

⋃
i=1

Ei) <
∞

∑
i=1

µ(Ei) = lim
n→∞

n

∑
i=1

µ(Ei) = lim
n→∞

µ(An).

Note that the last equality holds because the Ei’s are measurable.

2. If µ(B1) <∞, show µ(Bi)→ µ(B).

• Set Fj = B1 ∖Bj , so F1 ⊂ F2 ⊂⋯. Then

∞

⋃
j=1

Fj = B1 ∖B = B
C (inside B1).

By bullet (1) above,
µ(Fi)→ µ(B1 ∖B) = µ(B1) − µ(B).

Also,
µ(Fi) = µ(B1 ∖Bi) = µ(B1) − µ(Bi),

so (µ(B1) − µ(Bi))→ µ(B1) − µ(B).

3. If µ(A) <∞, show µ(A ∖An) = 0.

• Set Gn = A ∖An. Since G1 ⊃ G2 ⊃⋯, notice ⋂
∞
n=1Gn = ∅. By bullet (2),

µ(A ∖An) = µ(Gn)→ µ(∅) = 0.

Remark 1.46. In (2) of the previous example, the assumption that µ(B1 <∞ is imperative. To see why, set
Bn = [n,∞). Notice that

1. ⋂
∞

n=1 = ∅, and

2. µ(Bn) =∞, but µ(B) = 0.

Clearly, this is an issue.

Remark 1.47. Similarly, in (3) of the previous example, the assumption that µ(A) <∞ is also necessary. Set
An = [−n,n]. Then the union over all n is ⋃

∞

n=1An = R = A, but

µ(A ∖An) = µ((−∞,−n) ∪ (n,∞)) =∞→ 0.

With the results from Example 1.45 under our belt, we can now prove that the Lebesgue Measure actually
exists, and is not instead some wacky figment of our horribly rotten mathematical brains:

12
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Theorem 1.48 (Existence of the Lebesgue Measure)

Specifically, there exists a measure (function) µ ∶M → [0,∞) satisfying:

1. µ((a, b)) = b − a,

2. translation invariance, and

3. countable additivity.

Moveover, from (1)-(3), we get the following for free:

• Monotonicity,

• the null sets are measurable, and

• outer regularity: If A ∈M , then µ(A) = inf{µ(U) ∣ U open, U ⊃ A}.

Proof. We’ve pretty much proved everything here except countable additivity, so we’ll say that it suffices to
show (3) holds.

If A = ⋃∞i=1Ai, then µ(A) ≤ ∑
∞
i=1 µ(Ai) by subadditivity of outer measure. Moreover, if Aj pairwise disjoint,

then µ (⋃∞i=1Ai) ≥ µ (⋃
n
i=1Ai) = ∑

n
i=1 µ(Ai). So ∑

∞
i=1 µ(Ai) ≤ µ (⋃

∞
i=1Ai). And thus µ (⋃∞i=1Ai) = ∑

∞
i=1 µ(Ai)

if Aj are pairwise disjoint.

Remark 1.49. Note that R conventionally has measure µ(R) = +∞. But sometimes we want to restrict to a
total space of finite measure. Arbitrarily, fix I = [0,1] (any other bounded closed interval will also do!). Then
we write

M(I) = {A ∩ I ∣ A ∈M} ⊂M.

If we do this, then we’re restricting µ to M(I), so 0 ≤ µ(A) ≤ 1 for all A ∈M(I). It’s important to be aware of
context, as one might be working in either R or I, and it’s often up to the reader to figure out the total space
when taking complements of sets, and the like.

Example 1.50

Say A ∈M(I). Then AC = I ∖A, and we can do things like

µ(AC
) = µ(I) − µ(A) = 1 − µ(A).

Proposition 1.51 (Inner Regularity)

Suppose that A ∈M(I). Then for any ϵ > 0, there exists a closed set C ⊂ A where

µ(A) − ϵ ≤ µ(C) ≤ µ(A).

In particular,
µ(A) = sup{µ(C) ∣ C ⊂ A is closed}.

Proof. Pick an open U (in either R or I) with Ac ⊂ U . Then AC = I ∖A and µ(U) ≤ µ(Ac) + ϵ. Set C = U c

(= I ∖U). Then C is closed, C = U c ⊂ (Ac)c = A, and

µ(C) = µ(U c
) = 1 − µ(U) ≥ 1 − (µ(Ac

) + ϵ) ≥ 1 − µ(Ac
) − ϵ = µ(A) − ϵ.

13
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1.10 A slightly upsetting freak of nature

Let’s restrict our perspective to that of I = [0,1] and say we have a set A ⊂ I, with µ(A) = 2/3. Now, if we
pick a point in A and examine a small neighborhood of this point, what should we expect to be the density
(in the non-mathematical sense) of points of A in this neighborhood? If you have more than two brain cells,
you’d probably guess 2/3, 66%, whatever. Unfortunately, Lebesgue definitely only had one.

Theorem 1.52

Define

fA,X(δ) =
µ((x − δ, x + δ) ∩A)

µ(x − δ, x + δ)
=
((x − δ, x + δ) ∩A)

2δ
.

For any typical (whatever that means...) x ∈ A, fX,A(δ)→ 1 as δ → 0.

Proof. Our professor didn’t prove this for us, so I won’t for you. Because fuck you, that’s why. (Did I mention
how mad this theorem makes me?)

Theorem 1.53

Let A be measurable with 0 < µ(A) < ∞. Given 0 < p < 1, there is an open interval U such that
µ(U ∩A) ≥ p ⋅ µ(U).

Proof. Yea, this is a proof by contradiction. Enjoy reading through this joke of a proof that’s less illuminating
than a snuffed out candle. That being said, fix 0 < p < 1, set 0 < ϵ = (1 − p)µ(A) <∞, and pick disjoint open
intervals {Un} such that

A ⊂
∞

⋃
i=1

Ui and µ(
∞

⋃
i=1

Ui) ≤ µ(A) + ϵ.

Suppose µ(Un ∩A) < p ⋅ µ(Un) for all n. Then

µ(A) = µ(
∞

⋃
n=1

A ∩Un) =
∞

∑
n=1

µ(A ∩Un) <
∞

∑
n=1

p ⋅ µ(Un) ≤ p(µ(A) + ϵ).

Then (1 − p)µ(A) < p ⋅ ϵ. ϵ is stupidly defined, so 1 < p. Oh wait—that’s bad, isn’t it? Whatever.

14
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2 Measurable Functions

Now that we’ve properly formulated the Lebesgue Measure, it’s time to do stuff with it—integrate, specifically.
Whereas Riemann integration uses step functions as its auxiliary approximations, Lebesgue integration will
utilize a much broader class of functions called simple functions.

2.1 Simple Functions

Before defining simple functions, we need a few elementary pieces of machinery:

Definition 2.1. Given A ⊂ R, the characteristic function of A is defined by

XA(x) =

⎧⎪⎪
⎨
⎪⎪⎩

1 x ∈ A

0 x /∈ A

Definition 2.2. A finite measurable partition of I = [0,1] is a collection {Ai}
l
i=1] such that

1. ⋃l
i=1Ai = I,

2. {Ai} are pairwise disjoint, and

3. Ai ∈M (is measurable).

For convenience, we’ll allow some Ai = ∅.

Now that we have the Characteristic function formulated and the notion of a finite measurable partition,
we’re ready to define the class of simple functions:

15
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Definition 2.3. A function δ ∶ [0,1]→ R is simple if the following are satisfied:

1. There exists a measurable partition {Ai}∣
l
i=1 of [0,1], and

2. ri ∈ R for 1 ≤ i ≤ l such that f = ∑
l
i=1 riXAi .

While your mathematical spidey senses tingle, you might be tempted to define an integral over simple
functions as your intuition suggests—and for once, you would be correct. If f = ∑

l
i=1 riXAi is simple, we can

define

∫

1

0
f = ∫

I
f = ∫ f dµ ∶=

l

∑
i=1

riµ(Ai),

where the dµ is notational sugar to remind us that we’re working with the Lebesgue measure.

Remark 2.4. If f = ∑
l
i=1 riXAi is simple, f−1((a,∞)) = ⋃ri>a

Ai. So f−1((a,∞)) is measurable for all a.

Remark 2.5. Simple functions form a vector space; i.e. if f = ∑
l
i=1 riXAi , g = ∑

m
j=1 sjXBj are simple:

• 0 is simple,

• cf is simple for all c ∈ R, and
• f + g is simple.

Proof. Everything is trivial except for closure under addition; write Cij = Ai ∩Bj . Then {Cij}
j∈{1,...,m}

i∈{1,...,l}
is a

finite measurable partition of I = [0,1]. So

(f + g) =
l

∑
i=1

m

∑
j=1

(ri + sj)XCij .

Lemma 2.6 (Properties of integration on simple functions)

Let f, g ∶ I → R be simple functions. Then

1. Linearity: ∫ c1f + c2g dµ = c1 ∫ f dµ + c2 ∫ g dµ,

2. If f ≤ g, then ∫ f dµ ≤ ∫ g dµ,

3. ∣f ∣ is simple and ∣∫ f dµ∣ ≤ ∫ ∣f ∣dµ.

Proof. Write f = ∑
l
i=1 riXAi , g = ∑

m
j=1 sjXBj , c1f + c2g = ∑i,j(c1ri + c2g2)XCij , where Cij = Ai ∩Bj . Then

1. Notice that ∑j µ(Cij = µ(Ai) and vice versa, so

∫ c1f + c2g dµ =∑
i,j

(c1ri + c2sj)µ(Cij)

=∑
i

⎛

⎝
∑
j

c1ri µ(Cij)
⎞

⎠
+∑

j

(∑
i

c2sjµ(Cij))

=∑
i

c1ri
⎛

⎝
∑
j

µ(Cij)
⎞

⎠
+∑

j

c2sj (∑
i

µ(Cij))

= c1∑
i

riµ(Ai) + c2∑
j

sjµ(Bj).
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2. If f ≤ g, then g − f ≥ 0, so ∫ (g − f)dµ ≥ 0. By (1), ∫ g − ∫ f ≥ 0.

3. Notice that ∣f ∣ = ∑
l
i=1 ∣riXAi . By the triangle inequality,

∣f dµ∣ = ∣
l

∑
i=1

riµ(Ai)∣ ≤
l

∑
i=1

∣ri∣µ(Ai) = ∫ ∣f ∣dµ.

2.2 The simple to measurable pipeline goes brazy

An observation of notation: we will notate the extended real line as R = R ∪ {∞} ∪ {−∞}.

Proposition 2.7

Let X ⊂ R (or [0,1], it doesn’t matter) and f ∶X → R. The following are equivalent for all x ∈ R:

1. f−1([−∞, a]) ∈M ,

2. f−1([−∞, a)) ∈M ,

3. f−1([a,∞]) ∈M ,

4. f−1((a,∞]) ∈M .

Proof. Assume statement (1) holds for all a. Note that [−∞, a) = ⋃n[−∞, a − 1
n
], so

f−1([−∞, a]) =⋃
n

f−1([−∞, a −
1

n
]) ∈M.

Thus f−1([−∞, a]) ∈M . Now, assume (2) holds. Note that f−1(XC) = (f−1(x))C , so

f−1([a,∞]) = f−1([−∞, a)C) = f−1([−∞, a))C .

We’ve thus shown that (1) implies (2), which implies (3). The other two implications are identical arguments.

Definition 2.8. A function f ∶X → R is measurable if any of the conditions in Proposition 2.7 hold.

Remark 2.9. f ∶X → R is measurable if f−1((a,∞)) is a measurable set for all a ∈ R.

Proposition 2.10

Let f, g ∶ [a, b]→ R be functions. Let A ⊂ [a, b] be a null set.

1. Suppose f(x) = 0 for all x ∈ A. Then f is measurable.

2. If f measurable and f(x) = g(x) for all x /∈ A, then g is measurable.

Proof. Fix a ∈ R. If a < 0, then f−1([−∞, a]) ⊂ A. Since A is a null set, f−1([−∞, a]) is null, hence measurable.
If a ≥ 0, then f−1([−∞, a]) = f−1((a,∞]C) = (f−1((a,∞]))C . Note f−1((a,∞)) ⊂ A so f−1((a,∞]) is a null
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set. Since M is closed under complements (friendly reminder that it’s a σ−algebra!), f−1([−∞, a]) ∈M . To
show (2), judiciously use the σ−algebra properties of M with the observation that

g−1([−∞, a]) = (g−1([−∞, a]) ∩A) ∪ (g−1([−∞, a]) ∩AC) .

Remark 2.11. Recall from previous discussions in real analysis that continuity, differentiability, and integrability
are not preserved under pointwise convergence of functions. However, pointwise convergence does preserve
measurability!

Theorem 2.12

Let {fn}
∞
n=1 be a sequence of measurable functions. The following extended real number valued functions

are measurable:

1. g1 = supn fn,

2. g2 = infn fn,

3. g3 = lim supn→∞ fn,

4. g4 = lim infn→∞ fn.

Proof. For (1), fix a ∈ R. If g1(x) > a, then there exists n ∈ N such that fn(x) > a. So g−1([a,∞]) =

⋃n f
−1([a,∞]). So g−1([a,∞]) ∈ M . The proof of (2) is identical. Notice now that lim supn→∞ an =

infN (supn>N an) = limN→∞ supn≥N an. Then g3(x) = infN supn>N fn(x) = infN (hN(x)) , where hN is a
measurable function, by (1). So g3 is measurable by (2). The proof of (4) is identical.

Remark 2.13. We now have that the pointwise limit of a measurable functions is measurable! Furthermore,
if g1, . . . , gl are measurable, then max{g1, . . . , gl} is measurable. Moreover, if f measurable, then ∣f ∣ also
measurable.

Theorem 2.14

The set of measurable functions
{f ∶ [0,1]→ R measurable}

is a vector space. Furthermore,

1. The set of bounded measurable functions is a sub-vector space of the first set, and

2. If f, g ∶ [0,1] → R measurable, so is the pointwise product fg ∶ [0,1] → R (defined as (fg)(x) =
f(x)g(x)).

Proof. The first two statements are trivial. Now, fix a ∈ Q, and enumerate Q = {qn}. Suppose now
that f(x) + g(x) > a. Then f(x) > a − g(x). Because Q is dense in R, there exists a qn ∈ Q such that
f(x) > qn > a − g(x). In other words, f(x) > qn and g(x) > a − qn. Thus, x ∈ f

−1((qn,∞)) ∩ g
−1((a − qn,∞)).

Set
Ua = (f + g)

−1
((a,∞)) = {x ∣ f(x) + g(x) > a,

so
Ua ⊂⋃

n

f−1((qn,∞)) ∩ g
−1
((a − qn,∞)).

18
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On the other hand, if y ∈ ⋃n f
−1((qn,∞)) ∩ g

−1((a − qn,∞)), then there exists n ∈ N such that f(y) > qn and
g(y) > a − qn. So f(y) + g(y) > a. Thus

⋃
n

f−1((qn,∞)) ∩ g
−1
((a − qn,∞)) ⊂ Ua.

So Ua = (f + g)
−1(a,∞) is measurable.

3 Building the theory of integration

We’ll delve into integrating by building up its theory on subsets of measurable functions:

1. Bounded measurable functions on [0,1],

2. Non-negative (measurable) functions on [0,1], and finally,

3. General measurable functions on [0,1].

3.1 Integration of bounded measurable functions f ∶ [0,1]→ R.

Theorem 3.1

Let f ∶ [0,1]→ R be bounded. The following are equivalent:

1. f is measurable.

2. There is a sequence of simple functions {gn} such that gn converges uniformly on [0,1].

3. Let
Uµ(f) = {u ∶ [0,1]→ R ∣ u simple, u ≥ f}

and
Lµ(f) = {v ∶ [0,1]→ R ∣ v simple, v ≤ f}.

Then
sup

V ∈L (f)
∫ v dµ = inf

U∈U
∫ U dµ.

Proof. This is very long. I’ll come back to it

Definition 3.2. Let f = [0,1]→ R be bounded and measurable. We define

∫ f dµ = sup
v∈L (f)

∫ v dµ.

Proposition 3.3

Let {gn} be simple functions converging uniformly to f on [0, 1]. (We know f is bounded and measurable.)
Then

1. limn→∞ ∫ gn dµ exists, and

2. limn→∞ ∫ gn dµ = ∫ f dµ.
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Proof. The main trick is that gn9x) − ϵ < f(x) < gn(x) + ϵn for some ϵn → 0. The full proof is in Frank’s
(Terse) Introduction to Lebesgue Integration, Proposition 3.2.3.

Summing up what we’ve already synthesized:

Theorem 3.4 (Nothing New)

Let f, g ∶ [0,1]→ R be bounded and measurable. Then

1. For all c1, c2 ∈ R,

∫ c1f + c2g dµ = c1 ∫ f dµ + c2 ∫ g dµ.

2. If f ≤ g, then ∫ f ≤ ∫ g

3. If ∣f ∣ measurable, then ∣∫ f ∣ ≤ ∫ ∣f ∣

4. If f(x) = g(x) for all x outside a null set, then

∫ f dµ = ∫ g dµ.

3.2 Bounded Functions

Definition 3.5. Let f ∶ [0,1]→ R be bounded and measurable and E ⊂ [0,1] measurable. The we define

∫
E
f dµ = ∫

1

0
χEf dµ.

Proposition 3.6

If E = ⋃∞i=1Ei is the union of pairwise disjoint measurable sets, then

∫
E
f dµ =

N

∑
i=1
∫
Ei

f dµ.

Proof. Notice χEf = ∑
N
i=1 χEif .

Proposition 3.7

If f ∶ [0,1]→ R is a bounded and Riemann-integrable function, then f is Lebesgue measurable and the
Riemann integral and Lebesgue integrals coincide.

Proof. Define

LR(f) = sup{∫ v(x)dx ∣ v ≤ f, v is a step function},

and
Lµ(f) = sup{∫ v dµ ∣ v ≤ f, v is a simple function},

and UR(f), Uµ(f) defined similarly with inf’s in lieu of sup’s. Then

LR(f) ≤ Lµ(f) ≤ Uµ(f) ≤ UR(f).
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3.3 The Bounded Convergence Theorem

Example 3.8

Let

fn(x) =

⎧⎪⎪
⎨
⎪⎪⎩

n 0 < x < 1
n

0 otherwise

Notice that fn → 0 pointwise, but ∫ fn dµ = 1 and ∫ lim fn dµ = 0, so

lim∫ fn dµ = ∫ lim fn

need not hold!

Question 3.9. Is there a sufficient condition for pointwise convergence to imply the convergence of integrals?

Let’s examine the problem with Example 3.8. Fix ϵ > 0 and examine the ”bad sets”, defined as

Bm = {x ∣ ∣fn(x) − 0∣ ≥ ϵ for some n ≥m}

. Then
∞

⋂
n=0

Bn = ∅ and µ(Bm)→ 0

on Bm = (0,
1
m
), so fm =m. To get lim ∫ fn = ∫ lim fn, we need to simultaneously control

• measure of ”bad sets”,

• value of functions fn

Theorem 3.10 (Bounded Convergence Theorem)

Let {fn}
∞
n=1 be a sequence of measurable functions be defined fn ∶ [0,1]→ R. Suppose there is M > 0

such that ∣fn(x)∣ ≤M for all x and all n, and suppose fn → f pointwise. Then

1. f is bounded and measurable, and

2. limn→∞ ∫ fn dµ = ∫ f dµ.

Proof. For (1), the pointwise limit of measurable function is measurable. Also,

lim
n→∞

∣fn(x)∣ ≤M

so ∣f(x)∣ ≤M . To prove (2), we want to show limn→∞ ∫ fn dµ = ∫ f dµ, or limn→∞ ∣∫ fn dµ − ∫ f dµ∣ = 0, or
limn→∞ ∫ ∣fn − f ∣dµ = 0 since ∣∫ fn dµ − ∫ f dµ∣ ≤ ∫ ∣fn − f ∣dµ. Okay, let’s actually get into it: fix ϵ > 0. Set

Em = {x ∣ ∣fn(x) − f(x)∣ <
ϵ

2
∀n ≥m}.

Since fn → f pointwise,
∞

⋃
m=1

Em = [0,1].

Also, Em ⊂ Em+1, so µ(Em)→ µ([0,1]) = 1. Pick m such that

µ(E) > 1 −
ϵ

4m
.
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(Note that µ([0,1] ∖Em) <
ϵ

4m
.) Then for all n ≥m,

∣∫ fn dµ − ∫ f µ∣ ≤ ∫ ∣fn − f ∣dµ

= ∫
Em

∣fn − f ∣ + ∫
EC

m

∣fn − f ∣

≤ ∫
Em

ϵ

2
dµ + ∫

EC
m

2mdµ

≤
ϵ

2
µ(Em) + 2mµ(EC

m)

<
ϵ

2
+
2mϵ

4m
= ϵ.

Okay, so what’s the punchline of the Lebesgue Integral? We can always ignore behavior on a null
set!

Example 3.11

Define f(x) =

⎧⎪⎪
⎨
⎪⎪⎩

7 x /∈ Q
0 x ∈ Q,

and g(x) = 7. Then g(x) = f(x) except on a null set Q. Note that f(x) is not

Riemann integrable.

Definition 3.12. A property holds almost everywhere or for almost every x if it holds for all x outside a
null set.

Example 3.13

Let f ∶ [0,1]→ R, f(x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

x x /∈ Q
1/x x ∈ Q ∖ {0}
0 x = 0

f is not bounded, but for almost every x, ∣f(x)∣ ≤ 2 so we

can say f is essentially bounded.

Theorem 3.14

Let fn ∶ [0,1]→ R be measurable functions, suppose there exists M such that ∣fn(x)∣ ≤M for all n and
almost every x. Suppose fn(x)→ f(x) for almost every x. Then f is

1. measurable,

2. bounded on a null set, and

3. limn→∞ ∫ fn dµ = ∫ f dµ.

Proof. Set A = {x ∣ lim ∣fn(x) − f(x)∣ ≠ 0, B = {x ∣ ∣fn(x)∣ ≥ M}, E = A ∪ ⋃∞n=1Bn, and notice µ(E) = 0.
Letting gn = χECfn and g = χECf , notice gn, g are bounded and measurable, and gn(x)→ g(x) for all x. So

lim
n→∞

∫ fn = lim
n→∞

∫ gn = ∫ g = ∫ f.
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1 Chapter 2, Appendix B

1.1 Properties and construction of the Lebesgue measure on R

1.2 Properties of Lebesgue outer measure

1.3 Definition of Measurable Sets using Outer measure

1.4 Properties of Lebesgue Measure

2 Chapter 3

2.1 Measurable Functions

We wish to define the Lebesgue integral in a fashion similar to that of the Riemann (and
the regulated) integral. However, instead of using step functions to approximate a given
function, we use a much more general class of functions called simple functions.

Definition 2.1. If A ⊂ [0,1], its characteristic function 1A(x) is defined by

1A(x) =
⎧⎪⎪⎨⎪⎪⎩

1 x ∈ A,

0 otherwise.

Definition 2.2. A finite measurable partition of [0,1] is a collection {Ai}ni=1 of measurable subsets which
are pairwise disjoint and whose union is [0,1].

Definition 2.3. A function f ∶ [0, 1]→ R is called Lebesgue simple, or simple, provided there exist a finite
measurable partition Ai

n
i=1 and real numbers {ri} such that

f(x) =
n

∑
i=1

ri1Ai .

The Lebesgue integral of a simple function is defined by

∫ f dµ =
n

∑
i=1

riµ(Ai).

1
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Lemma 2.4 (Properties of simple functions)

The set of simple functions is a vector space and the Lebesgue integral of simple functions satisfies the
following properties:

1. Linearity: If f , g are simple functions and c1, c2 ∈ R, then

∫ c1f + c2g dµ = c∫ f dµ + c2 ∫ g dµ.

2. Monotonicity: If f , g are simple and f(x) ≤ g(x) for all x, then

∫ f dµ ≤ ∫ g dµ.

3. Absolute value: If f is simple, then ∣f ∣ also simple and

∣∫ f dµ∣ ≤ ∫ ∣f ∣dµ.

If f ∶ [0,1] → R ∪ {∞} ∪ {−∞} is called an extended real valued function. For a ∈ R we denote the set
(−∞, a] ∪ {−∞} by [−∞, a] and the set [a,∞) ∪ {∞} by [a,∞].

Proposition 2.5

If f ∶ [0,1]→ R is an extended real valued function, then the following are equivalent:

1. For any a ∈ [−∞,∞], the set f−1([−∞, a]) is Lebesgue measurable.

2. For any a ∈ [−∞,∞], the set f−1([∞, a)) is Lebesgue measurable.

3. For any a ∈ [−∞,∞], the set f−1([a,∞]) is Lebesgue measurable.

4. For any a ∈ [−∞,∞], the set f−1((a,∞]) is Lebesgue measurable.‘

Definition 2.6. An extended real valued function f is called Lebesgue measurable if it satisfies one (and
hence all) of the properties of Proposition 2.5.

Proposition 2.7

If f(x) is a function which has the value 0 except on a set of measure 0, then f(x) is measurable.

2
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Theorem 2.8

Let {fn}∞n=1 be a sequence of measurable functions. Then the extended real valued functions

g1(x) = sup
n∈N

fn(x)

g2(x) = inf
n∈N

fn(x)

g3(x) = lim sup
n→∞

fn(x)

g4(x) = lim inf
n→∞ fn(x)

are all measurable.

Theorem 2.9

The set of Lebesgue measurable functions from [0, 1] to R is a vector space. The set of bounded Lebesgue
measurable functions is a vector subspace.

2.2 Lebesgue integration of Bounded measurable functions

Theorem 2.10

If f ∶ [0,1]→ R is a bounded function, then the following are equivalent:

1. The function f is Lebesgue measurable.

2. There is a sequence of simple functions {fn}∞n=1 which converges uniformly to f .

3. If Uµ(f) denotes the set of all simple functions u(x) such that f(x) ≤ u(x) for all x and if Lµ(f)
denotes the set of all simple functions v(x) such that v(x) ≤ f(x) for all x, then

sup
v∈Lµ(f)

{∫ v dµ} = inf
u∈Uµ(f)

{∫ udµ} .

Definition 2.11. If f ∶ [0, 1]→ R is a bounded measurable function, then we define its Lebesgue integral by

∫ f dµ = inf
u∈Uµ(f)

{∫ udµ} ,

or equivalently,

∫ f dµ = sup
v∈Lµ(f)

{∫ udµ} ,

Proposition 2.12

If {gn}∞n=1 is any sequence of simple functions converging uniformly to a bounded measurable function
f , then limn→∞ ∫ gn dµ exists and is equal to ∫ f dµ.

3
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Theorem 2.13

The Lebesgue integral, defined on the vector space of bounded Lebesgue measurable functions on [0,1]
satisfies the following properties:

1. Linearity: If f, g are Lebesgue measurable functions and c1, c2 ∈ R, then

∫ c1f + c2g dµ = c1 ∫ f dµ + c2 ∫ g dµ.

2. Monotonicity: If f, g are Lebesgue measurable and f(x) ≤ g(x) for all x, then ∫ f dµ ≤ ∫ g dµ.

3. Absolute Value: If f is Lebesgue measurable, then ∣f ∣ is as well and ∣∫ f dµ∣ ≤ ∫ ∣f ∣dµ.

4. Null Sets: If f, g are bounded functions and f(x) = g(x) except on set of measure zero, then f is
measurable if, and only if, g is measurable. If they are measurable, then ∫ f dµ = ∫ g dµ.

Definition 2.14. If E ⊂ [0,1] is a measurable set and f is a bounded mesaurable function we define the
Lebesgue integral of f over E by

∫
E
f dµ = ∫ f1E dµ.

Proposition 2.15

If E,F are disjoint measurable subsets of [0,1], then

∫
E∪F

f dµ = ∫
E
f dµ + ∫

F
f dµ.

Proposition 2.16 (Riemann integrable functions are Lebesgue integrable.)

Every bounded Riemann integral function f ∶ [0,1]→ R is measurable and hence Lebesgue integrable.
The values of the Riemann and Lebesgue integrals coincide.

2.3 The Bounded Convergence Theorem

Example 2.17

Let

fn(x) =
⎧⎪⎪⎨⎪⎪⎩

n x ∈ [ 1
n
, 2
n
],

0 otherwise

Then f is a step function equal to n on an interval of length 1
n
and 0 elsewhere. Thus

∫ fn dµ = n
1

n
= 1.

But for any x ∈ [0,1], we have fn(x) = 0 for all sufficiently large n. Thus the sequence {fn}∞1 converges
pointwise to the 0 function. Hence

∫ ( lim
n→∞ fn(x)) dµ = 0

but
lim
n→∞∫ fn dµ = 1.

4
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Theorem 2.18 (The Bounded Convergence Theorem)

Suppose that {fn}∞1 is a sequence of measurable functions which converges pointwise to a function f
and there is a constant M > 0 such that ∣fn(x)∣ ≤M for all n and all x ∈ [0,1]. Then f is a bounded
measurable function and

lim
n→∞∫ fn dµ = ∫ f dµ.

Definition 2.19. If a property holds for all x except on a set of measure zero, we say that it holds almost
everywhere or for almost all values of x.

Theorem 2.20 (The Better Bounded Convergence Theorem)

Suppose {fn}∞1 is a sequence of bounded measurable functions and f is a bounded function such that

lim
n→∞ fn(x) = f(x)

for almost all x. Suppose also that there exists a constant M > 0 such that for each n > 0,

∣fn(x)∣ ≤M

for almost all x ∈ [0,1]. Then f is a measurable function, satisfying ∣f(x)∣ ≤M for almost all x ∈ [0,1],
and

lim
n→∞∫ fn dµ = ∫ f dµ.

3 Chapter 4

3.1 Integration of non-negative functions

Definition 3.1. If f ∶ [0, 1]→ R is a non-negative Lebesgue measurable function, we let fn(x) =min{f(x), n}.
Then fn is a bounded measurable function and we define

∫ f dµ = lim
n→∞∫ fn dµ.

If ∫ f dµ <∞, we say f is integrable.

Proposition 3.2

If f is a non-negative integrable function and A = {x ∣ f(x) = +∞}, then µ(A) = 0.

Proposition 3.3

Suppose f, g are non-negative measurable functions with g(x) ≤ f(x) for almost every x. If f is integrable,
then g is integrable and

∫ g dµ ≤ ∫ f dµ.

In particular, if g = 0 almost everywhere, then ∫ g dµ = 0.

5
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Corollary 3.4

If f ∶ [0,1]→ R is a non-negative integrable function and ∫ f dµ = 0, then f(x) = 0 for almost all x.

Theorem 3.5 (Absolute Continuity)

Suppose f is a non-negative integrable function. Then for any ϵ > 0, there exists a δ > 0 such that

∫A f dµ < ϵ for every measurable A ⊂ [0,1] with µ(A) < δ.

Corollary 3.6 (Continuity of the Integral)

If f ∶ [0,1] → R is a non-negative integrable function and we define F (x) = ∫[0,x] f dµ, then F (x) is
continuous.

3.2 Convergence Theorems

We can generalize the aforementioned Bounded Convergence Theorem to the following results, where instead
of having a constant bound on the functions fn, we bound them by an integrable function g. (We can do this
because of absolute continuity!)

Theorem 3.7 (Lebesgue Convergence for Non-negative functions)

Suppose fn is a sequence of non-negative measurable functions and g is a non-negative integrable
function such that fn(x) ≤ g(x) for all n and almost all x. If lim fn(x) = f(x) for almost all x, then f is
integrable and

∫ f dµ = lim
n→∞∫ fn dµ.

Theorem 3.8 (Fatou’s Lemma)

Suppose gn is a sequence of non-negative mueasruable functions defined on [0,1]. If lim gn(x) = f(x)
for almost all x, then

∫ f dµ ≤ lim inf
n→∞ ∫ gn dµ.

In particular, if lim inf ∫ gn dµ < +∞, then f is integrable.

Theorem 3.9 (Monotone Convergence Theorem)

Suppose gn is an increasing sequence of non-negative measurable functions. If lim gn(x) = f(x) for
almost all x, then

∫ f dµ = lim
n→∞∫ gn dµ.

In particular, f is integrable if, and only if, lim ∫ gn dµ < +∞.

6
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Corollary 3.10 (Integral of infinite series)

Suppose un is a non-negative measurable function and f is a non-negative function such that∑∞n=1 un(x) =
f(x) for almost all x. Then

∫ f dµ =
∞
∑
n=1

un dµ.

3.3 General Integrable Functions

Recall that a collection A of subsets of I is called a σ−algebra provided it contains the set I and is closed
under taking complements, countable unions, and countable intersections.

Definition 3.11. If A is a σ−algebra of subsets of I, then a function v ∶ A → R is called a finite measure
provided

• v(A) ≥ 0 for every A ∈ A ,

• v(∅) = 0, v(I) <∞,, and

• v is countably additive, i.e. if {An}∞n=1 are pairwise disjoint sets in A, then

v (
∞
⋃
n=1

An) =
∞
∑
n=1

v(An).

Definition 3.12. Let v be a finite measure defined on the σ−algebra M(I). If f(x) = ∑n
i=1 ri1Ai is a simple

function then its integral with respect to v is defined by

∫ f dv =
n

∑
i=1

riv(Ai).

If g ∶ [0,1]→ R is a bounded measurable function, then we define its integral with respect to v by

∫ g dv = inf
u∈Uµ(g)

{∫ udv} .

If h is a non-negative extended measurable function we define

∫ hdv = lim
n→∞∫ min{h,n}dv.

Definition 3.13. If v is a measure defined on M(I), the Lebesgue measurable subsets of I, then we say v is
absolutely continuous with respect to Lebesgue measure µ if µ(A) = 0 implies v(A) = 0.

Theorem 3.14

If v is a measure defined on M(I) which is absolutely continuous with respect to Lebesgue measure,
then for any ϵ > 0, there exists a δ > 0 such that v(A) < ϵ whenever µ(A) = δ.

Proposition 3.15

If f is a non-negative integrable function on I and we define

vf(A) = ∫
A
f dµ,

then vf is a measure with σ−algebra M(I) which is absolutely continuous with respect to Lebesgue
measure µ.

7
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Theorem 3.16 (Radon-Nikodym)

If v is a measure with σ−algebra M(I) which is absolutely continuous with respect to Lebesgue measure
µ, then there is a non-negative integrable function f on [0,1] such that

v(A) = ∫
A
f dµ.

The function f is unique up to measure zero, i.e. if g is another function with these properties, then
f = g almost everywhere.

Remark 3.17. The function f is called the Radon-Nikodym derivate of v with respect to µ. In fact, the
Radon-Nikodym Theorem is more general than stated, as it applies to any two finite measures v and µ defined
on a σ−algebra A with v absolutely continuous with respect to µ.

We will now consider extended measurable functions which may be unbounded both above and below. Define

f+(x) =max{f(x),0} and f−9x) = −min{f(x),0}.

Definition 3.18. if f ∶ [0, 1]→ R is a measurable function, then we say f is Lebesgue integrable provided
both f+ and f− are integrable (as non-negative functions). If f is integrable, we define

∫ f dµ = ∫ f+ dµ − ∫ f− dµ.

Proposition 3.19

Suppose f, g are measurable functions on [0, 1] and f = g almost everywhere. Then if f is integrable, so
is g and ∫ f dµ = ∫ g dµ. In particular, if f = 0 almost everywhere ∫ f dµ = 0.

Proposition 3.20

The measurable function f ∶ [0,1]→ R is integrable if, and only if, the function ∣f ∣ is integrable.

Theorem 3.21 (Lebesgue Convergence Theorem)

Suppose fn is a sequence of measurable functions and g is a non-negative integrable function such that
∣fn(x)∣ ≤ g(x) for all n and almost all x. if lim fn(x) = f(x) for almost all x, then f is integrable and

∫ f dµ = lim
n→∞∫ fn dµ.

Theorem 3.22

If f ∶ [0,1]→ R is an integrable function, then given ϵ > 0, there is a step function g ∶ [0,1]→ R and a
measurable subset A ⊂ [0,1] such that µ(A) < ϵ and

∣f(x) − g(x)∣ < ϵ

for all x /∈ A. Moreover, if ∣f(x)∣ ≤M for all x, then we may choose g with this same bound.

8
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Theorem 3.23

The Lebesgue integral satisfies the following properties:

1. Linearity: If f, g are Lebesgue measurable functions and c1, c2 ∈ R, then

∫ c1f + c2g dµ = c1 ∫ f dµ + c2 ∫ g dµ.

2. Montonicity: If f, g are Lebesgue measurable and f(x) ≤ g(x) for all x, then ∫ f dµ ≤ ∫ g dµ.

3. Absolute value: If f is Lebesgue measurable, then ∣f ∣ is also and ∣∫ f dµ∣ ≤ ∫ ∣f ∣dµ.

4. Null sets: If f, g bounded functions and f(x) = g(x) except on a set of measure zero, then ff is
measurable if and only if g is measurable. If they are measurable, then ∫ f dµ = ∫ g dµ.

4 Chapter 5

Let X be a finite set with n elements, like X = {1, 2, 3, . . . , n} and we define a measure v on X which is called
the counting measure. More precisely, we take a σ−algebra the family of all subsets of X and for any A ⊂X,
we define v(A) to be the number of elements in the set A. Clearly, any function f ∶ X → R is measurable.
Since there is a partition of X given by Ai = {i}, and f is constant on each Ai (thus f = ∑n

i=1 ri1Ai
, ri = f(i)),

any function is a simple function. Thus

∫ f dv =
n

∑
i=1

riv(Ai) =
n

∑
i=1

f(i).

We will denote the collection {f ∣ f ∶X → R} by L2(X). More formally, there is a vector space isomorphism
of L2(X) and Rn given by f ←→ (x1, x2, . . . , xn), where xi = f(i). If f, g ∈ L2(X) correspond to the vectors
x, y, respectively, then xi = f(i), yi = g(i), so

< x, y >=
n

∑
i=1

xiyi =
n

∑
i=1

f(i)g(i) = ∫ fg dv

and

∥x∥2 =< x,x >=
n

∑
i=1

x2
i =

n

∑
i=1

f(i)2 = ∫ f2 dv.

Definition 4.1. a measurable function f ∶ [−1,1]→ R is called square integrable if f(x)2 is integrable. We
denote the set of all square integrable functions by L2[−1,1], and the norm of f ∈ L2[−1,1] by

∥f∥ = (∫ f2dµ)
1/2

.

Proposition 4.2

The norm ∥ ∥ on L2[−1,1] satisfies ∥af∥ = ∣a∣∥f∥ for all a ∈ R and all f ∈ L2[−1,1]. Moreover, for all f ,
∥f∥ ≥ 0 with equality only if f = 0 almost everywhere.

9
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Lemma 4.3

If f, g ∈ L2[−1,1], then fg is integrable and

2∫ ∣fg∣dµ ≤ ∥f∥2 + ∥g∥2

Equality holds if, and only if, ∣f ∣ = ∣g∣ almost everywhere.

Theorem 4.4

L2[−1,1] is a vector space.

Theorem 4.5 (Holder Inequality)

If f, g ∈ L2[−1,1], then
∫ ∣fg∣dµ ≤ ∥f∥∥g∥.

Equality holds if, and only if, there is a constant c such that ∣f(x)∣ = c∣g(x)∣ or ∣g(x)∣ = c∣f(x)∣ almost
everywhere.

Corollary 4.6

If f, g ∈ L2[−1,1], then
∣∫ fg dµ∣ ≤ ∥f∥∥g∥.

Theorem 4.7 (Minkowski’s Inequality)

If f, g ∈ L2[−1,1], then
∥f + g∥ ≤ ∥f∥ + ∥g∥.

Definition 4.8. If f, g ∈ L2[−1,1], then we define their inner product by

⟨f, g⟩ = ∫ fg dµ.

Theorem 4.9

For any f1, f2, g ∈ L2[−1,1] and any c1, c2 ∈ R, the inner product on L2[−1,1] satisfies the following
properties:

1. Commutativity: ⟨f, g⟩ = ⟨g, f⟩.

2. Bilinearity: ⟨c1f1 + c2f2, g⟩ = c1⟨f1, g⟩ + c2⟨f2, g⟩.

3. Positive definiteness: ⟨g, g⟩ = ∥g∥2 ≥ 0 with equality if, and only if, g = 0 almost everywhere.

4.1 Convergence in L2

Note that dist(f, g) = 0 if, and only if, f = g almost everywhere, so if we wish to be pedantic, the metric space
L2[−1,1] is really just the equivalence classes of functions which are equal almost everywhere.

10
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Definition 4.10. If {fn}∞n=1 is a sequence in L2[−1, 1], then it is said to converge to in measure of order 2 or
to converge in L2[−1,1] if there is a function f ∈ L2[−1,1] such that

lim
n→∞∥f − fn∥ = 0.

Lemma 4.11 (Density of Bounded Functions)

If we define

fn(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n f(x) > n
f(x) −n ≤ f(x) ≤ n
−nf(x) < −n

then
lim
n→∞∥f − fn∥ = 0.

Proposition 4.12 (Density of Step Functions and Continuous Functions)

The step functions are dense in L2[−1, 1]. That is, for any ϵ > 0 and for any f ∈ L2[−1, 1], there is a step
function g ∶ [−1,1] → R such that ∥f − g∥ < ϵ. Likewise, there is a continuous function h ∶ [−1,1] → R
such that ∥f − h∥ < ϵ. The function h may be chosen so h(−1) = h(1).

Definition 4.13. An inner product space (V , ∥ , ∥) which is complete (i.e. in which Cauchy sequences
converge) is called a Hilbert space.

Theorem 4.14

L2[−1,1] is a Hilbert space.

4.2 Real Hilbert Space

If H is a Hilbert spcae and {xn} is a sequence, then limn→∞ xn = x means that for any ϵ > 0, there is an
N > 0 such that ∥x − xn∥ < ϵ whenever n ≥ N . If {xn} is a sequence in H , then ∑∞m=1 um = s means that
the limit of partial sums sn = ∑n

m=1 um converges to s. As expected, a series ∑∞m=1 um converges absolutely
provided that ∑∞m=1∥um∥ converges.

Proposition 4.15

If a series in a Hilbert space converges absolutely, then it converges.

We say x, y ∈H is perpendicular (but fr let’s just say orthogonal) if ⟨x, y⟩ = 0.

Theorem 4.16 (Pythagorean Theorem)

If x1, x2, . . . , xn are mutually orthogonal elements of a Hilbert space, then

∥
n

∑
i=1

xi∥
2

=
n

∑
i=1
∥xi∥2.

11
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Definition 4.17. If H is a Hilbert space, a bounded linear functional on H is a function L ∶H → R such
that for all v,w ∈ H and c1, c2 ∈ R, L(c1v + c2w) = c1L(v) + c2L(w) and such that there is a constant M
satisfying ∣L(v)∣ ≤M∥v∥ for all v ∈H .

Proposition 4.18 (Cauchy-Schwartz Inequality)

If (H , ⟨ , ⟩) is a Hilbert space and v,w ∈H , then

∣⟨v,w⟩∣ ≤ ∥v∥∥w∥,

with equality if, and only if, v and w are multiples of a single vector.

Lemma 4.19

Suppose H is a Hilbert space and L ∶H → R is a bounded linear functional which is not identically 0.
If V = L−1(1), then there is a unique x ∈ V such that

∥x∥ = inf
v∈V
∥v∥.

That is, there is a unique vector in V closest to 0. Moreover, the vector x is orthogonal to every element
of L−1(0), i.e. if v ∈H and L(v) = 0, then ⟨x, v⟩ = 0.

Theorem 4.20

If H is a Hilbert space and L ∶H → R is a bounded linear functional, then there is a unique x ∈H
such that L(v) = ⟨v, x⟩.

4.3 Abstract Fourier Series

It is not generally possible to find vectors {un}∞n=1 in a Hilbert space H such that any v ∈H can be expressed
as a finite linear combination of the un’s. Instead we want to write v ∈H as an infinite series

v =
∞
∑
i=1

aiui.

Definition 4.21. A family of vectors {un} in a Hilbert space H is called orthonormal if for each n,
∥un∥ = 1 and ⟨un, um⟩ = 0 if n ≠m.

Theorem 4.22

If {un}Nn=0 is a finite orthonormal family of vectors in a Hilbert space H and w ∈H , then the minimum
value of

∥w −
N

∑
n=1

cnun∥

for all choices of cnR occurs when cn = ⟨w,un⟩.

Definition 4.23. If {un}∞n=0 is an orthonormal family of vectors in a Hilbert space H , it is called complete
if every w ∈H can be written as an infinite series

w =
∞
∑
n=0

cnun

12
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for some chloice of the numbers cn ∈ R.

Definition 4.24. The nth Fourier coefficient of w with respect to an orthonormal family {un}∞n=0 is the
number ⟨w,un⟩. The infinite series

∞
∑
n=0
⟨w,un⟩un

is called the Fourier series of w.

Theorem 4.25 (Bessel’s Inequality)

If {ui}∞i=0 is an orthonormal family of vectors in a Hilbert space H and w is any element of H , then

∞
∑
i=0
∣⟨w,ui⟩∣2 ≤ ∥w∥2.

In particular, this series converges.

Proposition 4.26 (Fourier series converge)

If {un}∞n=0 is an orthonormal family of vectors in a Hilbert space H and w ∈H , then the Fourier series

∞
∑
i=0
⟨w,ui⟩ui

with respect to {ui}∞i=0 converges. If the orthonormal family is complete, then it converges to w. Morever,
it is unique in the sense that if ∑∞i=0 ciui = w, then ci = ⟨w,ui⟩.

Theorem 4.27 (Parseval’s Theorem)

If {un}∞n=0 is an orthonormal family of vectors in a Hilbert space H and w ∈H , then

∞
∑
i=0
∣⟨w,ui⟩∣2 = ∥w∥2

if, and only if, the Fourier series with respect to {un}∞n=0 converges to w, i.e.

∞
∑
i=0
⟨w,ui⟩ui = w.

5 Chapter 6

5.1 Pointwise convergence of classical Fourier Series

Definition 5.1. We define the inner product ⟨ , ⟩ on L2[−π,π], the vector space of square integrable functions
on [−π,π] by

⟨f, g⟩ = 1

π
∫

π

−π
fg dµ.

13
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Theorem 5.2

The family of functions

F = { 1√
2
, cos(nx), sin(nx)}

∞

n=1
is an orthonormal family on L2[−π,π].

Definition 5.3. If f is an element of L2[−π,π], then its classical Fourier coefficients are

A0 =
1

2π
∫ f(x)dµ,

An =
1

π
∫ f(x) cos(nx)dµ

Bn =
1

π
∫ f(x) sin(nx)dµ

for n > 0. The Fourier series of f is

A0 +
∞
∑
n=1

An cos(nx) +
∞
∑
n=1

Bn sin(nx).

Remark 5.4. The orthonormal family F is complete.

We will be particularly interested in the set which is the unit circle in R2 and which we denote by T. Futhermore,
we consider C(T) as the set of continuous functions h ∶ [−π,π]→ R which satisfy h(−π) = h(π).

Theorem 5.5 (Stone-Weierstrass)

Suppose A ⊂ C(T) is an algebra (vector space with multiplicative closure) satisfying

1. the constant function 1 is in A, and

2. A separates points, i.e. for any distinct θ0 and θ1 in T, there is p ∈ A such that p(θ0) ≠ p(θ1).

Then given any ϵ > 0 and any f ∈ C(T), there is p ∈ A such that ∣f(θ) − p(θ)∣ < ϵ for all θ ∈ T.

What we use from this theorem is that any f ∈ C(T) can be approximated by a ”trigonometric polyno-
mial”.

Corollary 5.6

Suppose that g is a continuous function defined on [−π,π] such that g(−π) = g(π). If ϵ > 0, then there
are N > 0 and an, bn ∈ R, 1 ≤ n ≤ N such that ∣g(x) − p(x)∣ < ϵ for all x, where

p(x) = a0 +
N

∑
n=1

an cos(nx) +
N

∑
n=1

bn sin(nx).

Theorem 5.7 (Fourier Series converge in L2)

Suppose that f ∈ L2[−π,π]. Then the Fourier series for f with respect to the orthonormal family F
converges to f in L2[−π,π]. In particular, the orthonormal family F is complete.
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Theorem 5.8 (Carleson’s theorem)

Suppose f ∈ L2[−π,π] and
A0 +

∞
∑
n=1

An cos(nx) +
∞
∑
n=1

Bn sin(nx)

is its classical Fourier series. Then this series converges to f(x) for almost all values of x ∈ [−π,π].

Theorem 5.9

If f ∶ [−π,π]→ R is differentiable at x0 ∈ (−π,π), then the Fourier series of f at x0,

A0 +
∞
∑
n=1

An cos(nx0) +
∞
∑
n=1

Bn sin(nx0),

converges to f(x0). IF the right and left derivatives of f exist at −π and π respectively, then the Fourier

series evaluated at either −π or π converges to f(−π)+f(π)
2

.

5.2 Using Fourier Coefficients/Series to Evaluate Infinite Series

5.3 Complex Hilbert Space
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